1932

Abstract

Chemical physics plays a large role in determining the isotopic compositions of gases in Earth's atmosphere, which in turn provide fundamental insights into the sources, sinks, and transformations of atmospheric gases and particulates and their influence on climate. This review focuses on the kinetic and photolysis isotope effects relevant to understanding the isotope compositions of atmospheric ozone, carbon dioxide, methane, nitrous oxide, and other gases and their historical context. The discussion includes non-mass-dependent isotope compositions of oxygen-containing species and a brief overview of the recent growth of clumped isotope measurements at natural isotopic abundances, that is, of molecules containing more than one rare isotope. The intention is to introduce chemistry researchers to the field of using isotope compositions as tracers of atmospheric chemistry and climate both today and back in time through ice and rock records and to highlight the outstanding research questions to which experimental and theoretical physical chemists can contribute.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-061020-053429
2023-04-24
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/physchem/74/1/annurev-physchem-061020-053429.html?itemId=/content/journals/10.1146/annurev-physchem-061020-053429&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Urey HC. 1947. The thermodynamic properties of isotopic substances. J. Chem. Soc. 1947:562–81
    [Google Scholar]
  2. 2.
    Bigeleisen J, Mayer MG. 1947. Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys. 15:261–67
    [Google Scholar]
  3. 3.
    Bigeleisen J. 1949. The relative reaction velocities of isotopic molecules. J. Chem. Phys. 17:675–78
    [Google Scholar]
  4. 4.
    Fujii T, Moynier F, Albarède F. 2009. The nuclear field shift effect in chemical exchange reactions. Chem. Geol. 267:139–56
    [Google Scholar]
  5. 5.
    Kaye JA. 1987. Mechanisms and observations for isotope fractionation of molecular species in planetary atmospheres. Rev. Geophys. 25:1609–58
    [Google Scholar]
  6. 6.
    Johnson MS, Feilberg KL, Hessberg PV, Nielsen OJ. 2002. Isotopic processes in atmospheric chemistry. Chem. Soc. Rev. 31:313–23
    [Google Scholar]
  7. 7.
    Brenninkmeijer CAM, Janssen C, Kaiser J, Röckmann T, Rhee TS, Assonov SS. 2003. Isotope effects in the chemistry of atmospheric trace compounds. Chem. Rev. 103:5125–62
    [Google Scholar]
  8. 8.
    Mauersberger K, Krankowsky D, Janssen C, Schinke R. 2005. Assessment of the ozone isotope effect. Adv. Atom. Mol. Opt. Phys. 50:1–54
    [Google Scholar]
  9. 9.
    Schinke R, Grebenshchikov SY, Ivanov MV, Fleurat-Lessard P. 2006. Dynamical studies of the ozone isotope effect: a status report. Annu. Rev. Phys. Chem. 57:625–61
    [Google Scholar]
  10. 10.
    Thiemens MH. 2006. History and applications of mass-independent isotope effects. Annu. Rev. Earth Planet. Sci. 34:217–62
    [Google Scholar]
  11. 11.
    Thiemens MH, Chakraborty S, Dominguez G. 2012. The physical chemistry of mass-independent isotope effects and their observation in nature. Annu. Rev. Phys. Chem. 63:155–77
    [Google Scholar]
  12. 12.
    Eiler JM. 2013. The isotopic anatomies of molecules and minerals. Annu. Rev. Earth Planet. Sci. 41:411–41
    [Google Scholar]
  13. 13.
    Thiemens MH, Lin M. 2019. Use of isotope effects to understand the present and past of the atmosphere and climate and track the origin of life. Angew. Chem. Int. Ed. 58:6826–44
    [Google Scholar]
  14. 14.
    Zhao Y, Zhang Y-L, Sun R. 2021. The mass-independent oxygen isotopic composition in sulfate aerosol–a useful tool to identify sulfate formation: a review. Atmos. Res. 253:105447
    [Google Scholar]
  15. 15.
    Brinjikji M, Lyons JR. 2021. Mass-independent fractionation of oxygen isotopes in the atmosphere. Rev. Mineral. Geochem. 86:197–216
    [Google Scholar]
  16. 16.
    Gilbert A. 2021. The organic isotopologue frontier. Annu. Rev. Earth Planet. Sci. 49:435–64
    [Google Scholar]
  17. 17.
    Ono S. 2017. Photochemistry of sulfur dioxide and the origin of mass-independent isotope fractionation in Earth's atmosphere. Annu. Rev. Earth Planet. Sci. 45:301–29
    [Google Scholar]
  18. 18.
    Luz B, Barkan E. 2005. The isotopic ratios 17O/16O and 18O/16O in molecular oxygen and their significance in biogeochemistry. Geochim. Cosmochim. Acta 69:1099–110
    [Google Scholar]
  19. 19.
    Thiemens MH, Heidenreich JE. 1983. The mass-independent fractionation of oxygen: a novel isotope effect and its possible cosmochemical implications. Science 219:1073–75
    [Google Scholar]
  20. 20.
