1932

Abstract

Upconverting nanoparticles (UCNPs) compose a class of luminescent materials that utilize the unique wavelength-converting properties of lanthanide (Ln) ions for light-harvesting applications, photonics technologies, and biological imaging and sensing experiments. Recent advances in UCNP design have shed light on the properties of local color centers, both intrinsic and controllably induced, within these materials and their potential influence on UCNP photophysics. In this review, we describe fundamental studies of color centers in Ln-based materials, including research into their origins and their roles in observed photodarkening and photobrightening mechanisms. We place particular focus on the new functionalities that are enabled by harnessing the properties of color centers within Ln-doped nanocrystals, illustrated through applications in afterglow-based bioimaging, X-ray detection, all-inorganic nanocrystal photoswitching, and fully rewritable optical patterning and memory.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082720-032137
2023-04-24
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/physchem/74/1/annurev-physchem-082720-032137.html?itemId=/content/journals/10.1146/annurev-physchem-082720-032137&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Auzel F. 2004. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104:139–74
    [Google Scholar]
  2. 2.
    Wang F, Liu X. 2009. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 38:976–89
    [Google Scholar]
  3. 3.
    Haase M, Schäfer H. 2011. Upconverting nanoparticles. Angew. Chem. Int. Ed. 50:5808–29
    [Google Scholar]
  4. 4.
    Bünzli J-CG. 2010. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 110:2729–55
    [Google Scholar]
  5. 5.
    Zhao J, Jin D, Schartner EP, Lu Y, Liu Y et al. 2013. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 8:729–34
    [Google Scholar]
  6. 6.
    Gargas DJ, Chan EM, Ostrowski AD, Aloni S, Altoe M et al. 2014. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 9:300–5
    [Google Scholar]
  7. 7.
    Chan EM. 2015. Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications. Chem. Soc. Rev. 44:1653–79
    [Google Scholar]
  8. 8.
    Park YI, Lee KT, Suh YD, Hyeon T. 2015. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem. Soc. Rev. 44:1302–17
    [Google Scholar]
  9. 9.
    Pedroso CC, Mann VR, Zuberbühler K, Bohn M-F, Yu J et al. 2021. Immunotargeting of nanocrystals by SpyCatcher conjugation of engineered antibodies. ACS Nano 15:18374–84
    [Google Scholar]
  10. 10.
    Van Der Ende BM, Aarts L, Meijerink A. 2009. Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 11:11081–95
    [Google Scholar]
  11. 11.
    Briggs JA, Atre AC, Dionne JA. 2013. Narrow-bandwidth solar upconversion: case studies of existing systems and generalized fundamental limits. J. Appl. Phys. 113:124509
    [Google Scholar]
  12. 12.
    Chen G, Seo J, Yang C, Prasad PN 2013. Nanochemistry and nanomaterials for photovoltaics. Chem. Soc. Rev. 42:8304–38
    [Google Scholar]
  13. 13.
    Shen J, Zhao L, Han G. 2013. Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy. Adv. Drug Deliv. Rev. 65:744–55
    [Google Scholar]
  14. 14.
    Chen G, Qiu H, Prasad PN, Chen X 2014. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114:5161–214
    [Google Scholar]
  15. 15.
    Punjabi A, Wu X, Tokatli-Apollon A, El-Rifai M, Lee H et al. 2014. Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy. ACS Nano 8:10621–30
    [Google Scholar]
  16. 16.
    Wu X, Zhang Y, Takle K, Bilsel O, Li Z et al. 2016. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 10:1060–66
    [Google Scholar]
  17. 17.
    Chen S, Weitemier AZ, Zeng X, He L, Wang X et al. 2018. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science 359:679–84
    [Google Scholar]
  18. 18.
    Zhu H, Chen X, Jin LM, Wang QJ, Wang F, Yu SF 2013. Amplified spontaneous emission and lasing from lanthanide-doped up-conversion nanocrystals. ACS Nano 7:11420–26
    [Google Scholar]
  19. 19.
    Chen X, Jin L, Kong W, Sun T, Zhang W et al. 2016. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing. Nat. Commun. 7:10304
    [Google Scholar]
  20. 20.
