1932

Abstract

We review our recent quantum stochastic model for spectroscopic lineshapes in the presence of a coevolving and nonstationary background population of excitations. Starting from a field theory description for interacting bosonic excitons, we derive a reduced model whereby optical excitons are coupled to an incoherent background via scattering as mediated by their screened Coulomb coupling. The Heisenberg equations of motion for the optical excitons are then driven by an auxiliary stochastic population variable, which we take to be the solution of an Ornstein–Uhlenbeck process. Here, we present an overview of the theoretical techniques we have developed as applied to predicting coherent nonlinear spectroscopic signals. We show how direct (Coulomb) and exchange coupling to the bath give rise to distinct spectral signatures and discuss mathematical limits on inverting spectral signatures to extract the background density of states.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-102822-100922
2023-04-24
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/physchem/74/1/annurev-physchem-102822-100922.html?itemId=/content/journals/10.1146/annurev-physchem-102822-100922&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Mysyrowicz A, Grun J, Levy R, Bivas A, Nikitine S. 1968. Excitonic molecule in CuC1. Phys. Lett. A 26:12615–16
    [Google Scholar]
  2. 2.
    Magde D, Mahr H. 1970. Exciton-exciton interaction in CdS, CdSe, and ZnO. Phys. Rev. Lett. 24:16890–93
    [Google Scholar]
  3. 3.
    Grun J, Nikitine S, Bivas A, Levy R. 1970. Luminescence of copper halides excited by a high power laser. J. Lumin. 1:241–53
    [Google Scholar]
  4. 4.
    Miller R, Kleinman D, Gossard A, Munteanu O. 1982. Biexcitons in GaAs quantum wells. Phys. Rev. B 25:106545–47
    [Google Scholar]
  5. 5.
    Kleinman D. 1983. Binding energy of biexcitons and bound excitons in quantum wells. Phys. Rev. B 28:2871–79
    [Google Scholar]
  6. 6.
    Hu Y, Koch SW, Lindberg M, Peyghambarian N, Pollock E, Abraham FF. 1990. Biexcitons in semiconductor quantum dots. Phys. Rev. Lett. 64:151805–7
    [Google Scholar]
  7. 7.
    Brunner K, Abstreiter G, Böhm G, Tränkle G, Weimann G. 1994. Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. Phys. Rev. Lett. 73:81138–41
    [Google Scholar]
  8. 8.
    Albrecht T, Bott K, Meier T, Schulze A, Koch M et al. 1996. Disorder mediated biexcitonic beats in semiconductor quantum wells. Phys. Rev. B 54:74436–39
    [Google Scholar]
  9. 9.
    Stone KW, Gundogdu K, Turner DB, Li X, Cundiff ST, Nelson KA. 2009. Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells. Science 324:59311169–73
    [Google Scholar]
  10. 10.
    Karaiskaj D, Bristow AD, Yang L, Dai X, Mirin RP et al. 2010. Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells. Phys. Rev. Lett. 104:11117401
    [Google Scholar]
  11. 11.
    Turner DB, Nelson KA. 2010. Coherent measurements of high-order electronic correlations in quantum wells. Nature 466:73101089–92
    [Google Scholar]
  12. 12.
    Schultheis L, Kuhl J, Honold A, Tu CW. 1986. Ultrafast phase relaxation of excitons via exciton-exciton and exciton-electron collisions. Phys. Rev. Lett. 57:131635–38
    [Google Scholar]
  13. 13.
    Honold A, Schultheis L, Kuhl J, Tu CW. 1989. Collision broadening of two-dimensional excitons in a GaAs single quantum well. Phys. Rev. B 40:96442–45
    [Google Scholar]
  14. 14.
    Wang H, Ferrio K, Steel DG, Hu YZ, Binder R, Koch SW. 1993. Transient nonlinear optical response from excitation induced dephasing in GaAs. Phys. Rev. Lett. 71:81261–64
    [Google Scholar]
  15. 15.
    Wang H, Ferrio KB, Steel DG, Berman PR, Hu YZ et al. 1994. Transient four-wave-mixing line shapes: effects of excitation-induced dephasing. Phys. Rev. A 49:3R1551–54
    [Google Scholar]
  16. 16.