    Krankowsky D, Lämmerzahl P, Mauersberger K, Janssen C, Tuzson B, Röckmann T. 2007. Stratospheric ozone isotope fractionations derived from collected samples. J. Geophys. Res. Atmos. 112:D08301
    [Google Scholar]
  21. 21.
    Vicars WC, Savarino J. 2014. Quantitative constraints on the 17O-excess (Δ17O) signature of surface ozone: ambient measurements from 50°N to 50°S using the nitrite-coated filter technique. Geochim. Cosmochim. Acta 135:270–87
    [Google Scholar]
  22. 22.
    Thiemens MH, Jackson T, Zipf EC, Erdman PW, van Egmond C. 1995. Carbon dioxide and oxygen isotope anomalies in the mesosphere and stratosphere. Science 270:969–72
    [Google Scholar]
  23. 23.
    Wiegel AA, Cole AS, Hoag KJ, Atlas EL, Schauffler SM, Boering KA. 2013. Unexpected variations in the triple oxygen isotope composition of stratospheric carbon dioxide. PNAS 110:17680–85
    [Google Scholar]
  24. 24.
    Savard MM, Cole AS, Vet R, Smirnoff A. 2018. The Δ17O and δ18O values of atmospheric nitrates simultaneously collected downwind of anthropogenic sources – implications for polluted air masses. Atmos. Chem. Phys. 18:10373–89
    [Google Scholar]
  25. 25.
    Lee CC-W, Thiemens MH. 2001. The δ17O and δ18O measurements of atmospheric sulfate from a coastal and high alpine region: a mass-independent isotopic anomaly. J. Geophys. Res. Atmos. 106:17359–73
    [Google Scholar]
  26. 26.
    Clayton RN, Grossman L, Mayeda TK. 1973. A component of primitive nuclear composition in carbonaceous meteorites. Science 182:485–88
    [Google Scholar]
  27. 27.
    Cicerone RJ, McCrumb JL. 1980. Photodissociation of isotopically heavy O2 as a source of atmospheric O3. Geophys. Res. Lett. 7:251–54
    [Google Scholar]
  28. 28.
    Valentini JJ. 1987. Mass-independent isotopic fractionation in nonadiabatic molecular collisions. J. Chem. Phys. 86:6757–65
    [Google Scholar]
  29. 29.
    Geiser JD, Dylewski SM, Mueller JA, Wilson RJ, Toumi R, Houston PL. 2000. The vibrational distribution of O2(X 3Σg) produced in the photodissociation of ozone between 226 and 240 and at 266 nm. J. Chem. Phys. 112:1279–86
    [Google Scholar]
  30. 30.
    Kaye JA. 1986. Theoretical analysis of isotope effects on ozone formation in oxygen photochemistry. J. Geophys. Res. Atmos. 91:7865–74
    [Google Scholar]
  31. 31.
    Luther K, Oum K, Troe J. 2005. The role of the radical-complex mechanism in the ozone recombination/dissociation reaction. Phys. Chem. Chem. Phys. 7:2764–70
    [Google Scholar]
  32. 32.
    Mauersberger K. 1981. Measurement of heavy ozone in the stratosphere. Geophys. Res. Lett. 8:935–37
    [Google Scholar]
  33. 33.
    Mauersberger K, Erbacher B, Krankowsky D, Günther J, Nickel R. 1999. Ozone isotope enrichment: isotopomer-specific rate coefficients. Science 283:370–72
    [Google Scholar]
  34. 34.
    Janssen C, Guenther J, Mauersberger K, Krankowsky D. 2001. Kinetic origin of the ozone isotope effect: a critical analysis of enrichments and rate coefficients. Phys. Chem. Chem. Phys. 3:4718–21
    [Google Scholar]
  35. 35.
    Gao YQ, Marcus RA. 2001. Strange and unconventional isotope effects in ozone formation. Science 293:259–63
    [Google Scholar]
  36. 36.
    Gao YQ, Marcus RA. 2007. An approximate theory of the ozone isotopic effects: rate constant ratios and pressure dependence. J. Chem. Phys. 127:244316
    [Google Scholar]
  37. 37.
    Schinke R, Fleurat-Lessard P. 2005. The effect of zero-point energy differences on the isotope dependence of the formation of ozone: a classical trajectory study. J. Chem. Phys. 122:094317
    [Google Scholar]
  38. 38.
    Thiemens MH, Jackson T 1990. Pressure dependency for heavy isotope enhancement in ozone formation. Geophys. Res. Lett. 17:717–19
    [Google Scholar]
  39. 39.
    Ivanov MV, Grebenshchikov SY, Schinke R. 2009. Quantum mechanical study of vibrational energy transfer in Ar–O3 collisions: influence of symmetry. J. Chem. Phys. 130:174311
    [Google Scholar]
  40. 40.
    Babikov D, Kendrick BK, Walker RB, Schinke R, Pack RT. 2003. Quantum origin of an anomalous isotope effect in ozone formation. Chem. Phys. Lett. 372:686–91
    [Google Scholar]
  41. 41.
    Ivanov MV, Babikov D. 2013. On molecular origin of mass-independent fractionation of oxygen isotopes in the ozone forming recombination reaction. PNAS 110:17708–13
    [Google Scholar]
  42. 42.
