1932

Abstract

We review recent progress in the modeling of organic solar cells and photovoltaic materials, as well as discuss the underlying theoretical methods with an emphasis on dynamical electronic processes occurring in organic semiconductors. The key feature of the latter is a strong electron-phonon interaction, making the evolution of electronic and structural degrees of freedom inseparable. We discuss commonly used approaches for first-principles modeling of this evolution, focusing on a multiscale framework based on the Holstein–Peierls Hamiltonian solved via polaron transformation. A challenge for both theoretical and experimental investigations of organic solar cells is the complex multiscale morphology of these devices. Nevertheless, predictive modeling of photovoltaic materials and devices is attainable and is rapidly developing, as reviewed here.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121440
2015-04-01
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/physchem/66/1/annurev-physchem-040214-121440.html?itemId=/content/journals/10.1146/annurev-physchem-040214-121440&mimeType=html&fmt=ahah

Literature Cited

  1. Scharber MC, Muhlbacher D, Koppe M, Denk P, Waldauf C. 1.  et al. 2006. Design rules for donors in bulk-heterojunction solar cells: towards 10% energy-conversion efficiency. Adv. Mater. 18:789–94 [Google Scholar]
  2. Heeger AJ. 2.  2014. 25th anniversary article: Bulk heterojunction solar cells: understanding the mechanism of operation. Adv. Mater. 26:10–27 [Google Scholar]
  3. Koster LJA, Shaheen SE, Hummelen JC. 3.  2012. Pathways to a new efficiency regime for organic solar cells. Adv. Energy Mater. 2:1246–53 [Google Scholar]
  4. Giebink NC, Wiederrecht GP, Wasielewski MR, Forrest SR. 4.  2011. Thermodynamic efficiency limit of excitonic solar cells. Phys. Rev. B 83:195326 [Google Scholar]
  5. Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sánchez-Carrera RS. 5.  et al. 2011. The Harvard Clean Energy Project: large-scale computational screening and design of organic photovoltaics on the world community grid. J. Phys. Chem. Lett. 2:2241–51 [Google Scholar]
  6. Klauk H. 6.  2012. Organic Electronics II: More Materials and Applications New York: Wiley
  7. Janssen RAJ, Nelson J. 7.  2013. Factors limiting device efficiency in organic photovoltaics. Adv. Mater. 25:1847–58 [Google Scholar]
  8. Kanal IY, Owens SG, Bechtel JS, Hutchison GR. 8.  2013. Efficient computational screening of organic polymer photovoltaics. J. Phys. Chem. Lett. 4:1613–24 [Google Scholar]
  9. Sumpter BG, Meunier V. 9.  2012. Can computational approaches aid in untangling the inherent complexity of practical organic photovoltaic systems?. J. Polym. Sci. B 50:1071–89 [Google Scholar]
  10. Servaites JD, Ratner MA, Marks TJ. 10.  2011. Organic solar cells: a new look at traditional models. Energy Environ. Sci. 4:4410–22 [Google Scholar]
  11. Brédas JL, Norton JE, Cornil J, Coropceanu V. 11.  2009. Molecular understanding of organic solar cells: the challenges. Acc. Chem. Res. 42:1691–99 [Google Scholar]
  12. Pope M, Swenberg C. 12.  1999. Electronic Processes in Organic Crystals and Polymers New York: Oxford Univ. Press
  13. Sun Y, Welch GC, Leong WL, Takacs CJ, Bazan GC, Heeger AJ. 13.  2012. Solution-processed small-molecule solar cells with 6.7% efficiency. Nat. Mater. 11:44–48 [Google Scholar]
  14. Beaujuge PM, Frechet JMJ. 14.  2011. Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J. Am. Chem. Soc. 133:20009–29 [Google Scholar]
  15. Chen L, Furukawa K, Gao J, Nagai A, Nakamura T. 15.  et al. 2014. Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions. J. Am. Chem. Soc. 136:9806–9 [Google Scholar]
  16. Robb MJ, Ku S, Hawker CJ. 16.  2013. No assembly required: recent advances in fully conjugated block copolymers. Adv. Mater. 25:5686–700 [Google Scholar]
  17. Bardeen CJ. 17.  2014. The structure and dynamics of molecular excitons. Annu. Rev. Phys. Chem 65:127–48 [Google Scholar]
