1932

Abstract

Reaction coordinates are integral to several classic rate theories that can () predict kinetic trends across conditions and homologous reactions, () extract activation parameters with a clear physical interpretation from experimental rates, and () enable efficient calculations of free energy barriers and rates. New trajectory-based rare events methods can provide rates directly from dynamical trajectories without a reaction coordinate. Trajectory-based frameworks can also generate ideal (but abstract) reaction coordinates such as committors and eigenfunctions of the master equation. However, rates and mechanistic insights obtained from trajectory-based methods and abstract coordinates are not readily generalized across simulation conditions or reaction families. We discuss methods for identifying physically meaningful reaction coordinates, including committor analysis, variational transition state theory, Kramers–Langer–Berezhkovskii–Szabo theory, and statistical inference methods that can use path sampling data to screen, mix, and optimize thousands of trial coordinates. Special focus is given to likelihood maximization and inertial likelihood maximization approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040215-112215
2016-05-27
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/physchem/67/1/annurev-physchem-040215-112215.html?itemId=/content/journals/10.1146/annurev-physchem-040215-112215&mimeType=html&fmt=ahah

Literature Cited

  1. Boudart M. 1.  1968. Kinetics of Chemical Processes Englewood Cliffs, NJ: Prentice-Hall
  2. Helfferich FG. 2.  2004. Kinetics of Multistep Chemical Reactions Amsterdam: Elsevier
  3. Wynne-Jones WFK, Eyring H. 3.  1935. The absolute rate of reactions in condensed phases. J. Chem. Phys. 3:492–502 [Google Scholar]
  4. La Mer VK. 4.  1933. Chemical kinetics. The temperature dependence of the energy of activation. The entropy and free energy of activation. J. Chem. Phys. 1:289–96 [Google Scholar]
  5. Reichardt C, Welton T. 5.  2011. Solvents and Solvent Effects in Organic Chemistry Weinheim, Ger.: Wiley-VCH
  6. La Mer VK. 6.  1932. Reaction velocity in ionic systems. Chem. Rev. 10:179–212 [Google Scholar]
  7. Loudon GM. 7.  1991. Mechanistic interpretation of pH-rate profiles. J. Chem. Educ. 68:973–84 [Google Scholar]
  8. Evans MG, Polanyi M. 8.  1938. Inertia and driving force of chemical reactions. Trans. Faraday Soc. 34:11–24 [Google Scholar]
  9. Marcus RA. 9.  1960. Exchange reactions and electron transfer reactions including isotopic exchange. Theory of oxidation-reduction reactions involving electron transfer. Part 4.—A statistical-mechanical basis for treating contributions from solvent, ligands, and inert salt. Discuss. Faraday Soc. 29:21–31 [Google Scholar]
  10. Bolhuis PG, Dellago C. 10.  2009. Trajectory-based molecular rare event simulations. Rev. Comput. Chem. 27:111–210 [Google Scholar]
  11. Dellago C, Bolhuis PG, Geissler PL. 11.  2006. Transition path sampling methods. Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology M Ferrario, G Ciccotti, K Binder 349–91 Berlin: Springer [Google Scholar]
  12. Kramers HA. 12.  1940. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica A 7:284–304 [Google Scholar]
  13. Pontryagin LS, Andronov AA, Vitt AA. 13.  1933. On statistical considerations of dynamical systems. Zh. Eksper. Teor. Fiz. 55:117–29 [Google Scholar]
  14. Grote RF, Hynes JT. 14.  1980. The stable states picture of chemical reactions. II. Rate constants for condensed and gas phase reaction models. J. Chem. Phys. 73:2715–32 [Google Scholar]