    Fernandez-Bravo A, Yao K, Barnard ES, Borys NJ, Levy ES et al. 2018. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol. 13:572–77
    [Google Scholar]
  21. 21.
    Fernandez-Bravo A, Wang D, Barnard ES, Teitelboim A, Tajon C et al. 2019. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. Nat. Mater. 18:1172–76
    [Google Scholar]
  22. 22.
    Liu Y, Teitelboim A, Fernandez-Bravo A, Yao K, Altoe MVP et al. 2020. Controlled assembly of upconverting nanoparticles for low-threshold microlasers and their imaging in scattering media. ACS Nano 14:1508–19
    [Google Scholar]
  23. 23.
    Mahata MK, Lee KT. 2019. Development of near-infrared sensitized core–shell–shell upconverting nanoparticles as pH-responsive probes. Nanoscale Adv. 1:2372–81
    [Google Scholar]
  24. 24.
    Chan EM, Levy ES, Cohen BE. 2015. Rationally designed energy transfer in upconverting nanoparticles. Adv. Mater. 27:5753–61
    [Google Scholar]
  25. 25.
    Zhou B, Shi B, Jin D, Liu X 2015. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 10:924–36
    [Google Scholar]
  26. 26.
    Fernandez-Bravo A, Yao K, Barnard ES, Borys NJ, Levy ES et al. 2018. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol. 13:572–77
    [Google Scholar]
  27. 27.
    Park YI, Kim JH, Lee KT, Jeon KS, Na HB et al. 2009. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv. Mater. 21:4467–71
    [Google Scholar]
  28. 28.
    Wu S, Han G, Milliron DJ, Aloni S, Altoe V et al. 2009. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. PNAS 106:10917–21
    [Google Scholar]
  29. 29.
    Qin X, Shen L, Liang L, Han S, Yi Z, Liu X 2019. Suppression of defect-induced quenching via chemical potential tuning: a theoretical solution for enhancing lanthanide luminescence. J. Phys. Chem. C 123:11151–61
    [Google Scholar]
  30. 30.
    Hu Y, Yang Y, Zhang X, Wang X, Li X et al. 2020. X-ray-excited super-long green persistent luminescence from Tb3+ monodoped β-NaYF4. J. Phys. Chem. C 124:24940–48
    [Google Scholar]
  31. 31.
    Ou X, Qin X, Huang B, Zan J, Wu Q et al. 2021. High-resolution X-ray luminescence extension imaging. Nature 590:410–15
    [Google Scholar]
  32. 32.
    Lee C, Xu EZ, Liu Y, Teitelboim A, Yao K et al. 2021. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 589:230–35
    [Google Scholar]
  33. 33.
    Liang Y, Zhu Z, Qiao S, Guo X, Pu R et al. 2022. Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity. Nat. Nanotechnol. 17:5524–30
    [Google Scholar]
  34. 34.
    Kwock KW, Lee C, Teitelboim A, Liu Y, Yao K et al. 2021. Surface-sensitive photon avalanche behavior revealed by single-avalanching-nanoparticle imaging. J. Phys. Chem. C 125:23976–82
    [Google Scholar]
  35. 35.
    Bednarkiewicz A, Chan EM, Kotulska A, Marciniak L, Prorok K. 2019. Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging. Nanoscale Horiz. 4:881–89
    [Google Scholar]
  36. 36.
    Deng H, Yang S, Xiao S, Gong H-M, Wang Q-Q 2008. Controlled synthesis and upconverted avalanche luminescence of cerium(III) and neodymium(III) orthovanadate nanocrystals with high uniformity of size and shape. J. Am. Chem. Soc. 130:2032–40
    [Google Scholar]
  37. 37.
    Schnadt R, Schneider J. 1970. The electronic structure of the trapped-hole center in smoky quartz. Phys. Kondens. Mater. 11:19–42
    [Google Scholar]
  38. 38.
    Nassau K, Prescott B. 1975. A reinterpretation of smoky quartz. Physica Status Solidi (a) 29:659–63
    [Google Scholar]
  39. 39.
    Henn U, Schultz-Güttler R. 2012. Review of some current coloured quartz varieties. J. Gemmol. 33:29–43
    [Google Scholar]
  40. 40.