  18. Oldani N, Tretiak S, Bazan G, Fernandez-Alberti S. 18.  2014. Modeling of internal conversion in photoexcited conjugated molecular donors used in organic photovoltaics. Energy Environ. Sci. 7:1175–84 [Google Scholar]
  19. Clark J, Nelson T, Tretiak S, Cirmi G, Lanzani G. 19.  2012. Femtosecond torsional relaxation. Nat. Phys. 8:225–31 [Google Scholar]
  20. Zhugayevych A, Postupna O, Bakus RC II, Welch GC, Bazan GC, Tretiak S. 20.  2013. Ab initio study of a molecular crystal for photovoltaics: light absorption, exciton and charge carrier transport. J. Phys. Chem. C 117:4920–30 [Google Scholar]
  21. Jailaubekov AE, Willard AP, Tritsch JR, Chan WL, Sai N. 21.  et al. 2013. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Nat. Mater. 12:66–73 [Google Scholar]
  22. Park SH, Roy A, Beaupré S, Cho S, Coates N. 22.  et al. 2009. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 3:297–302 [Google Scholar]
  23. Kaake LG, Jasieniak JJ, Bakus RC, Welch GC, Moses D. 23.  et al. 2012. Photoinduced charge generation in a molecular bulk heterojunction material. J. Am. Chem. Soc. 134:19828–38 [Google Scholar]
  24. Devizis A, Meerholz K, Hertel D, Gulbinas V. 24.  2010. Hierarchical charge carrier motion in conjugated polymers. Chem. Phys. Lett. 498:302–6 [Google Scholar]
  25. Koster LJA. 25.  2010. Charge carrier mobility in disordered organic blends for photovoltaics. Phys. Rev. B 81:205318 [Google Scholar]
  26. Nayak PK, Cahen D. 26.  2014. Updated assessment of possibilities and limits for solar cells. Adv. Mater. 26:1622–28 [Google Scholar]
  27. Schlenker CW, Thompson ME. 27.  2011. The molecular nature of photovoltage losses in organic solar cells. Chem. Commun 47:3702–16 [Google Scholar]
  28. Niv A, Gharghi M, Gladden C, Miller OD, Zhang X. 28.  2012. Near-field electromagnetic theory for thin solar cells. Phys. Rev. Lett. 109:138701 [Google Scholar]
  29. Shockley W, Queisser HJ. 29.  1961. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32:510–19 [Google Scholar]
  30. Chen K, Yip H, Salinas J, Xu Y, Chueh C, Jen A. 30.  2014. Strong photocurrent enhancements in highly efficient flexible organic solar cells by adopting a microcavity configuration. Adv. Mater. 26:3349–54 [Google Scholar]
  31. Troisi A. 31.  2011. Charge transport in high mobility molecular semiconductors: classical models and new theories. Chem. Soc. Rev. 40:2347–58 [Google Scholar]
  32. Ciuchi S, Hatch RC, Höchst H, Faber C, Blase X, Fratini S. 32.  2012. Molecular fingerprints in the electronic properties of crystalline organic semiconductors: from experiment to theory. Phys. Rev. Lett. 108:256401 [Google Scholar]
  33. Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC. 33.  2011. Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv. Mater. 23:2367–71 [Google Scholar]
  34. Spano FC. 34.  2010. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43:429–39 [Google Scholar]
  35. Salaneck W, Friend R, Brédas J. 35.  1999. Electronic structure of conjugated polymers: consequences of electron-lattice coupling. Phys. Rep. 319:231–51 [Google Scholar]
  36. Barford W. 36.  2005. Electronic and Optical Properties of Conjugated Polymers New York: Oxford Univ. Press
  37. Brooks JS. 37.  2008. Magnetic field dependent and induced ground states in organic conductors. Rep. Prog. Phys. 71:126501 [Google Scholar]
  38. Jacquemin D, Adamo C. 38.  2011. Bond length alternation of conjugated oligomers: wave function and DFT benchmarks. J. Chem. Theory Comput. 7:369–76 [Google Scholar]
  39. Korzdorfer T, Sears JS, Sutton C, Brédas JL. 39.  2011. Long-range corrected hybrid functionals for π-conjugated systems: dependence of the range-separation parameter on conjugation length. J. Chem. Phys. 135:204107 [Google Scholar]
  40. Cramer C. 40.  2005. Essentials of Computational Chemistry: Theories and Models New York: Wiley
  41. Magyar RJ, Tretiak S. 41.  2007. Dependence of spurious charge-transfer excited states on orbital exchange in TDDFT: large molecules and clusters. J. Chem. Theory Comput. 3:976–87 [Google Scholar]
  42. Nayyar IH, Batista ER, Tretiak S, Saxena A, Smith DL, Martin RL. 42.  2011. Localization of electronic excitations in conjugated polymers studied by DFT. J. Phys. Chem. Lett. 2:566–71 [Google Scholar]