  15. Wigner E. 15.  1938. The transition state method. Trans. Faraday Soc. 34:29–41 [Google Scholar]
  16. Marcus RA. 16.  1956. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24:966–78 [Google Scholar]
  17. Gibbs JW. 17.  1878. On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Arts Sci. 3:108–524 [Google Scholar]
  18. Zeldovich YB. 18.  1943. On the theory of new phase formation: cavitation. Acta Physicochim. USSR 18:1–22 [Google Scholar]
  19. Jonsson H, Mills G, Jacobsen KW. 19.  1998. Nudged elastic band methods for finding minimum energy paths of transitions. Classical and Quantum Dynamics in Condensed Phase Simulations BJ Berne, G Ciccotti, DF Coker 385–404 Singapore: World Sci. [Google Scholar]
  20. Mills G, Jonsson H, Schenter GK. 20.  1995. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 324:305–37 [Google Scholar]
  21. Heyden A, Bell AT, Keil FJ. 21.  2005. Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method. J. Chem. Phys. 123:224101 [Google Scholar]
  22. Cerjan CJ, Miller WH. 22.  1981. On finding transition states. J. Chem. Phys. 75:2800–6 [Google Scholar]
  23. Henkelman G, Jóhannesson G, Jónsson H. 23.  2002. Methods for finding saddle points and minimum energy paths. Theoretical Methods in Condensed Phase Chemistry SD Schwartz 269–302 Netherlands: Springer [Google Scholar]
  24. Torrie GM, Valleau JP. 24.  1977. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23:187–99 [Google Scholar]
  25. Carter EA, Ciccotti G, Hynes JT, Kapral R. 25.  1989. Constrained reaction coordinate dynamics for the simulation of rare events. Chem. Phys. Lett. 156:472–77 [Google Scholar]
  26. Warshel A. 26.  1982. Dynamics of reactions in polar solvents. Semiclassical trajectory studies of electron-transfer and proton-transfer reactions. J. Phys. Chem. 86:2218–24 [Google Scholar]
  27. Peters B. 27.  2015. Common features of extraordinary rate theories. J. Phys. Chem. B 119:6349–56 [Google Scholar]
  28. Eyring H. 28.  1935. The activated complex and the absolute rate of chemical reactions. Chem. Rev. 17:65–77 [Google Scholar]
  29. Beckham GT, Peters B. 29.  2011. Optimizing nucleus size metrics for liquid–solid nucleation from transition paths of near-nanosecond duration. J. Phys. Chem. Lett. 2:1133–38 [Google Scholar]
  30. Jungblut S, Singraber A, Dellago C. 30.  2013. Optimising reaction coordinates for crystallisation by tuning the crystallinity definition. Mol. Phys. 111:3527–33 [Google Scholar]
  31. Turnbull D, Fisher JC. 31.  1949. Rate of nucleation in condensed systems. J. Chem. Phys. 17:71–73 [Google Scholar]
  32. Agarwal V, Peters B. 32.  2014. Solute precipitate nucleation: a review of theory and simulation advances. Adv. Chem. Phys. 155:97–159 [Google Scholar]
  33. Van Voorhis T, Kowalczyk T, Kaduk B, Wang L-P, Cheng C-L, Wu Q. 33.  2010. The diabatic picture of electron transfer, reaction barriers, and molecular dynamics. Annu. Rev. Phys. Chem. 61:149–70 [Google Scholar]
  34. Marcus RA, Sutin N. 34.  1985. Electron transfers in chemistry and biology. Biochem. Biophys. Acta 811:265–322 [Google Scholar]
  35. Chandler D. 35.  1978. Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J. Chem. Phys. 68:2959–70 [Google Scholar]
  36. van Erp TS. 36.  2012. Dynamical rare event simulation techniques for equilibrium and non-equilibrium systems. Adv. Chem. Phys. 151:27–60 [Google Scholar]
  37. Dellago C, Bolhuis PG, Chandler D. 37.  1999. On the calculation of reaction rate constants in the transition path ensemble. J. Chem. Phys. 110:6617–25 [Google Scholar]
  38. Hummer G. 38.  2004. From transition paths to transition states and rate coefficients. J. Chem. Phys. 120:516–23 [Google Scholar]