    Nassau K. 1978. The origins of color in minerals. Am. Mineral. 63:219–29
    [Google Scholar]
  41. 41.
    Nassau K. 1985. Altering the color of topaz. Gems Gemol. 21:26–34
    [Google Scholar]
  42. 42.
    Griscom DL. 1993. Defect centers in heavy-metal fluoride glasses: a review. J. Non-Cryst. Solids 161:45–51
    [Google Scholar]
  43. 43.
    Mady F, Benabdesselam M, Blanc W. 2010. Thermoluminescence characterization of traps involved in the photodarkening of ytterbium-doped silica fibers. Opt. Lett. 35:3541–43
    [Google Scholar]
  44. 44.
    Pick H. 1980. Plenary Session. Fifty years of colour centre physics. J. Physique Colloq. 41:C61–6
    [Google Scholar]
  45. 45.
    Pohl R. 1937. Electron conductivity and photochemical processes in alkali-halide crystals. Proc. Phys. Soc. 49:3
    [Google Scholar]
  46. 46.
    Griscom DL. 1991. Optical properties and structure of defects in silica glass. J. Ceram. Soc. Jpn. 99:923–42
    [Google Scholar]
  47. 47.
    Skuja L, Hosono H, Hirano M. 2001. Laser-induced color centers in silica. Proc. SPIE 4347: https://doi.org/10.1117/12.425020
    [Google Scholar]
  48. 48.
    Dorenbos P. 2000. The 5d level positions of the trivalent lanthanides in inorganic compounds. J. Lumin. 91:155–76
    [Google Scholar]
  49. 49.
    Dorenbos P. 2013. Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds. J. Lumin. 136:122–29
    [Google Scholar]
  50. 50.
    Dorenbos P. 2017. Charge transfer bands in optical materials and related defect level location. Opt. Mater. 69:8–22
    [Google Scholar]
  51. 51.
    Lyu T, Dorenbos P. 2019. Designing thermally stimulated 1.06 μm Nd3+ emission for the second bio-imaging window demonstrated by energy transfer from Bi3+ in La-, Gd-, Y-, and LuPO4. Chem. Eng. J. 372:978–91
    [Google Scholar]
  52. 52.
    Miao J, Ercius P, Billinge SJ. 2016. Atomic electron tomography: 3D structures without crystals. Science 353:aaf2157
    [Google Scholar]
  53. 53.
    Kaplan R, Bray P. 1963. Electron-spin paramagnetic resonance studies of neutron-irradiated LiF. Phys. Rev. 129:1919–35
    [Google Scholar]
  54. 54.
    Ghobeira R, Tabaei PSE, Morent R, De Geyter N. 2022. Chemical characterization of plasma-activated polymeric surfaces via XPS analyses: a review. Surf. Interfaces 31:102087
    [Google Scholar]
  55. 55.
    Hu Z, Huang X, Yang Z, Qiu J, Song Z et al. 2021. Reversible 3D optical data storage and information encryption in photo-modulated transparent glass medium. Light Sci. Appl. 10:140
    [Google Scholar]
  56. 56.
    You F, Bos AJ, Shi Q, Huang S, Dorenbos P. 2011. Electron transfer process between Ce3+ donor and Yb3+ acceptor levels in the bandgap of Y3Al5O12 (YAG). J. Phys. Condens. Matter 23:215502
    [Google Scholar]
  57. 57.
    Bos AJ. 2017. Thermoluminescence as a research tool to investigate luminescence mechanisms. Materials 10:1357
    [Google Scholar]
  58. 58.
    Sasaki T, Williams R, Wong J, Shirley D. 1979. Radiation damage studies by X-ray photoelectron spectroscopy. III. Electron irradiated halates and perhalates. J. Chem. Phys. 71:4601–10
    [Google Scholar]
  59. 59.
    Ma J, Jiao Y, Shao C, Sun Y, Jiang Y et al. 2022. Study of photodarkening mechanism of Tb3+-activated silica, phosphate, fluorophosphate, and fluoride glasses. Opt. Mater. 127:112329
    [Google Scholar]
  60. 60.