  43. Burns LA, Vázquez-Mayagoitia A, Sumpter BG, Sherrill CD. 43.  2011. Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM), theory, and specialized functionals. J. Chem. Phys. 134:084107 [Google Scholar]
  44. Baer R, Livshits E, Salzner U. 44.  2010. Tuned range-separated hybrids in density functional theory. Annu. Rev. Phys. Chem. 61:85–109 [Google Scholar]
  45. Mardirossian N, Head-Gordon M. 45.  2014. Exploring the limit of accuracy for density functionals based on the generalized gradient approximation: local, global hybrid, and range-separated hybrid functionals with and without dispersion corrections. J. Chem. Phys. 140:18A527 [Google Scholar]
  46. Zhang CR, Sears JS, Yang B, Aziz SG, Coropceanu V, Brédas JL. 46.  2014. Theoretical study of the local and charge-transfer excitations in model complexes of pentacene-C60 using tuned range-separated hybrid functionals. J. Chem. Theory Comput. 10:2379–88 [Google Scholar]
  47. Autschbach J, Srebro M. 47.  2014. Delocalization error and “functional tuning” in Kohn-Sham calculations of molecular properties. Acc. Chem. Res. 47:2592–602 [Google Scholar]
  48. Kubar T, Elstner M. 48.  2010. Coarse-grained time-dependent density functional simulation of charge transfer in complex systems: application to hole transfer in DNA. J. Phys. Chem. B 114:11221–40 [Google Scholar]
  49. Bedard-Hearn MJ, Sterpone F, Rossky PJ. 49.  2010. Nonadiabatic simulations of exciton dissociation in poly-p-phenylenevinylene oligomers. J. Phys. Chem. A 114:7661–70 [Google Scholar]
  50. Botelho AL, Shin Y, Liu J, Lin X. 50.  2014. Structure and optical bandgap relationship of π-conjugated systems. PLoS ONE 9:e86370 [Google Scholar]
  51. Lukyanov A, Malafeev A, Ivanov V, Chen HL, Kremer K, Andrienko D. 51.  2010. Solvated poly-(phenylene vinylene) derivatives: conformational structure and aggregation behavior. J. Mater. Chem. 20:10475–85 [Google Scholar]
  52. Zhang D, Qu Z, Liu C, Jiang Y. 52.  2011. Excitation energy calculation of conjugated hydrocarbons: a new Pariser-Parr-Pople model parameterization approaching CASPT2 accuracy. J. Chem. Phys. 134:024114 [Google Scholar]
  53. Schapiro I, Ryazantsev MN, Frutos LM, Ferr N, Lindh R, Olivucci M. 53.  2011. The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects. J. Am. Chem. Soc. 133:3354–64 [Google Scholar]
  54. Coropceanu V, Sánchez-Carrera RS, Paramonov P, Day GM, Brédas JL. 54.  2009. Interaction of charge carriers with lattice vibrations in organic molecular semiconductors: naphthalene as a case study. J. Phys. Chem. C 113:4679–86 [Google Scholar]
  55. Tully JC. 55.  2012. Perspective: nonadiabatic dynamics theory. J. Chem. Phys. 137:22A301 [Google Scholar]
  56. Beck TL. 56.  2000. Real-space mesh techniques in density-functional theory. Rev. Mod. Phys. 72:1041–80 [Google Scholar]
  57. Skouteris D, Barone V. 57.  2014. A new Gaussian MCTDH program: implementation and validation on the levels of the water and glycine molecules. J. Chem. Phys. 140:244104 [Google Scholar]
  58. Nelson T, Fernandez-Alberti S, Roitberg AE, Tretiak S. 58.  2014. Nonadiabatic excited-state molecular dynamics: modeling photophysics in organic conjugated materials. Acc. Chem. Res. 47:1155–64 [Google Scholar]
  59. Duncan WR, Prezhdo OV. 59.  2007. Theoretical studies of photoinduced electron transfer in dye-sensitized TiO2. Annu. Rev. Phys. Chem. 58:143–84 [Google Scholar]
  60. Martinelli NG, Ide J, Sánchez-Carrera RS, Coropceanu V, Brédas JL. 60.  et al. 2010. Influence of structural dynamics on polarization energies in anthracene single crystals. J. Phys. Chem. C 114:20678–85 [Google Scholar]
  61. Ben-Nun M, Quenneville J, Martínez TJ. 61.  2000. Ab initio multiple spawning: photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A 104:5161–75 [Google Scholar]
  62. Shenvi N, Subotnik JE, Yang W. 62.  2011. Simultaneous-trajectory surface hopping: a parameter-free algorithm for implementing decoherence in nonadiabatic dynamics. J. Chem. Phys. 134:144102 [Google Scholar]