  39. van Erp TS, Bolhuis PG. 39.  2005. Elaborating transition interface sampling methods. J. Comput. Phys. 205:157–81 [Google Scholar]
  40. van Erp TS, Moroni D, Bolhuis PG. 40.  2003. A novel path sampling method for the calculation of rate constants. J. Chem. Phys. 118:7762–74 [Google Scholar]
  41. Allen RJ, Warren PB, ten Wolde PR. 41.  2005. Sampling rare switching events in biochemical networks. Phys. Rev. Lett. 94:018104 [Google Scholar]
  42. Allen RJ, Valeriani C, ten Wolde PR. 42.  2009. Forward flux sampling for rare event simulations. J. Phys. Condens. Matter 21:463102 [Google Scholar]
  43. van Erp TS. 43.  2006. Efficiency analysis of reaction rate calculation methods using analytical models I: the two-dimensional sharp barrier. J. Chem. Phys. 125:174106 [Google Scholar]
  44. Krivov SV. 44.  2010. Is protein folding sub-diffusive?. PLOS Comput. Biol. 6:e1000921 [Google Scholar]
  45. Pollak E, Grabert H, Hanggi P. 45.  1989. Theory of activated rate processes for arbitrary frequency dependent friction: solution of the turnover problem. J. Chem. Phys. 91:4073–87 [Google Scholar]
  46. Comer J, Gumbart JC, Henin J, Lelievre T, Pohorille A, Chipot C. 46.  2014. The adaptive biasing force method: everything you always wanted to know but were afraid to ask. J. Phys. Chem. B 119:1129–51 [Google Scholar]
  47. Laio A, Gervasio FL. 47.  2008. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry, and material science. Rep. Prog. Phys. 71:126601 [Google Scholar]
  48. Geissler PL, Dellago C, Chandler D. 48.  1999. Kinetic pathways of ion pair dissociation in water. J. Phys. Chem. B 103:3706–10 [Google Scholar]
  49. Bolhuis PG, Dellago C, Chandler D. 49.  2000. Reaction coordinates of biomolecular isomerization. PNAS 97:5877–82 [Google Scholar]
  50. Fernandez-Ramos A, Ellingson BA, Garrett BC, Truhlar DG. 50.  2007. Variational transition state theory with multidimensional tunneling. Reviews in Computational Chemistry KB Lipkowitz, TR Cundari, DB Boyd 125–232 Hoboken, NJ: Wiley-VCH [Google Scholar]
  51. Krivov SV, Karplus M. 51.  2008. Diffusive reaction dynamics on invariant free energy profiles. PNAS 105:13841–46 [Google Scholar]
  52. E W, Ren W, Vanden-Eijnden E. 52.  2005. Transition pathways in complex systems: reaction coordinates, isocommittor surfaces, and transition tubes. Chem. Phys. Lett. 413:242–47 [Google Scholar]
  53. Bartsch T, Moix JM, Hernandez R, Kawai S, Uzer T. 53.  2008. Time-dependent transition state theory. Adv. Chem. Phys. 140:191–238 [Google Scholar]
  54. Bicout DJ, Szabo A. 54.  1997. First passage times, correlation functions, and reaction rates. J. Chem. Phys. 106:10292–98 [Google Scholar]
  55. Coifman RR, Kevrekidis IG, Lafon S, Maggioni M, Nadler B. 55.  2008. Diffusion maps, reduction coordinates, and low dimensional representation of stochastic systems. SIAM Multiscale Model. Simul. 7:842–64 [Google Scholar]
  56. Peters B, Bolhuis PG, Mullen RG, Shea JE. 56.  2013. Reaction coordinates, one-dimensional Smoluchowski equations, and a test for dynamical self-consistency. J. Chem. Phys. 138:054106 [Google Scholar]
  57. Garrett BC, Truhlar DG. 57.  2005. Variational transition state theory. Theory and Applications of Computational Chemistry: The First Forty Years CE Dykstra, G Frenking, KS Kim, GE Scuseria 67–87 Amsterdam: Elsevier [Google Scholar]
  58. Du R, Pande VS, Grosberg AY, Tanaka T, Shakhnovich ES. 58.  1998. On the transition coordinate for protein folding. J. Chem. Phys. 108:334–50 [Google Scholar]