    Gayday I, Teplukhin A, Kendrick BK, Babikov D. 2020. The role of rotation–vibration coupling in symmetric and asymmetric isotopomers of ozone. J. Chem. Phys. 152:144104
    [Google Scholar]
  43. 43.
    Teplukhin A, Gayday I, Babikov D. 2018. Several levels of theory for description of isotope effects in ozone: effect of resonance lifetimes and channel couplings. J. Chem. Phys. 149:164302
    [Google Scholar]
  44. 44.
    Gayday I, Teplukhin A, Babikov D. 2019. The ratio of the number of states in asymmetric and symmetric ozone molecules deviates from the statistical value of 2. J. Chem. Phys. 150:101104
    [Google Scholar]
  45. 45.
    Teplukhin A, Babikov D. 2018. Several levels of theory for description of isotope effects in ozone: symmetry effect and mass effect. J. Phys. Chem. A 122:9177–90
    [Google Scholar]
  46. 46.
    Sun Z, Liu L, Lin SY, Schinke R, Guo H, Zhang DH. 2010. State-to-state quantum dynamics of O + O2 isotope exchange reactions reveals nonstatistical behavior at atmospheric conditions. PNAS 107:555–58
    [Google Scholar]
  47. 47.
    Kryvohuz M, Marcus RA. 2010. Coriolis coupling as a source of non-RRKM effects in ozone molecule: lifetime statistics of vibrationally excited ozone molecules. J. Chem. Phys. 132:224305
    [Google Scholar]
  48. 48.
    Tajti A, Szalay PG, Kochanov R, Tyuterev VG. 2020. Diagonal Born–Oppenheimer corrections to the ground electronic state potential energy surfaces of ozone: improvement of ab initio vibrational band centers for the 16O3, 17O3 and 18O3 isotopologues. Phys. Chem. Chem. Phys. 22:24257–69
    [Google Scholar]
  49. 49.
    Kokoouline V, Lapierre D, Alijah A, Tyuterev V. 2020. Localized and delocalized bound states of the main isotopologue 48O3 and of 18O-enriched 50O3 isotopomers of the ozone molecule near the dissociation threshold. Phys. Chem. Chem. Phys. 22:15885–99
    [Google Scholar]
  50. 50.
    Van Wyngarden AL, Mar KA, Quach J, Nguyen APQ, Wiegel AA et al. 2014. The non-statistical dynamics of the 18O + 32O2 isotope exchange reaction at two energies. J. Chem. Phys. 141:064311
    [Google Scholar]
  51. 51.
    Cole AS, Boering KA. 2006. Mass-dependent and non-mass-dependent isotope effects in ozone photolysis: resolving theory and experiments. J. Chem. Phys. 125:184301
    [Google Scholar]
  52. 52.
    Ndengué SA, Schinke R, Gatti F, Meyer H-D, Jost R. 2012. Ozone photodissociation: isotopic and electronic branching ratios for symmetric and asymmetric isotopologues. J. Phys. Chem. A 116:12271–79
    [Google Scholar]
  53. 53.
    Liang MC, Irion FW, Weibel JD, Miller CE, Blake GA, Yung YL. 2006. Isotopic composition of stratospheric ozone. J. Geophys. Res. Atmos. 111:D02302
    [Google Scholar]
  54. 54.
    Han S, Gunthardt CE, Dawes R, Xie D, North SW, Guo H. 2020. Origin of the “odd” behavior in the ultraviolet photochemistry of ozone. PNAS 117:21065–69
    [Google Scholar]
  55. 55.
    Babikov D. 2017. Recombination reactions as a possible mechanism of mass-independent fractionation of sulfur isotopes in the Archean atmosphere of Earth. PNAS 114:3062–67
    [Google Scholar]
  56. 56.
    Lyons JR. 2020. An analytical formulation of isotope fractionation due to self-shielding. Geochim. Cosmochim. Acta 282:177–200
    [Google Scholar]
  57. 57.
    Lämmerzahl P, Röckmann T, Brenninkmeijer CAM, Krankowsky D, Mauersberger K. 2002. Oxygen isotope composition of stratospheric carbon dioxide. Geophys. Res. Lett. 29:23–1-23-4
    [Google Scholar]
  58. 58.
    Yung YL, Lee AYT, Irion FW, DeMore WB, Wen J. 1997. Carbon dioxide in the atmosphere: isotopic exchange with ozone and its use as a tracer in the middle atmosphere. J. Geophys. Res. Atmos. 102:10857–66
    [Google Scholar]
  59. 59.
    Baulch DL, Breckenridge WH. 1966. Isotopic exchange of O(1D) with carbon dioxide. Trans. Faraday Soc. 62:2768–73
    [Google Scholar]
  60. 60.
    Liang M-C, Blake GA, Lewis BR, Yung YL. 2007. Oxygen isotopic composition of carbon dioxide in the middle atmosphere. PNAS 104:21–25
    [Google Scholar]
  61. 61.
    Wen J, Thiemens MH. 1993. Multi-isotope study of the O(1D) + CO2 exchange and stratospheric consequences. J. Geophys. Res. Atmos. 98:12801–8
    [Google Scholar]
  62. 62.