  63. Mahan G. 63.  2000. Many-Particle Physics New York: Kluwer Acad.
  64. Ortmann F, Bechstedt F, Hannewald K. 64.  2011. Charge transport in organic crystals: theory and modelling. Phys. Status Solidi B 248:511–25 [Google Scholar]
  65. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas JL. 65.  2007. Charge transport in organic semiconductors. Chem. Rev. 107:926–52 [Google Scholar]
  66. Heeger AJ, Kivelson S, Schrieffer JR, Su WP. 66.  1988. Solitons in conducting polymers. Rev. Mod. Phys. 60:781–850 [Google Scholar]
  67. Li H, Wu C, Malinin SV, Tretiak S, Chernyak VY. 67.  2010. Excited states of donor and acceptor substituted conjugated oligomers: a perspective from the exciton scattering approach. J. Phys. Chem. Lett. 1:3396–400 [Google Scholar]
  68. Chowdary PD, Martínez TJ, Gruebele M. 68.  2007. The vibrationally adiabatic torsional potential energy surface of trans-stilbene. Chem. Phys. Lett. 440:7–11 [Google Scholar]
  69. Papaconstantopoulos DA, Mehl MJ. 69.  2003. The Slater-Koster tight-binding method: a computationally efficient and accurate approach. J. Phys. Condens. Matter 15:R413 [Google Scholar]
  70. Binder R, Romer S, Wahl J, Burghardt I. 70.  2014. An analytic mapping of oligomer potential energy surfaces to an effective Frenkel model. J. Chem. Phys. 141:014101 [Google Scholar]
  71. Hannewald K, Stojanovic VM, Schellekens JMT, Bobbert PA, Kresse G, Hafner J. 71.  2004. Theory of polaron bandwidth narrowing in organic molecular crystals. Phys. Rev. B 69:075211 [Google Scholar]
  72. Kirkpatrick J. 72.  2008. An approximate method for calculating transfer integrals based on the ZINDO Hamiltonian. Int. J. Quantum Chem. 108:51–56 [Google Scholar]
  73. Hennebicq E, Pourtois G, Scholes GD, Herz LM, Russell DM. 73.  et al. 2005. Exciton migration in rigid-rod conjugated polymers: an improved Förster model. J. Am. Chem. Soc. 127:4744–62 [Google Scholar]
  74. Beljonne D, Curutchet C, Scholes GD, Silbey RJ. 74.  2009. Beyond Förster resonance energy transfer in biological and nanoscale systems. J. Phys. Chem. B 113:6583–99 [Google Scholar]
  75. Huang J, Kertesz M. 75.  2004. Intermolecular transfer integrals for organic molecular materials: Can basis set convergence be achieved?. Chem. Phys. Lett. 390:110–15 [Google Scholar]
  76. Sutton C, Sears JS, Coropceanu V, Brédas JL. 76.  2013. Understanding the density functional dependence of DFT-calculated electronic couplings in organic semiconductors. J. Phys. Chem. Lett. 4:919–24 [Google Scholar]
  77. Yi Y, Coropceanu V, Brédas JL. 77.  2012. Nonlocal electron-phonon coupling in the pentacene crystal: beyond the Γ-point approximation. J. Chem. Phys. 137:164303 [Google Scholar]
  78. Moran D, Simmonett AC, Leach FE III, Allen WD, Schleyer P, Schaefer HF III. 78.  2006. Popular theoretical methods predict benzene and arenes to be nonplanar. J. Am. Chem. Soc. 128:9342–43 [Google Scholar]
  79. Devreese JT, Alexandrov AS. 79.  2009. Fröhlich polaron and bipolaron: recent developments. Rep. Prog. Phys. 72:066501 [Google Scholar]
  80. Wang L, Prezhdo OV. 80.  2014. A simple solution to the trivial crossing problem in surface hopping. J. Phys. Chem. Lett. 5:713–19 [Google Scholar]
  81. Sterpone F, Martinazzo R, Panda AN, Burghardt I. 81.  2011. Coherent excitation transfer driven by torsional dynamics: a model Hamiltonian for PPV type systems. Z. Phys. Chem. 225:541–51 [Google Scholar]
  82. Pereverzev A, Bittner ER. 82.  2006. Time-convolutionless master equation for mesoscopic electron-phonon systems. J. Chem. Phys. 125:104906 [Google Scholar]