  59. Vanden-Eijnden E. 59.  2006. Transition path theory. Computer Simulations in Condensed Matter: From Materials to Chemical Biology M Ferrario, G Ciccotti, K Binder 453–93 Berlin: Springer [Google Scholar]
  60. E W, Vanden-Eijnden E. 60.  2006. Towards a theory of transition paths. J. Stat. Phys. 123:503–23 [Google Scholar]
  61. Berezhkovskii AM, Szabo A. 61.  2013. Diffusion along the splitting/commitment probability reaction coordinate. J. Phys. Chem. B 117:13115–19 [Google Scholar]
  62. Krivov SV. 62.  2013. On reaction coordinate optimality. J. Chem. Theory Comp. 9:135–46 [Google Scholar]
  63. Peters B. 63.  2010. Recent advances in transition path sampling: accurate reaction coordinates, likelihood maximization, and diffusive barrier-crossing dynamics. Mol. Simul. 36:1265–81 [Google Scholar]
  64. Berezhkhovskii AM, Hummer G, Szabo A. 64.  2009. Reactive flux and folding pathways in network models of coarse-grained protein dynamics. J. Chem. Phys. 130:205102 [Google Scholar]
  65. Metzner P, Schütte C, Vanden-Eijnden E. 65.  2009. Transition path theory for Markov jump processes. SIAM Multiscale Model Simul. 7:1192–219 [Google Scholar]
  66. Krivov SV. 66.  2011. The free energy landscape analysis of protein (FIP35) folding dynamics. J. Phys. Chem. B 115:12315–24 [Google Scholar]
  67. Peters B. 67.  2010. p(TP|q) peak maximization: necessary but not sufficient for reaction coordinate accuracy. Chem. Phys. Lett. 494:100–3 [Google Scholar]
  68. Krivov SV. 68.  2011. Numerical construction of the p(fold) (committor) reaction coordinate for a Markov process. J. Phys. Chem. B 115:11382–88 [Google Scholar]
  69. Juraszek J, Bolhuis PG. 69.  2008. Rate constant and reaction coordinate of Trp-cage folding in explicit water. Biophys. J. 95:4246–57 [Google Scholar]
  70. Juraszek J, Vreede J, Bolhuis PG. 70.  2012. Transition path sampling of protein conformational changes. Chem. Phys. 396:30–44 [Google Scholar]
  71. Bowman GR, Pande VS, Noé F. 71.  2014. An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulations Berlin: Springer
  72. Buchete N-V, Hummer G. 72.  2008. Coarse master equations for peptide folding dynamics. J. Phys. Chem. B 112:6057–69 [Google Scholar]
  73. Prinz J-H, Wu H, Sarich M, Keller B, Senne M. 73.  et al. 2011. Markov models of molecular kinetics: generation and validation. J. Chem. Phys. 134:174105 [Google Scholar]
  74. Prinz J-H, Chodera JD, Noé F. 74.  2014. Spectral rate theory for two-state kinetics. Phys. Rev. X 4:011020 [Google Scholar]
  75. Zheng W, Qi B, Rohrdanz MA, Caflisch A, Dinner AR, Clementi C. 75.  2011. Delineation of folding pathways of a ß-sheet miniprotein. J. Phys. Chem. B 115:13065–74 [Google Scholar]
  76. Ferguson AL, Panagiotopoulos AZ, Kevrekidis IG, Debendetti PG. 76.  2011. Nonlinear dimensionality reduction in molecular simulation: the diffusion map approach. Chem. Phys. Lett. 509:1–11 [Google Scholar]
  77. Ledbetter PJ, Clementi C. 77.  2011. A new perspective on transition states: x1 separatrix. J. Chem. Phys. 135:044116 [Google Scholar]
  78. Zwanzig R. 78.  2001. Nonequilibrium Statistical Mechanics New York: Oxford Univ. Press
  79. Shuler KE. 79.  1959. Relaxation processes in multistate systems. Phys. Fluids 2:442–48 [Google Scholar]
  80. Zheng W, Rohrdanz MA, Clementi C. 80.  2013. Rapid exploration of configuration space with diffusion-map-directed molecular dynamics. J. Phys. Chem. B 117:12769–76 [Google Scholar]
  81. Ferguson AL, Panagiotopoulos AZ, Debenedetti PG, Kevrekidis IG. 81.  2011. Integrating diffusion maps with umbrella sampling: application to alanine dipeptide. J. Chem. Phys. 134:135103 [Google Scholar]