    Johnston JC, Röckmann T, Brenninkmeijer CAM. 2000. CO2+O(1D) isotopic exchange: laboratory and modeling studies. J. Geophys. Res. Atmos. 105:15213–29
    [Google Scholar]
  63. 63.
    Chakraborty S, Bhattacharya SK. 2003. Experimental investigation of oxygen isotope exchange between CO2 and O(1D) and its relevance to the stratosphere. J. Geophys. Res. Atmos. 108:4724
    [Google Scholar]
  64. 64.
    Shaheen R, Janssen C, Röckmann T. 2007. Investigations of the photochemical isotope equilibrium between O2, CO2 and O3. Atmos. Chem. Phys. 7:495–509
    [Google Scholar]
  65. 65.
    Perri MJ, Van Wyngarden AL, Lin JJ, Lee YT, Boering KA. 2004. Energy dependence of oxygen isotope exchange and quenching in the O(1D) + CO2 reaction: a crossed molecular beam study. J. Phys. Chem. A 108:7995–8001
    [Google Scholar]
  66. 66.
    Mebel AM, Hayashi M, Kislov VV, Lin SH. 2004. Theoretical study of oxygen isotope exchange and quenching in the O(1D) + CO2 reaction. J. Phys. Chem. A 108:7983–94
    [Google Scholar]
  67. 67.
    Janssen C, Guenther J, Krankowsky D, Mauersberger K. 2003. Temperature dependence of ozone rate coefficients and isotopologue fractionation in 16O–18O oxygen mixtures. Chem. Phys. Lett. 367:34–38
    [Google Scholar]
  68. 68.
    Garofalo L, Kanu A, Hoag KJ, Boering KA 2019. The effects of stratospheric chemistry and transport on the isotopic compositions of long-lived gases measured at Earth's surface. Advances in Atmospheric Chemistry JR Barker, AL Steiner 529–87. Singapore: World Scientific
    [Google Scholar]
  69. 69.
    Hoag KJ, Still CJ, Fung IY, Boering KA. 2005. Triple oxygen isotope composition of tropospheric carbon dioxide as a tracer of terrestrial gross carbon fluxes. Geophys. Res. Lett. 32:L02802
    [Google Scholar]
  70. 70.
    Ciais P, Denning AS, Tans PP, Berry JA, Randall DA et al. 1997. A three-dimensional synthesis study of δ18O in atmospheric CO2: 1. Surface fluxes. J. Geophys. Res. Atmos. 102:5857–72
    [Google Scholar]
  71. 71.
    Hofmann MEG, Horváth B, Schneider L, Peters W, Schützenmeister K, Pack A. 2017. Atmospheric measurements of Δ17O in CO2 in Göttingen, Germany reveal a seasonal cycle driven by biospheric uptake. Geochim. Cosmochim. Acta 199:143–63
    [Google Scholar]
  72. 72.
    Luz B, Barkan E, Bender ML, Thiemens MH, Boering KA. 1999. Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity. Nature 400:547–50
    [Google Scholar]
  73. 73.
    Luz B, Barkan E. 2000. Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen. Science 288:2028–31
    [Google Scholar]
  74. 74.
    Brandon M, Landais A, Duchamp-Alphonse S, Favre V, Schmitz L et al. 2020. Exceptionally high biosphere productivity at the beginning of Marine Isotopic Stage 11. Nat. Commun. 11:2112
    [Google Scholar]
  75. 75.
    Bao H, Lyons JR, Zhou C. 2008. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature 453:504–6
    [Google Scholar]
  76. 76.
    Gehler A, Gingerich PD, Pack A. 2016. Temperature and atmospheric CO2 concentration estimates through the PETM using triple oxygen isotope analysis of mammalian bioapatite. PNAS 113:7739–44
    [Google Scholar]
  77. 77.
    Michalski G, Meixner T, Fenn M, Hernandez L, Sirulnik A et al. 2004. Tracing atmospheric nitrate deposition in a complex semiarid ecosystem using Δ17O. Environ. Sci. Technol. 38:2175–81
    [Google Scholar]
  78. 78.
    Alexander B, Sherwen T, Holmes CD, Fisher JA, Chen Q et al. 2020. Global inorganic nitrate production mechanisms: comparison of a global model with nitrate isotope observations. Atmos. Chem. Phys. 20:3859–77
    [Google Scholar]
  79. 79.
    Geng L, Murray LT, Mickley LJ, Lin P, Fu Q et al. 2017. Isotopic evidence of multiple controls on atmospheric oxidants over climate transitions. Nature 546:133–36
    [Google Scholar]
  80. 80.
    Savarino J, Lee CCW, Thiemens MH. 2000. Laboratory oxygen isotopic study of sulfur (IV) oxidation: origin of the mass-independent oxygen isotopic anomaly in atmospheric sulfates and sulfate mineral deposits on Earth. J. Geophys. Res. Atmos. 105:29079–88
    [Google Scholar]
  81. 81.
    Hattori S, Iizuka Y, Alexander B, Ishino S, Fujita K et al. 2021. Isotopic evidence for acidity-driven enhancement of sulfate formation after SO2 emission control. Sci. Adv. 7:eabd4610
    [Google Scholar]
  82. 82.