  83. Chen D, Ye J, Zhang H, Zhao Y. 83.  2011. On the Munn-Silbey approach to polaron transport with off-diagonal coupling and temperature-dependent canonical transformations. J. Phys. Chem. B 115:5312–21 [Google Scholar]
  84. Thoss M, Wang H, Miller WH. 84.  2001. Self-consistent hybrid approach for complex systems: application to the spin-boson model with Debye spectral density. J. Chem. Phys. 115:2991–3005 [Google Scholar]
  85. Ortmann F, Bechstedt F, Hannewald K. 85.  2009. Theory of charge transport in organic crystals: beyond Holstein's small-polaron model. Phys. Rev. B 79:235206 [Google Scholar]
  86. Vukmirovic N, Bruder C, Stojanovic VM. 86.  2012. Electron-phonon coupling in crystalline organic semiconductors: microscopic evidence for nonpolaronic charge carriers. Phys. Rev. Lett. 109:126407 [Google Scholar]
  87. Cheng YC, Silbey RJ, da Silva Filho DA, Calbert JP, Cornil J, Brédas JL. 87.  2003. Three-dimensional band structure and bandlike mobility in oligoacene single crystals: a theoretical investigation. J. Chem. Phys. 118:3764–74 [Google Scholar]
  88. Hatch RC, Huber DL, Höchst H. 88.  2010. Electron-phonon coupling in crystalline pentacene films. Phys. Rev. Lett. 104:047601 [Google Scholar]
  89. Koch N, Vollmer A, Salzmann I, Nickel B, Weiss H, Rabe JP. 89.  2006. Evidence for temperature-dependent electron band dispersion in pentacene. Phys. Rev. Lett. 96:156803 [Google Scholar]
  90. Troisi A, Orlandi G. 90.  2006. Charge-transport regime of crystalline organic semiconductors: diffusion limited by thermal off-diagonal electronic disorder. Phys. Rev. Lett. 96:086601 [Google Scholar]
  91. Pochas CM, Spano FC. 91.  2014. New insights on the nature of two-dimensional polarons in semiconducting polymers: infrared absorption in poly(3-hexylthiophene). J. Chem. Phys. 140:244902 [Google Scholar]
  92. Karabunarliev S, Baumgarten M, Bittner ER, Mullen K. 92.  2000. Rigorous Franck–Condon absorption and emission spectra of conjugated oligomers from quantum chemistry. J. Chem. Phys. 113:11372–81 [Google Scholar]
  93. Dierksen M, Grimme S. 93.  2004. The vibronic structure of electronic absorption spectra of large molecules: a time-dependent density functional study on the influence of “exact” Hartree-Fock exchange. J. Phys. Chem. A 108:10225–37 [Google Scholar]
  94. Heimel G, Daghofer M, Gierschner J, List EJW, Grimsdale AC. 94.  et al. 2005. Breakdown of the mirror image symmetry in the optical absorption/emission spectra of oligo(para-phenylene)s. J. Chem. Phys. 122:054501 [Google Scholar]
  95. Kera S, Yamane H, Ueno N. 95.  2009. First-principles measurements of charge mobility in organic semiconductors: valence hole-vibration coupling in organic ultrathin films. Prog. Surf. Sci. 84:135–54 [Google Scholar]
  96. Coropceanu V, Gruhn NE, Barlow S, Lambert C, Durivage JC. 96.  et al. 2004. Electronic couplings in organic mixed-valence compounds: the contribution of photoelectron spectroscopy. J. Am. Chem. Soc. 126:2727–31 [Google Scholar]
  97. Velizhanin KA, Wang H. 97.  2009. Dynamics of electron transfer reactions in the presence of mode mixing: comparison of a generalized master equation approach with the numerically exact simulation. J. Chem. Phys. 131:094109 [Google Scholar]
  98. Ottiger P, Leutwyler S, Koppel H. 98.  2012. Vibrational quenching of excitonic splittings in H-bonded molecular dimers: The electronic Davydov splittings cannot match experiment. J. Chem. Phys. 136:174308 [Google Scholar]