  82. Huang X, Bowman GR, Bacallado S, Pande VS. 82.  2009. Rapid equilibrium sampling initiated from nonequilibrium data. PNAS 106:19765–69 [Google Scholar]
  83. Lane TJ, Shukla D, Beauchamp KA, Pande VS. 83.  2013. To milliseconds and beyond: challenges in the simulation of protein folding. Curr. Opin. Struct. Biol. 23:58–65 [Google Scholar]
  84. Bolhuis PG, Dellago C. 84.  2015. Practical and conceptual path sampling issues. Eur. Phys. J. 6:2409–2427 [Google Scholar]
  85. Pérez-Hernández G, Paul F, Giorgino T, De Fabritiis G, Noé F. 85.  2013. Identification of slow molecular order parameters for Markov model construction. J. Chem. Phys. 139:015102 [Google Scholar]
  86. Schwantes CR, Pande VS. 86.  2013. Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9. J. Chem. Theory Comput. 9:2000–9 [Google Scholar]
  87. Peters B. 87.  2006. Using the histogram test to quantify reaction coordinate error. J. Chem. Phys. 125:241101 [Google Scholar]
  88. Bussi G, Branduardi D. 88.  2015. Free-energy calculations with metadynamics: theory and practice. Rev. Comput. Chem. 28:1–49 [Google Scholar]
  89. Hansen N, van Gunsteren WF. 89.  2014. Practical aspects of free-energy calculations: a review. J. Chem. Theory Comput. 10:2632–47 [Google Scholar]
  90. Peters B. 90.  2011. Comment on “Toward identification of the reaction coordinate directly from the transition state ensemble using the kernel PCA method. J. Phys. Chem. B 115:12671–73 [Google Scholar]
  91. Peters B. 91.  2010. Transition-state theory, dynamics, and narrow time scale separation in the rate-promoting vibrations model of enzyme catalysis. J. Chem. Theory Comput. 6:1447–54 [Google Scholar]
  92. Keck JC. 92.  1967. Variational theory of reaction rates. Adv. Chem. Phys. 13:85–121 [Google Scholar]
  93. Wigner E. 93.  1937. Calculation of the rate of elementary association reactions. J. Chem. Phys. 5:720–25 [Google Scholar]
  94. Pollak E. 94.  1991. Variational transition state theory for reactions in condensed phases. J. Chem. Phys. 95:533–39 [Google Scholar]
  95. Schenter GK, Garrett BC, Truhlar DG. 95.  2001. The role of collective solvent coordinates and nonequilibrium solvation in charge-transfer reactions. J. Chem. Phys. B 105:9672–85 [Google Scholar]
  96. Zinovjev K, Tuñón I. 96.  2015. Transition state ensemble optimization for reactions of arbitrary complexity. J. Chem. Phys. 143:13411 [Google Scholar]
  97. Langer JS. 97.  1969. Statistical theory of the decay of metastable states. Ann. Phys. 54:258–75 [Google Scholar]
  98. Im W, Roux B. 98.  2002. Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. J. Mol. Biol. 319:1177–97 [Google Scholar]
  99. Peters B. 99.  2009. Competing nucleation pathways in a mixture of oppositely charged colloids: out-of-equilibrium nucleation revisited. J. Chem. Phys. 131:244103 [Google Scholar]
  100. Berezhkovskii AM, Szabo A. 100.  2005. One-dimensional reaction coordinates for diffusive activated rate processes in many dimensions. J. Chem. Phys. 122:014503 [Google Scholar]
  101. Johnson ME, Hummer G. 101.  2012. Characterization of a dynamic string method for the construction of transition pathways in molecular reactions. J. Phys. Chem. B 116:8573–83 [Google Scholar]
  102. Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G. 102.  2006. String method in collective variables: minimum free energy paths and isocommittor surfaces. J. Chem. Phys. 125:024106 [Google Scholar]
  103. Berezhkovskii AM, Pollak E, Zitserman VY. 103.  1992. Activated rate processes: generalization of the Kramers–Grote–Hynes and Langer theories. J. Chem. Phys. 97:2422–37 [Google Scholar]