    Narasimha Reddy K, Subba Rao U. 1984. High-temperature X-ray irradiation induced thermoluminescence and half-life calculations in NaYF4 polycrystalline samples. Cryst. Res. Technol. 19:1399–403
    [Google Scholar]
  61. 61.
    Zhuang Y, Chen D, Chen W, Zhang W, Su X et al. 2021. X-ray-charged bright persistent luminescence in NaYF4:Ln3+@NaYF4 nanoparticles for multidimensional optical information storage. Light Sci. Appl. 10:132
    [Google Scholar]
  62. 62.
    Sun T, Su X, Zhang Y, Zhang H, Zheng Y. 2021. Progress and summary of photodarkening in rare earth doped fiber. Appl. Sci. 11:10386
    [Google Scholar]
  63. 63.
    Schüttler J. 2018. Virtual prototyping of high-power fiber lasers: how lifetime tests in the computer improve reliability of industrial laser sources. Optik Photonik 13:28–31
    [Google Scholar]
  64. 64.
    Booth IJ, Archambault J-L, Ventrudo BF. 1996. Photodegradation of near-infrared-pumped Tm3+-doped ZBLAN fiber upconversion lasers. Opt. Lett. 21:348–50
    [Google Scholar]
  65. 65.
    Qin G, Huang S, Feng Y, Shirakawa A, Musha M, Ueda K-i. 2005. Photodegradation and photocuring in the operation of a blue upconversion fiber laser. J. Appl. Phys. 97:126108
    [Google Scholar]
  66. 66.
    Faucher D, Vallee R. 2007. Real-time photobleaching and stable operation at 204 mW of a Tm:ZBLAN blue fiber laser. IEEE Photonics Technol. Lett. 19:112–24
    [Google Scholar]
  67. 67.
    Frith G, Carter A, Samson B, Faroni J, Farley K et al. 2010. Mitigation of photodegradation in 790 nm-pumped Tm-doped fibers. Proc. SPIE 7580: https://doi.org/10.1117/12.846230
    [Google Scholar]
  68. 68.
    Kilabayashi T, Ikeda M, Nakai M, Sakai T, Himeno K, Ohashi K. 2006. Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping Presented at the 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference Anaheim, CA: Mar. 5–10
  69. 69.
    Chandonnet A, Laperle P, LaRochelle S, Vallée R. 1997. Photodegradation of fluoride glass blue fiber laser. Proc. SPIE 2998: https://doi.org/10.1117/12.264203
    [Google Scholar]
  70. 70.
    Vallee R, Laperle P, Chandonnet A. 1998. Lasing characteristics of a thulium-doped ZBLAN fiber laser at 481 nm Presented at the 1998 International Conference on Applications of Photonic Technology III: Closing the Gap Between Theory, Development, and Applications Ottawa, Can: Jul. 29–31
  71. 71.
    Johansen MM, Laurila M, Maack MD, Noordegraaf D, Jakobsen C et al. 2013. Frequency resolved transverse mode instability in rod fiber amplifiers. Opt. Express 21:21847–56
    [Google Scholar]
  72. 72.
    Jauregui C, Otto H-J, Stutzki F, Limpert J, Tünnermann A. 2015. Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening. Opt. Express 23:20203–18
    [Google Scholar]
  73. 73.
    Otto H-J, Modsching N, Jauregui C, Limpert J, Tünnermann A. 2015. Impact of photodarkening on the mode instability threshold. Opt. Express 23:15265–77
    [Google Scholar]
  74. 74.
    Laperle P, Chandonnet A, Vallée R. 1995. Photoinduced absorption in thulium-doped ZBLAN fibers. Opt. Lett. 20:2484–86
    [Google Scholar]
  75. 75.
    Engholm M, Norin L. 2008. Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass. Opt. Express 16:1260–68
    [Google Scholar]
  76. 76.
    Durville FM, Behrens EG, Powell RC. 1986. Laser-induced refractive-index gratings in Eu-doped glasses. Phys. Rev. B 34:4213–20
    [Google Scholar]
  77. 77.
    Xing Y-b, Zhao N, Liao L, Wang Y-b, Li H-q et al. 2015. Active radiation hardening of Tm-doped silica fiber based on pump bleaching. Opt. Express 23:24236–45
    [Google Scholar]
  78. 78.