  99. Nitzan A. 99.  2006. Chemical Dynamics in Condensed Phases New York: Oxford Univ. Press
  100. Zhu L, Kim E, Yi Y, Ahmed E, Jenekhe SA. 100.  et al. 2010. Charge-transport properties of the tetraphenylbis(indolo[1,2-a])quinoline and 5,7-diphenylindolo[1,2-a]quinoline crystals. J. Phys. Chem. C 114:20401–9 [Google Scholar]
  101. Barford W, Duffy CDP. 101.  2006. Role of quantum coherence and energetic disorder in exciton transport in polymer films. Phys. Rev. B 74:075207 [Google Scholar]
  102. Grozema FC, Siebbeles LDA. 102.  2008. Mechanism of charge transport in self-organizing organic materials. Int. Rev. Phys. Chem 27:87–138 [Google Scholar]
  103. Kippelen B, Brédas JL. 103.  2009. Organic photovoltaics. Energy Environ. Sci. 2:251–61 [Google Scholar]
  104. Deibel C, Dyakonov V. 104.  2010. Polymer–fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73:096401 [Google Scholar]
  105. Gaudiana R. 105.  2012. Organic photovoltaics: challenges and opportunities. J. Polym. Sci. B 50:1014–17 [Google Scholar]
  106. Fritz D, Koschke K, Harmandaris VA, van der Vegt NFA, Kremer K. 106.  2011. Multiscale modeling of soft matter: scaling of dynamics. Phys. Chem. Chem. Phys. 13:10412–20 [Google Scholar]
  107. Kordt P, Stenzel O, Baumeier B, Schmidt V, Andrienko D. 107.  2014. Parametrization of extended Gaussian disorder models from microscopic charge transport simulations. J. Chem. Theory Comput. 10:2508–13 [Google Scholar]
  108. Liu F, Ruden PP, Campbell IH, Smith DL. 108.  2012. Device model for electronic processes at organic/organic interfaces. J. Appl. Phys. 111:094507 [Google Scholar]
  109. Coughlin JE, Henson ZB, Welch GC, Bazan GC. 109.  2014. Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells. Acc. Chem. Res. 47:257–70 [Google Scholar]
  110. van der Poll TS, Zhugayevych A, Chertkov E, Bakus RC II, Coughlin JE. 110.  et al. 2014. Polymorphism of crystalline molecular donors for solution-processed organic photovoltaics. J. Phys. Chem. Lett. 5:2700–4 [Google Scholar]
  111. Coughlin JE, Zhugayevych A, Bakus RC II, van der Poll TS, Welch GC. 111.  et al. 2014. A combined experimental and theoretical study of conformational preferences of molecular semiconductors. J. Phys. Chem. C 118:15610–23 [Google Scholar]
  112. Price SL. 112.  2014. Predicting crystal structures of organic compounds. Chem. Soc. Rev. 43:2098–111 [Google Scholar]
  113. Drabold DA. 113.  2011. Silicon: the gulf between crystalline and amorphous. Phys. Status Solidi Rapid Res. Lett. 5:359–60 [Google Scholar]
  114. Lukyanov A, Lennartz C, Andrienko D. 114.  2009. Amorphous films of tris(8-hydroxyquinolinato)aluminium: force-field, morphology, and charge transport. Phys. Status Solidi A 206:2737–42 [Google Scholar]
  115. Andrienko D. 115.  2015. Simulations of morphology and charge transport in supramolecular organic materials. Supramolecular Materials for Opto-Electronics N Koch, HJ Schneider, M Shahinpoor 309–62 Cambridge, UK: R. Soc. Chem. [Google Scholar]
  116. Brédas JL, Beljonne D, Coropceanu V, Cornil J. 116.  2004. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 104:4971–5004 [Google Scholar]
  117. Shuai Z, Geng H, Xu W, Liao Y, André J. 117.  2014. From charge transport parameters to charge mobility in organic semiconductors through multiscale simulation. Chem. Soc. Rev. 43:2662–79 [Google Scholar]
  118. Kaiser AB. 118.  2001. Electronic transport properties of conducting polymers and carbon nanotubes. Rep. Prog. Phys. 64:1–49 [Google Scholar]