    Gautier E, Savarino J, Hoek J, Erbland J, Caillon N et al. 2019. 2600-years of stratospheric volcanism through sulfate isotopes. Nat. Commun. 10:466
    [Google Scholar]
  83. 83.
    Ishino S, Hattori S, Legrand M, Chen Q, Alexander B et al. 2021. Regional characteristics of atmospheric sulfate formation in East Antarctica imprinted on 17O-excess signature. J. Geophys. Res. Atmos. 126:e2020JD033583
    [Google Scholar]
  84. 84.
    Röckmann T, Brenninkmeijer CAM, Saueressig G, Bergamaschi P, Crowley JN et al. 1998. Mass-independent oxygen isotope fractionation in atmospheric CO as a result of the reaction CO + OH. Science 281:544–46
    [Google Scholar]
  85. 85.
    Huff AK, Thiemens MH. 1998. 17O/16O and 18O/16O isotope measurements of atmospheric carbon monoxide and its sources. Geophys. Res. Lett. 25:3509–12
    [Google Scholar]
  86. 86.
    Weston RE, Nguyen TL, Stanton JF, Barker JR. 2013. HO+CO reaction rates and H/D kinetic isotope effects: master equation models with ab initio SCTST rate constants. J. Phys. Chem. A 117:821–35
    [Google Scholar]
  87. 87.
    Chen WC, Marcus RA. 2005. On the theory of the CO plus OH reaction, including H and C kinetic isotope effects. J. Chem. Phys. 123:94307
    [Google Scholar]
  88. 88.
    Marcus RA 2008. Mass-independent oxygen isotope fractionation in selected systems. Mechanistic considerations. Advances in Quantum Chemistry, Vol. 55 Applications of Theoretical Methods to Atmospheric Science ME Goodsite, MS Johnson 5–19. Amsterdam: Elsevier
    [Google Scholar]
  89. 89.
    Lyons JR, Young ED. 2005. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature 435:317–20
    [Google Scholar]
  90. 90.
    Chakraborty S, Ahmed M, Jackson TL, Thiemens MH. 2008. Experimental test of self-shielding in vacuum ultraviolet photodissociation of CO. Science 321:1328–31
    [Google Scholar]
  91. 91.
    Lyons JR, Lewis RS, Clayton RN. 2009. Comment on “Experimental test of self-shielding in vacuum ultraviolet photodissociation of CO.”. Science 324:1516
    [Google Scholar]
  92. 92.
    Marcus RA. 2004. Mass-independent isotope effect in the earliest processed solids in the solar system: a possible chemical mechanism. J. Chem. Phys. 121:8201–11
    [Google Scholar]
  93. 93.
    Chakraborty S, Yanchulova P, Thiemens MH. 2013. Mass-independent oxygen isotopic partitioning during gas-phase SiO2 formation. Science 342:463–66
    [Google Scholar]
  94. 94.
    Turner AJ, Frankenberg C, Kort EA. 2019. Interpreting contemporary trends in atmospheric methane. PNAS 116:2805–13
    [Google Scholar]
  95. 95.
    Kai FM, Tyler SC, Randerson JT, Blake DR. 2011. Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources. Nature 476:194–97
    [Google Scholar]
  96. 96.
    Schaefer H, Fletcher SEM, Veidt C, Lassey KR, Brailsford GW et al. 2016. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4. Science 352:80–84
    [Google Scholar]
  97. 97.
    Cantrell CA, Shetter RE, McDaniel AH, Calvert JG, Davidson JA et al. 1990. Carbon kinetic isotope effect in the oxidation of methane by the hydroxyl radical. J. Geophys. Res. Atmos. 95:22455–62
    [Google Scholar]
  98. 98.
    Saueressig G, Crowley JN, Bergamaschi P, Brühl C, Brenninkmeijer CAM, Fischer H. 2001. Carbon-13 and D kinetic isotope effects in the reactions of CH4 with O(1D) and OH: new laboratory measurements and their implications for the isotopic composition of stratospheric methane. J. Geophys. Res. Atmos. 106:23127–38
    [Google Scholar]
  99. 99.
    McCarthy MC, Connell P, Boering KA. 2001. Isotopic fractionation of methane in the stratosphere and its effect on free tropospheric isotopic compositions. Geophys. Res. Lett. 28:3657–60
    [Google Scholar]
  100. 100.
    Saueressig G, Bergamaschi P, Crowley JN, Fischer H, Harris GW. 1995. Carbon kinetic isotope effect in the reaction of CH4 with Cl atoms. Geophys. Res. Lett. 22:1225–28
    [Google Scholar]
  101. 101.
    Crowley JN, Saueressig G, Bergamaschi P, Fischer H, Harris GW. 1999. Carbon kinetic isotope effect in the reaction CH4+Cl: a relative rate study using FTIR spectroscopy. Chem. Phys. Lett. 303:268–74
    [Google Scholar]
  102. 102.