    Barber P, Paschotta R, Tropper A, Hanna D. 1995. Infrared-induced photodarkening in Tm-doped fluoride fibers. Opt. Lett. 20:2195–97
    [Google Scholar]
  79. 79.
    Guzman Chávez A, Kir'Yanov A, Barmenkov YO, Il'Ichev N 2007. Reversible photo-darkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation. Laser Phys. Lett. 4:734–39
    [Google Scholar]
  80. 80.
    Bobkov KK, Rybaltovsky AA, Vel'miskin VV, Likhachev ME, Bubnov MM et al. 2014. Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres. Quantum Electron. 44:1129
    [Google Scholar]
  81. 81.
    Hill KO, Fujii Y, Johnson DC, Kawasaki BS. 1978. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Appl. Phys. Lett. 32:647–49
    [Google Scholar]
  82. 82.
    Stathis J. 1987. Selective generation of oriented defects in glasses: application to SiO2. Phys. Rev. Lett. 58:1448–51
    [Google Scholar]
  83. 83.
    Ikuta Y, Kikugawa S, Hirano M, Hosono H. 2000. Defect formation and structural alternation in modified SiO2 glasses by irradiation with F2 laser or ArF excimer laser. J. Vacuum Sci. Technol. B 18:2891–95
    [Google Scholar]
  84. 84.
    Broer M, Krol D, DiGiovanni D. 1993. Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber. Opt. Lett. 18:799–801
    [Google Scholar]
  85. 85.
    Atkins G, Carter A. 1994. Photodarkening in Tb3+-doped phosphosilicate and germanosilicate optical fibers. Opt. Lett. 19:874–76
    [Google Scholar]
  86. 86.
    Judd BR. 1962. Optical absorption intensities of rare-earth ions. Phys. Rev. 127:750–61
    [Google Scholar]
  87. 87.
    Ofelt G. 1962. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37:511–20
    [Google Scholar]
  88. 88.
    Behrens EG, Powell RC, Blackburn DH. 1990. Characteristics of laser-induced gratings in Pr3+- and Eu3+-doped silicate glasses. J. Opt. Soc. Am. B 7:1437–44
    [Google Scholar]
  89. 89.
    Millar C, Mallinson S, Ainslie B, Craig S 1988. Photochromic behaviour of thulium-doped silica optical fibres. Electron. Lett. 24:590–91
    [Google Scholar]
  90. 90.
    Lupi J-F, Vermillac M, Blanc W, Mady F, Benabdesselam M et al. 2016. Steady photodarkening of thulium alumino-silicate fibers pumped at 1.07 μm: quantitative effect of lanthanum, cerium, and thulium. Opt. Lett. 41:2771–74
    [Google Scholar]
  91. 91.
    Monteil A, Chaussedent S, Alombert-Goget G, Gaumer N, Obriot J et al. 2004. Clustering of rare earth in glasses, aluminum effect: experiments and modeling. J. Non-Cryst. Solids 348:44–50
    [Google Scholar]
  92. 92.
    Simpson DA, Baxter GW, Collins SF, Gibbs W, Blanc W et al. 2006. Energy transfer up-conversion in Tm3+-doped silica fiber. J. Non-Cryst. Solids 352:136–41
    [Google Scholar]
  93. 93.
    Morasse B, Chatigny S, Gagnon É, Hovington C, Martin J-P, de Sandro J-P. 2007. Low photodarkening single cladding ytterbium fiber amplifier. Proc. SPIE 6453: https://doi.org/10.1117/12.700529
    [Google Scholar]
  94. 94.
    Ishii T. 2005. First-principles calculations for the cooperative transitions of Yb3+ dimer clusters in Y3Al5O12 and Y2O3 crystals. J. Chem. Phys. 122:024705
    [Google Scholar]
  95. 95.
    Guyot Y, Steimacher A, Belançon MP, Medina AN, Baesso ML et al. 2011. Spectroscopic properties, concentration quenching, and laser investigations of Yb3+-doped calcium aluminosilicate glasses. J. Opt. Soc. Am. B 28:2510–17
    [Google Scholar]
  96. 96.