  119. Tseng HR, Phan H, Luo C, Wang M, Perez LA. 119.  et al. 2014. High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv. Mater. 26:2993–98 [Google Scholar]
  120. Fishchuk II, Kadashchuk A, Hoffmann ST, Athanasopoulos S, Genoe J. 120.  et al. 2013. Unified description for hopping transport in organic semiconductors including both energetic disorder and polaronic contributions. Phys. Rev. B 88:125202 [Google Scholar]
  121. Yu ZG, Smith DL, Saxena A, Martin RL, Bishop AR. 121.  2001. Molecular geometry fluctuations and field-dependent mobility in conjugated polymers. Phys. Rev. B 63:085202 [Google Scholar]
  122. Walker AB, Kambili A, Martin SJ. 122.  2002. Electrical transport modelling in organic electroluminescent devices. J. Phys. Condens. Matter 14:9825–76 [Google Scholar]
  123. Stallinga P. 123.  2011. Electronic transport in organic materials: comparison of band theory with percolation/(variable range) hopping theory. Adv. Mater. 23:3356–62 [Google Scholar]
  124. Tamura H, Matsuo Y. 124.  2014. Exciton diffusion length and charge mobility in donor and acceptor materials in organic photovoltaics: tetrabenzoporphyrin and silylmethyl[60] fullerene. Chem. Phys. Lett. 598:81–85 [Google Scholar]
  125. Papadopoulos TA, Muccioli L, Athanasopoulos S, Walker AB, Zannoni C, Beljonne D. 125.  2011. Does supramolecular ordering influence exciton transport in conjugated systems? Insight from atomistic simulations. Chem. Sci. 2:1025–32 [Google Scholar]
  126. Lunt RR, Benziger JB, Forrest SR. 126.  2010. Relationship between crystalline order and exciton diffusion length in molecular organic semiconductors. Adv. Mater. 22:1233–36 [Google Scholar]
  127. Athanasopoulos S, Hennebicq E, Beljonne D, Walker AB. 127.  2008. Trap limited exciton transport in conjugated polymers. J. Phys. Chem. C 112:11532–38 [Google Scholar]
  128. Mikhnenko OV, Kuik M, Lin J, van der Kaap N, Nguyen TQ, Blom PWM. 128.  2014. Trap-limited exciton diffusion in organic semiconductors. Adv. Mater. 26:1912–17 [Google Scholar]
  129. Beljonne D, Cornil J, Muccioli L, Zannoni C, Brédas JL, Castet F. 129.  2011. Electronic processes at organic-organic interfaces: insight from modeling and implications for opto-electronic devices. Chem. Mater. 23:591–95 [Google Scholar]
  130. Albrecht S, Vandewal K, Tumbleston JR, Fischer FSU, Douglas JD. 130.  et al. 2014. On the efficiency of charge transfer state splitting in polymer:fullerene solar cells. Adv. Mater. 26:2533–39 [Google Scholar]
  131. Fu Y, Risko C, Brédas JL. 131.  2013. Intermixing at the pentacene-fullerene bilayer interface: a molecular dynamics study. Adv. Mater. 25:878–82 [Google Scholar]
  132. Miller NC, Cho E, Junk MJN, Gysel R, Risko C. 132.  et al. 2012. Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal. Adv. Mater. 24:6071–79 [Google Scholar]
  133. Treat ND, Brady MA, Smith G, Toney MF, Kramer EJ. 133.  et al. 2011. Interdiffusion of PCBM and P3HT reveals miscibility in a photovoltaically active blend. Adv. Energy Mater. 1:82–89 [Google Scholar]
  134. Fu YT, da Silva Filho DA, Sini G, Asiri AM, Aziz SG. 134.  et al. 2014. Structure and disorder in squaraine–C60 organic solar cells: a theoretical description of molecular packing and electronic coupling at the donor–acceptor interface. Adv. Funct. Mater. 24:3790–98 [Google Scholar]
  135. D'Avino G, Mothy S, Muccioli L, Zannoni C, Wang L. 135.  et al. 2013. Energetics of electron–hole separation at P3HT/PCBM heterojunctions. J. Phys. Chem. C 117:12981–90 [Google Scholar]