    Roberto-Neto O, Coitiño EL, Truhlar DG. 1998. Dual-level direct dynamics calculations of deuterium and carbon-13 kinetic isotope effects for the reaction Cl + CH4. J. Phys. Chem. A 102:4568–78
    [Google Scholar]
  103. 103.
    Barker JR, Nguyen TL, Stanton JF. 2012. Kinetic isotope effects for Cl + CH4 ⇌ HCl + CH3 calculated using ab initio semiclassical transition state theory. J. Phys. Chem. A 116:6408–19
    [Google Scholar]
  104. 104.
    Davidson JA, Cantrell CA, Tyler SC, Shetter RE, Cicerone RJ, Calvert JG. 1987. Carbon kinetic isotope effect in the reaction of CH4 with HO. J. Geophys. Res. Atmos. 92:2195–99
    [Google Scholar]
  105. 105.
    McCarthy MC. 2003. Carbon and hydrogen isotopic compositions of stratospheric methane: 2. Two-dimensional model results and implications for kinetic isotope effects. J. Geophys. Res. 108:4461
    [Google Scholar]
  106. 106.
    Röckmann T, Brass M, Borchers R, Engel A. 2011. The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements. Atmos. Chem. Phys. 11:13287–304
    [Google Scholar]
  107. 107.
    Melissas VS, Truhlar DG. 1993. Deuterium and carbon-13 kinetic isotope effects for the reaction of OH with CH4. J. Chem. Phys. 99:3542–52
    [Google Scholar]
  108. 108.
    Totenhofer AJ, Connor JNL, Nyman G. 2016. Angular scattering dynamics of the CH4 + Cl → CH3 + HCl reaction using nearside–farside, local angular momentum, and resummation theories. J. Phys. Chem. B 120:2020–32
    [Google Scholar]
  109. 109.
    Liu Y, Li J. 2020. An accurate potential energy surface and ring polymer molecular dynamics study of the Cl + CH4 → HCl + CH3 reaction. Phys. Chem. Chem. Phys. 22:344–53
    [Google Scholar]
  110. 110.
    Tromp TK, Shia RL, Allen M, Eiler JM, Yung YL. 2003. Potential environmental impact of a hydrogen economy on the stratosphere. Science 300:1740–42
    [Google Scholar]
  111. 111.
    Gerst S, Quay P. 2001. Deuterium component of the global molecular hydrogen cycle. J. Geophys. Res. Atmos. 106:5021–31
    [Google Scholar]
  112. 112.
    Rahn T, Eiler JM, Boering KA, Wennberg PO, McCarthy MC et al. 2003. Extreme deuterium enrichment in stratospheric hydrogen and the global atmospheric budget of H2. Nature 424:918–21
    [Google Scholar]
  113. 113.
    Talukdar RK, Ravishankara AR. 1996. Rate coefficients for O(1D) + H2, D2, HD reactions and H atom yield in O(1D) + HD reaction. Chem. Phys. Lett. 253:177–83
    [Google Scholar]
  114. 114.
    Taatjes CA. 1999. Infrared frequency-modulation measurements of absolute rate coefficients for Cl+HD→HCl(DCl)+D(H) between 295 and 700 K. Chem. Phys. Lett. 306:33–40
    [Google Scholar]
  115. 115.
    Mar KA, McCarthy MC, Connell P, Boering KA. 2007. Modeling the photochemical origins of the extreme deuterium enrichment in stratospheric H2. J. Geophys. Res. 112:D19302
    [Google Scholar]
  116. 116.
    Röckmann T, Walter S, Bohn B, Wegener R, Spahn H et al. 2010. Isotope effect in the formation of H2 from H2CO studied at the atmospheric simulation chamber SAPHIR. Atmos. Chem. Phys. 10:5343–57
    [Google Scholar]
  117. 117.
    Hu HY, Dibble TS, Tyndall GS, Orlando JJ. 2012. Temperature-dependent branching ratios of deuterated methoxy radicals (CH2DO) reacting with O2. J. Phys. Chem. A 116:6295–302
    [Google Scholar]
  118. 118.
    Nilsson EJK, Schmidt JA, Johnson MS. 2014. Pressure dependent isotopic fractionation in the photolysis of formaldehyde-D2. Atmos. Chem. Phys. 14:551–58
    [Google Scholar]
  119. 119.
    Hu HY, Dibble TS. 2013. Quantum chemistry, reaction kinetics, and tunneling effects in the reaction of methoxy radicals with O2. J. Phys. Chem. A 117:14230–42
    [Google Scholar]
  120. 120.
    Bowman JM. 2014. Roaming. Mol. Phys. 112:2516–28
    [Google Scholar]
  121. 121.
    Jorgensen S, Grage MML, Nyman G, Johnson MS 2008. Isotope effects in photodissociation: Chemical reaction dynamics and implications for atmospheres. Advances in Quantum Chemistry, Vol. 55 Applications of Theoretical Methods to Atmospheric Science ME Goodsite, MS Johnson 101–35. Amsterdam: Elsevier
    [Google Scholar]
  122. 122.
    Ravishankara AR, Daniel JS, Portmann RW. 2009. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–25
    [Google Scholar]
  123. 123.
    Stein LY, Yung YL. 2003. Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide. Annu. Rev. Earth Planet. Sci. 31:329–56
    [Google Scholar]
  124. 124.