    Peretti R, Gonnet C, Jurdyc A-M. 2012. A new vision of photodarkening in Yb3-doped fibers. Proc. SPIE 8257: https://doi.org/10.1117/12.914613
    [Google Scholar]
  97. 97.
    Aidilibike T, Guo J, Li Y, Liu X, Qin W. 2017. Triplet cooperative luminescence of Yb3+-doped AF2 (A = Ca, Sr) crystals. J. Lumin. 188:107–11
    [Google Scholar]
  98. 98.
    You H, Hayakawa T, Nogami M. 2004. Upconversion luminescence of Al2O3–SiO2:Ce3+ glass by femtosecond laser irradiation. Appl. Phys. Lett. 85:3432–34
    [Google Scholar]
  99. 99.
    You H, Nogami M. 2004. Three-photon-excited fluorescence of Al2O3-SiO2 glass containing Eu3+ ions by femtosecond laser irradiation. Appl. Phys. Lett. 84:2076–78
    [Google Scholar]
  100. 100.
    Thyagarajan K, Ghatak A. 2010. Lasers: Fundamentals and Applications New York: Springer Science & Business Media
  101. 101.
    Chivian JS, Case W, Eden D 1979. The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters. Appl. Phys. Lett. 35:124–25
    [Google Scholar]
  102. 102.
    Joubert MF, Guy S, Jacquier B. 1993. Model of the photon-avalanche effect. Phys. Rev. B 48:10031–37
    [Google Scholar]
  103. 103.
    Guy S, Joubert M, Jacquier B. 1997. Photon avalanche and the mean-field approximation. Phys. Rev. B 55:8240–48
    [Google Scholar]
  104. 104.
    Manek-Hönninger I, Boullet J, Cardinal T, Guillen F, Ermeneux S et al. 2007. Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber. Opt. Express 15:1606–11
    [Google Scholar]
  105. 105.
    Gebavi H, Taccheo S, Lablonde L, Cadier B, Robin T et al. 2013. Mitigation of photodarkening phenomenon in fiber lasers by 633 nm light exposure. Opt. Lett. 38:196–98
    [Google Scholar]
  106. 106.
    Taccheo S, Gebavi H, Piccoli R, Robin T, Lablonde L et al. 2014. Photodarkening in Yb-doped Al-silicate fibers: investigation, modelling and mitigation Presented at the 2014 16th International Conference on Transparent Optical Networks (ICTON) Graz, Austria: Aug. 14
  107. 107.
    Arai K, Namikawa H, Kumata K, Honda T, Ishii Y, Handa T. 1986. Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass. J. Appl. Phys. 59:3430–36
    [Google Scholar]
  108. 108.
    Engholm M, Tuggle M, Kucera C, Hawkins T, Dragic P, Ballato J. 2021. On the origin of photodarkening resistance in Yb-doped silica fibers with high aluminum concentration. Optical Mater. Express 11:115–26
    [Google Scholar]
  109. 109.
    Gebavi H, Taccheo S, Tregoat D, Monteville A, Robin T 2012. Photobleaching of photodarkening in ytterbium doped aluminosilicate fibers with 633 nm irradiation. Opt. Mater. Express 2:1286–91
    [Google Scholar]
  110. 110.
    Jetschke S, Unger S, Leich M, Kirchhof J. 2012. Photodarkening kinetics as a function of Yb concentration and the role of Al codoping. Appl. Opt. 51:7758–64
    [Google Scholar]
  111. 111.
    Jetschke S, Unger S, Schwuchow A, Leich M, Kirchhof J. 2008. Efficient Yb laser fibers with low photodarkening by optimization of the core composition. Opt. Express 16:15540–45
    [Google Scholar]
  112. 112.
    Engholm M, Jelger P, Laurell F, Norin L. 2009. Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping. Opt. Lett. 34:1285–87
    [Google Scholar]
  113. 113.
    Jetschke S, Unger S, Schwuchow A, Leich M, Jäger M. 2016. Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects. Opt. Express 24:13009–22
    [Google Scholar]
  114. 114.
    Vargin V, Osadchaya G. 1960. Cerium dioxide as a fining agent and decolorizer for glass. Glass Ceram. 17:78–82
    [Google Scholar]
  115. 115.