  136. Borges I, Aquino AJA, Kohn A, Nieman R, Hase WL. 136.  et al. 2013. Ab initio modeling of excitonic and charge-transfer states in organic semiconductors: the PTB1/PCBM low band gap system. J. Am. Chem. Soc. 135:18252–55 [Google Scholar]
  137. Akimov AV, Prezhdo OV. 137.  2014. Nonadiabatic dynamics of charge transfer and singlet fission at the pentacene/C60 interface. J. Am. Chem. Soc. 136:1599–608 [Google Scholar]
  138. Burghardt I, Bittner ER, Tamura H, Pereverzev A, Ramon JGS. 138.  2009. Ultrafast photophysics of organic semiconductor junctions. Energy Transfer Dynamics in Biomaterial Systems I Burghardt, V May, DA Micha, ER Bittner 183–212 New York: Springer [Google Scholar]
  139. Ide J, Mereau R, Ducasse L, Castet F, Bock H. 139.  et al. 2014. Charge dissociation at interfaces between discotic liquid crystals: the surprising role of column mismatch. J. Am. Chem. Soc. 136:2911–20 [Google Scholar]
  140. McMahon DP, Cheung DL, Troisi A. 140.  2011. Why holes and electrons separate so well in polymer/fullerene photovoltaic cells. J. Phys. Chem. Lett. 2:2737–41 [Google Scholar]
  141. Cornil J, Verlaak S, Martinelli N, Mityashin A, Olivier Y. 141.  et al. 2013. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale. Acc. Chem. Res. 46:434–43 [Google Scholar]
  142. Monti OLA, Steele MP. 142.  2010. Influence of electrostatic fields on molecular electronic structure: insights for interfacial charge transfer. Phys. Chem. Chem. Phys. 12:12390–400 [Google Scholar]
  143. Few S, Frost JM, Kirkpatrick J, Nelson J. 143.  2014. Influence of chemical structure on the charge transfer state spectrum of a polymer:fullerene complex. J. Phys. Chem. Lett. 118:8253–61 [Google Scholar]
  144. Rego LGC, Hames BC, Mazon KT, Joswig JO. 144.  2014. Intramolecular polarization induces electron-hole charge separation in light-harvesting molecular triads. J. Phys. Chem. C 118:126–34 [Google Scholar]
  145. Nayak PK, Narasimhan KL, Cahen D. 145.  2013. Separating charges at organic interfaces: effects of disorder, hot states, and electric field. J. Phys. Chem. Lett. 4:1707–17 [Google Scholar]
  146. Clarke TM, Durrant JR. 146.  2010. Charge photogeneration in organic solar cells. Chem. Rev. 110:6736–67 [Google Scholar]
  147. Burke TM, McGehee MD. 147.  2014. How high local charge carrier mobility and an energy cascade in a three-phase bulk heterojunction enable >90% quantum efficiency. Adv. Mater. 26:1923–28 [Google Scholar]
  148. Giazitzidis P, Argyrakis P, Bisquert J, Vikhrenko VS. 148.  2014. Charge separation in organic photovoltaic cells. Org. Electron. 15:1043–49 [Google Scholar]
  149. Nie W, Gupta G, Crone BK, Liu F, Smith DL. 149.  et al. 2014. Interface design principles for high efficiency organic semiconductor devices. Manuscript under review
  150. Barišić OS, Barišić S. 150.  2008. Phase diagram of the Holstein polaron in one dimension. Eur. Phys. J. B 64:1–18 [Google Scholar]
  151. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. 151.  2013. Solar cell efficiency tables (version 41). Prog. Photovolt. Res. Appl. 21:1–11 [Google Scholar]
  152. Lunt RR, Osedach TP, Brown PR, Rowehl JA, Bulovic V. 152.  2011. Practical roadmap and limits to nanostructured photovoltaics. Adv. Mater. 23:5712–27 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040214-121440
Loading
/content/journals/10.1146/annurev-physchem-040214-121440
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error