    Kim K-R, Craig H 1993. Nitrogen-15 and oxygen-18 characteristics of nitrous oxide: a global perspective. Science 262:1855–57
    [Google Scholar]
  125. 125.
    Johnston JC, Cliff SS, Thiemens MH. 1995. Measurement of multioxygen isotopic (δ18O and δ17O) fractionation factors in the stratospheric sink reactions of nitrous oxide. J. Geophys. Res. Atmos. 100:16801–4
    [Google Scholar]
  126. 126.
    Park S, Atlas E, Boering KA. 2004. Measurements of N2O isotopologues in the stratosphere: influence of transport on the apparent enrichment factors and the isotopologue fluxes to the troposphere. J. Geophys. Res. 109:D01305
    [Google Scholar]
  127. 127.
    Yung YL, Miller CE. 1997. Isotopic fractionation of stratospheric nitrous oxide. Science 278:1778–80
    [Google Scholar]
  128. 128.
    Kaiser J, Röckmann T, Brenninkmeijer CAM, Crutzen PJ. 2003. Wavelength dependence of isotope fractionation in N2O photolysis. Atmos. Chem. Phys. 3:303–13
    [Google Scholar]
  129. 129.
    Johnson MS, Billing GD, Gruodis A, Janssen MHM. 2001. Photolysis of nitrous oxide isotopomers studied by time-dependent hermite propagation. J. Phys. Chem. A 105:8672–80
    [Google Scholar]
  130. 130.
    Blake GA, Liang M-C, Morgan CG, Yung YL. 2003. A Born-Oppenheimer photolysis model of N2O fractionation. Geophys. Res. Lett. 30:1656
    [Google Scholar]
  131. 131.
    McLinden CA, Prather MJ, Johnson MS. 2003. Global modeling of the isotopic analogues of N2O: stratospheric distributions, budgets, and the 17O–18O mass-independent anomaly. J. Geophys. Res. Atmos. 108:4233
    [Google Scholar]
  132. 132.
    Park S, Croteau P, Boering KA, Etheridge DM, Ferretti D et al. 2012. Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nat. Geosci. 5:261–65
    [Google Scholar]
  133. 133.
    Mohn J, Tuzson B, Manninen A, Yoshida N, Toyoda S et al. 2012. Site selective real-time measurements of atmospheric N2O isotopomers by laser spectroscopy. Atmos. Meas. Tech. 5:1601–9
    [Google Scholar]
  134. 134.
    Funke B, López-Puertas M, Garcia-Comas M, Stiller G, von Clarmann T, Glatthor N. 2008. Mesospheric N2O enhancements as observed by MIPAS on Envisat during the polar winters in 2002–2004. Atmos. Chem. Phys. 8:5787–800
    [Google Scholar]
  135. 135.
    Bernath PF, Yousefi M, Buzan E, Boone CD. 2017. A near-global atmospheric distribution of N2O isotopologues. Geophys. Res. Lett. 44:10735–43
    [Google Scholar]
  136. 136.
    Smith MC, Carlstad JM, Hunter PQ, Randazzo J, Boering KA. 2021. Nitrous oxide formation by corona discharge: isotopic composition measurements and atmospheric applications. J. Geophys. Res. Atmos. 126:e2020JD033927
    [Google Scholar]
  137. 137.
    Stolper DA, Lawson M, Davis CL, Ferreira AA, Neto EVS et al. 2014. Formation temperatures of thermogenic and biogenic methane. Science 344:1500–3
    [Google Scholar]
  138. 138.
    Ono S, Wang DT, Gruen DS, Sherwood Lollar B, Zahniser MS et al. 2014. Measurement of a doubly substituted methane isotopologue, 13CH3D, by tunable infrared laser direct absorption spectroscopy. Anal. Chem. 86:6487–94
    [Google Scholar]
  139. 139.
    Yeung LY, Affek HP, Hoag KJ, Guo W, Wiegel AA et al. 2009. Large and unexpected enrichment in stratospheric 16O13C18O and its meridional variation. PNAS 106:11496–501
    [Google Scholar]
  140. 140.
    Yeung LY, Murray LT, Martinerie P, Witrant E, Hu H et al. 2019. Isotopic constraint on the twentieth-century increase in tropospheric ozone. Nature 570:224–27
    [Google Scholar]
  141. 141.
    Laskar AH, Peethambaran R, Adnew GA, Röckmann T. 2019. Measurement of 18O18O and 17O18O in atmospheric O2 using the 253 ultra mass spectrometer and applications to stratospheric and tropospheric air samples. Rapid Commun. Mass Spectrom. 33:981–94
    [Google Scholar]
  142. 142.
    Yeung LY, Murray LT, Ash JL, Young ED, Boering KA et al. 2016. Isotopic ordering in atmospheric O2 as a tracer of ozone photochemistry and the tropical atmosphere. J. Geophys. Res. Atmos. 121:12541–59
    [Google Scholar]
  143. 143.