    Engholm M, Norin L. 2008. Reduction of photodarkening in Yb/Al-doped fiber lasers. Proc. SPIE 6873: https://doi.org/10.1117/12.763218
    [Google Scholar]
  116. 116.
    Zhao N, Li W, Li J, Zhou G, Li J. 2019. Elimination of the photodarkening effect in an Yb-doped fiber laser with deuterium. J. Lightwave Technol. 37:3021–26
    [Google Scholar]
  117. 117.
    Liu Y-Z, Xing Y-B, Lin X-F, Chen G, Shi C-J et al. 2020. Bleaching of photodarkening in Tm-doped silica fiber with deuterium loading. Opt. Lett. 45:2534–37
    [Google Scholar]
  118. 118.
    Xing Y-B, Huang H-Q, Zhao N, Liao L, Li J-Y, Dai N-L. 2015. Pump bleaching of Tm-doped fiber with 793 nm pump source. Opt. Lett. 40:681–84
    [Google Scholar]
  119. 119.
    Shubin A, Yashkov M, Melkumov M, Smirnov S, Bufetov I, Dianov E. 2007. Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers Presented at the European Conference on Lasers and Electro-Optics Munich, Ger.: June 17
  120. 120.
    Söderlund MJ, Montiel i Ponsoda JJ, Koplow JP, Honkanen S. 2009. Thermal bleaching of photodarkening-induced loss in ytterbium-doped fibers. Opt. Lett. 34:2637–39
    [Google Scholar]
  121. 121.
    Söderlund MJ, Montiel i Ponsoda JJ, Koplow JP, Honkanen S. 2009. Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling. Opt. Express 17:9940–46
    [Google Scholar]
  122. 122.
    Deschamps T, Vezin H, Gonnet C, Ollier N. 2013. Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber. Opt. Express 21:8382–92
    [Google Scholar]
  123. 123.
    Piccoli R, Robin T, Brand T, Klotzbach U, Taccheo S. 2014. Effective photodarkening suppression in Yb-doped fiber lasers by visible light injection. Opt. Express 22:7638–43
    [Google Scholar]
  124. 124.
    Waldermann F, Olivero P, Nunn J, Surmacz K, Wang Z et al. 2007. Creating diamond color centers for quantum optical applications. Diam. Relat. Mater. 16:1887–95
    [Google Scholar]
  125. 125.
    Dhomkar S, Henshaw J, Jayakumar H, Meriles CA. 2016. Long-term data storage in diamond. Sci. Adv. 2:e1600911
    [Google Scholar]
  126. 126.
    Gu M, Zhang Q, Lamon S. 2016. Nanomaterials for optical data storage. Nat. Rev. Mater. 1:16070
    [Google Scholar]
  127. 127.
    Lee C, Xu EZ, Kwock KWC, Teitelboim A, Liu Y et al. 2022. Indefinite and bidirectional near infrared control of nanocrystal photoswitching. arXiv:2209.06098 [physics.optics]
  128. 128.
    Li Y, Gecevicius M, Qiu J. 2016. Long persistent phosphors—from fundamentals to applications. Chem. Soc. Rev. 45:2090–136
    [Google Scholar]
  129. 129.
    Rodrigues LC, Brito HF, Hölsä J, Lastusaari M. 2012. Persistent luminescence behavior of materials doped with Eu2+ and Tb3+. Opt. Mater. Express 2:382–90
    [Google Scholar]
  130. 130.
    Rodrigues LC, Brito HF, Hölsä J, Stefani R, Felinto MC et al. 2012. Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+. J. Phys. Chem. C 116:11232–40
    [Google Scholar]
  131. 131.
    Walsh BM 2006. Judd-Ofelt theory: principles and practices. Advances in Spectroscopy for Lasers and Sensing B Bartolo, O Forte 403–33. New York: Springer
    [Google Scholar]
  132. 132.
    Yamamoto H, Matsuzawa T. 1997. Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+. J. Lumin. 72:287–89
    [Google Scholar]
  133. 133.
    Dorenbos P. 2005. The Eu3+ charge transfer energy and the relation with the band gap of compounds. J. Lumin. 111:89–104
    [Google Scholar]
  134. 134.