  104. Ma A, Dinner AR. 104.  2005. Automatic method for identifying reaction coordinates in complex systems. J. Phys. Chem. B 109:6769–79 [Google Scholar]
  105. Peters B, Beckham GT, Trout BL. 105.  2007. Extensions to the likelihood maximization approach for finding reaction coordinates. J. Chem. Phys. 127:034109 [Google Scholar]
  106. Borrero EE, Escobedo FA. 106.  2007. Reaction coordinates and transition pathways of rare events via forward flux sampling. J. Chem. Phys. 127:164101 [Google Scholar]
  107. Escobedo FA, Borrero EE, Araque JC. 107.  2009. Transition path sampling and forward flux sampling. Applications to biological systems. J. Phys. Condens. Matter 21:333101 [Google Scholar]
  108. Velez-Vega C, Borrero EE, Escobedo FA. 108.  2010. Kinetics and mechanism of the unfolding native-to-loop transition of Trp-cage in explicit solvent via optimized forward flux sampling simulations. J. Chem. Phys. 133:105103 [Google Scholar]
  109. Husmeier D, Dybowski R, Roberts S. 109.  2005. Probabilistic Modeling in Bioinformatics and Medical Informatics. London: Springer
  110. Peters B, Trout BL. 110.  2006. Obtaining reaction coordinates by likelihood maximization. J. Chem. Phys. 125:054108 [Google Scholar]
  111. Mullen RG, Shea J-E, Peters B. 111.  2015. Easy transition path sampling methods: flexible- length aimless shooting and permutation shooting. J. Chem. Theory Comput. 11:2421–28 [Google Scholar]
  112. van Erp TS. 112.  2007. Reaction rate calculation by parallel path swapping. Phys. Rev. Lett. 98:268301 [Google Scholar]
  113. Bolhuis PG. 113.  2008. Rare events via multiple reaction channels sampled by path replica exchange. J. Chem. Phys. 129:114108 [Google Scholar]
  114. Plazinski W, Drach M. 114.  2014. The dynamics of the conformational changes in the hexopyranose ring: a transition path sampling approach. RSC Adv. 4:25028–39 [Google Scholar]
  115. Lechner W, Rogal J, Juraszek J, Ensing B, Bolhuis PG. 115.  2010. Nonlinear reaction coordinate analysis in the reweighted path ensemble. J. Chem. Phys. 133:174109 [Google Scholar]
  116. Mullen RG, Shea J-E, Peters B. 116.  2014. Transmission coefficients, committors, and solvent coordinates in ion-pair dissociation. J. Chem. Theory Comput. 10:659–67 [Google Scholar]
  117. Knott BC, Haddad Momeni M, Crowley MF, Mackenzie LF, Götz AW. 117.  et al. 2014. The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies. J. Am. Chem. Soc. 136:321–29 [Google Scholar]
  118. Pan B, Ricci MS, Trout BL. 118.  2011. A molecular mechanism of hydrolysis of peptide bonds at neutral pH using a model compound. J. Phys. Chem. B 115:5958–70 [Google Scholar]
  119. Kohen D, Tannor DJ. 119.  1995. Phase space distribution function formulation of the method of reactive flux: memory friction. J. Chem. Phys. 103:6013–20 [Google Scholar]
  120. Peters B. 120.  2012. Inertial likelihood maximization for reaction coordinates with high transmission coefficients. Chem. Phys. Lett. 554:248–53 [Google Scholar]
  121. Muller K, Brown LD. 121.  1979. Location of saddle points and minimum energy paths by a constrained simplex optimization procedure. Theor. Chim. Acta 53:75–93 [Google Scholar]
  122. Mullen RG, Shea J-E, Peters B. 122.  2014. Communication: an existence test for dividing surfaces without recrossing. J. Chem. Phys. 140:041104 [Google Scholar]
  123. Best RB, Hummer G. 123.  2005. Reaction coordinates and rates from transition paths. PNAS 102:6732–37 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040215-112215
Loading
/content/journals/10.1146/annurev-physchem-040215-112215
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error