    Yeung LY, Murray LT, Banerjee A, Tie X, Yan Y et al. 2021. Effects of ozone isotopologue formation on the clumped-isotope composition of atmospheric O2. J. Geophys. Res. Atmos. 126:e2021JD034770
    [Google Scholar]
  144. 144.
    Wang DT, Gruen DS, Lollar BS, Hinrichs K-U, Stewart LC et al. 2015. Nonequilibrium clumped isotope signals in microbial methane. Science 348:428–31
    [Google Scholar]
  145. 145.
    Taenzer L, Labidi J, Masterson AL, Feng X, Rumble D et al. 2020. Low Δ12CH2D2 values in microbialgenic methane result from combinatorial isotope effects. Geochim. Cosmochim. Acta 285:225–36
    [Google Scholar]
  146. 146.
    Whitehill AR, Joelsson LMT, Schmidt JA, Wang DT, Johnson MS, Ono S. 2017. Clumped isotope effects during OH and Cl oxidation of methane. Geochim. Cosmochim. Acta 196:307–25
    [Google Scholar]
  147. 147.
    Gierczak T, Talukdar RK, Herndon SC, Vaghjiani GL, Ravishankara AR. 1997. Rate coefficients for the reactions of hydroxyl radicals with methane and deuterated methanes. J. Phys. Chem. A 101:3125–34
    [Google Scholar]
  148. 148.
    Frederickson LB, Andersen ST, Nielsen OJ. 2019. Rate coefficients for reactions of OH radicals with CH3D, CH2D2, CHD3, and CD4. Int. J. Chem. Kinet. 51:390–94
    [Google Scholar]
  149. 149.
    Eiler JM, Clog M, Magyar P, Piasecki A, Sessions A et al. 2013. A high-resolution gas-source isotope ratio mass spectrometer. Int. J. Mass Spectrom. 335:45–56
    [Google Scholar]
  150. 150.
    Popa ME, Paul D, Janssen C, Röckmann T. 2019. H2 clumped isotope measurements at natural isotopic abundances. Rapid Commun. Mass Spectrom. 33:239–51
    [Google Scholar]
  151. 151.
    Welsch R. 2019. Kinetic isotope effects in the water forming reaction H2/D2 + OH from rigorous close-coupling quantum dynamics simulations. Phys. Chem. Chem. Phys. 21:17054–62
    [Google Scholar]
  152. 152.
    Talukdar RK, Gierczak T, Goldfarb L, Rudich Y, Rao BSM, Ravishankara AR. 1996. Kinetics of hydroxyl radical reactions with isotopically labeled hydrogen. J. Phys. Chem. 100:3037–43
    [Google Scholar]
  153. 153.
    Magyar PM, Orphan VJ, Eiler JM. 2016. Measurement of rare isotopologues of nitrous oxide by high-resolution multi-collector mass spectrometry. Rapid Commun. Mass Spectrom. 30:1923–40
    [Google Scholar]
  154. 154.
    Schmidt JA, Johnson MS. 2015. Clumped isotope perturbation in tropospheric nitrous oxide from stratospheric photolysis. Geophys. Res. Lett. 42:3546–52
    [Google Scholar]
  155. 155.
    Kantnerová K, Jespersen MF, Bernasconi SM, Emmenegger L, Johnson MS, Mohn J. 2020. Photolytic fractionation of seven singly and doubly substituted nitrous oxide isotopocules measured by quantum cascade laser absorption spectroscopy. Atmos. Environ. X 8:100094
    [Google Scholar]
  156. 156.
    Young ED, Rumble D, Freedman P, Mills M. 2016. A large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gases. Int. J. Mass Spectrom. 401:1–10
    [Google Scholar]
  157. 157.
    Yeung LY, Li S, Kohl IE, Haslun JA, Ostrom NE et al. 2017. Extreme enrichment in atmospheric 15N15N. Sci. Adv. 3:eaao6741
    [Google Scholar]
  158. 158.
    Randazzo JB, Croteau P, Kostko O, Ahmed M, Boering KA 2014. Isotope effects and spectroscopic assignments in the non-dissociative photoionization spectrum of N2. J. Chem. Phys. 140:194303
    [Google Scholar]
  159. 159.
    Muskatel BH, Remacle F, Thiemens MH, Levine RD. 2011. On the strong and selective isotope effect in the UV excitation of N2 with implications toward the nebula and Martian atmosphere. PNAS 108:6020–25
    [Google Scholar]
  160. 160.
    Labidi J, Barry PH, Bekaert DV, Broadley MW, Marty B et al. 2020. Hydrothermal 15N15N abundances constrain the origins of mantle nitrogen. Nature 580:367–71
    [Google Scholar]
  161. 161.
    Yeung LY, Haslun JA, Ostrom NE, Sun T, Young ED et al. 2019. In situ quantification of biological N2 production using naturally occurring 15N15N. Environ. Sci. Technol. 53:5168–75
    [Google Scholar]
  162. 162.
    Webb MA, Wang Y, Braams BJ, Bowman JM, Miller TF. 2017. Equilibrium clumped-isotope effects in doubly substituted isotopologues of ethane. Geochim. Cosmochim. Acta 197:14–26
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-061020-053429
Loading
/content/journals/10.1146/annurev-physchem-061020-053429
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error