    Maldiney T, Lecointre A, Viana B, Bessière A, Bessodes M et al. 2011. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J. Am. Chem. Soc. 133:11810–15
    [Google Scholar]
  135. 135.
    Li Z, Yu N, Zhou J, Li Y, Zhang Y et al. 2020. Coloring afterglow nanoparticles for high-contrast time-gating-free multiplex luminescence imaging. Adv. Mater. 32:2003881
    [Google Scholar]
  136. 136.
    Xu J, Tanabe S. 2019. Persistent luminescence instead of phosphorescence: history, mechanism, and perspective. J. Lumin. 205:581–620
    [Google Scholar]
  137. 137.
    Li J-L, Shi J-P, Wang C-C, Li P-H, Yu Z-F, Zhang H-W 2017. Five-nanometer ZnSn2O4:Cr,Eu ultra-small nanoparticles as new near infrared-emitting persistent luminescent nanoprobes for cellular and deep tissue imaging at 800 nm. Nanoscale 9:8631–38
    [Google Scholar]
  138. 138.
    Castano AP, Mroz P, Hamblin MR. 2006. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6:535–45
    [Google Scholar]
  139. 139.
    Weber M. 2004. Scintillation: mechanisms and new crystals. Nucl. Instrum. Methods Phys. Res. A 527:9–14
    [Google Scholar]
  140. 140.
    Belev G, Okada G, Tonchev D, Koughia C, Varoy C et al. 2011. Valency conversion of samarium ions under high dose synchrotron generated X-ray radiation. Physica Status Solidi (c) 8:2822–25
    [Google Scholar]
  141. 141.
    Poyntz-Wright L, Fermann ME, Russell PSJ. 1988. Nonlinear transmission and color-center dynamics in germanosilicate fibers at 420–540 nm. Opt. Lett. 13:1023–25
    [Google Scholar]
  142. 142.
    Ren Y, Yang Z, Li M, Ruan J, Zhao J et al. 2019. Reversible upconversion luminescence modification based on photochromism in BaMgSiO4:Yb3+,Tb3+ ceramics for anti-counterfeiting applications. Adv. Opt. Mater. 7:1900213
    [Google Scholar]
  143. 143.
    Royon A, Bourhis K, Bellec M, Papon G, Bousquet B et al. 2010. Silver clusters embedded in glass as a perennial high capacity optical recording medium. Adv. Mater. 22:5282–86
    [Google Scholar]
  144. 144.
    Zhang J, Gecevičius M, Beresna M, Kazansky PG. 2014. Seemingly unlimited lifetime data storage in nanostructured glass. Phys. Rev. Lett. 112:033901
    [Google Scholar]
  145. 145.
    Tan D, Sharafudeen KN, Yue Y, Qiu J. 2016. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog. Mater. Sci. 76:154–228
    [Google Scholar]
  146. 146.
    Wu S, Nazin G, Ho W. 2008. Intramolecular photon emission from a single molecule in a scanning tunneling microscope. Phys. Rev. B 77:205430
    [Google Scholar]
  147. 147.
    Berweger S, Atkin JM, Olmon RL, Raschke MB. 2012. Light on the tip of a needle: plasmonic nanofocusing for spectroscopy on the nanoscale. J. Phys. Chem. Lett. 3:945–52
    [Google Scholar]
  148. 148.
    Rosławska A, Leon CC, Grewal A, Merino P, Kuhnke K, Kern K. 2020. Atomic-scale dynamics probed by photon correlations. ACS Nano 14:6366–75
    [Google Scholar]
  149. 149.
    Schuler B, Cochrane KA, Kastl C, Barnard ES, Wong E et al. 2020. Electrically driven photon emission from individual atomic defects in monolayer WS2. Sci. Adv. 6:eabb5988
    [Google Scholar]
  150. 150.
    Rizzo DJ, Shabani S, Jessen BS, Zhang J, McLeod AS et al. 2022. Nanometer-scale lateral p–n junctions in graphene/α-RuCl3 heterostructures. Nano Lett. 22:1946–53
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-082720-032137
Loading
/content/journals/10.1146/annurev-physchem-082720-032137
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error