    Hu YZ, Binder R, Koch SW, Cundiff ST, Wang H, Steel DG. 1994. Excitation and polarization effects in semiconductor four-wave-mixing spectroscopy. Phys. Rev. B 49:2014382–86
    [Google Scholar]
  17. 17.
    Rappen T, Peter UG, Wegener M, Schäfer W. 1994. Polarization dependence of dephasing processes: a probe for many-body effects. Phys. Rev. B 49:1510774–77
    [Google Scholar]
  18. 18.
    Wagner HP, Schätz A, Maier R, Langbein W, Hvam JM. 1997. Coherent optical nonlinearities and phase relaxation of quasi-three-dimensional and quasi-two-dimensional excitons in ZnSxSe1−x/ZnSe structures. Phys. Rev. B 56:1912581–88
    [Google Scholar]
  19. 19.
    Wagner HP, Schätz A, Langbein W, Hvam JM, Smirl AL. 1999. Interaction-induced effects in the nonlinear coherent response of quantum-well excitons. Phys. Rev. B 60:74454–57
    [Google Scholar]
  20. 20.
    Shacklette JM, Cundiff ST. 2002. Role of excitation-induced shift in the coherent optical response of semiconductors. Phys. Rev. B 66:4045309
    [Google Scholar]
  21. 21.
    Shacklette JM, Cundiff ST. 2003. Nonperturbative transient four-wave-mixing line shapes due to excitation-induced shift and excitation-induced dephasing. J. Opt. Soc. Am. B 20:4764–69
    [Google Scholar]
  22. 22.
    Li X, Zhang T, Borca CN, Cundiff ST. 2006. Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy. Phys. Rev. Lett. 96:5057406
    [Google Scholar]
  23. 23.
    Moody G, Siemens ME, Bristow AD, Dai X, Karaiskaj D et al. 2011. Exciton-exciton and exciton-phonon interactions in an interfacial GaAs quantum dot ensemble. Phys. Rev. B 83:11115324
    [Google Scholar]
  24. 24.
    Nardin G, Moody G, Singh R, Autry TM, Li H et al. 2014. Coherent excitonic coupling in an asymmetric double InGaAs quantum well arises from many-body effects. Phys. Rev. Lett. 112:4046402
    [Google Scholar]
  25. 25.
    Moody G, Dass CK, Hao K, Chen CH, Li LJ et al. 2015. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 6:8315
    [Google Scholar]
  26. 26.
    Martin EW, Horng J, Ruth HG, Paik E, Wentzel MH et al. 2018. Encapsulation narrows excitonic homogeneous linewidth of exfoliated MoSe2 monolayer. arXiv:1810.09834 [cond-mat.mtrl-sci]
  27. 27.
    Thouin F, Cortecchia D, Petrozza A, Srimath Kandada AR, Silva C 2019. Enhanced screening and spectral diversity in many-body elastic scattering of excitons in two-dimensional hybrid metal-halide perovskites. Phys. Rev. Res. 1:032032
    [Google Scholar]
  28. 28.
    Karki KJ, Widom JR, Seibt J, Moody I, Lonergan MC et al. 2014. Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell. Nat. Commun. 5:15869
    [Google Scholar]
  29. 29.
    Katsch F, Selig M, Knorr A 2020. Exciton-scattering-induced dephasing in two-dimensional semiconductors. Phys. Rev. Lett. 124:25257402
    [Google Scholar]
  30. 30.
    Erkensten D, Brem S, Malic E. 2020. Excitation-induced dephasing in 2D materials and van der Waals heterostructures. arXiv:2006.08392 [cond-mat.mtrl-sci]
  31. 31.
    Srimath Kandada AR, Silva C. 2020. Exciton polarons in two-dimensional hybrid metal-halide perovskites. J. Phys. Chem. Lett. 11:93173–84
    [Google Scholar]
  32. 32.
    Anderson PW. 1954. A mathematical model for the narrowing of spectral lines by exchange or motion. J. Phys. Soc. Jpn. 9:3316–39
    [Google Scholar]
  33. 33.
    Kubo R. 1954. Note on the stochastic theory of resonance absorption. J. Phys. Soc. Jpn. 9:6935–44
    [Google Scholar]
  34. 34.
    Siemens ME, Moody G, Li H, Bristow AD, Cundiff ST. 2010. Resonance lineshapes in two-dimensional Fourier transform spectroscopy. Opt. Express 18:1717699–708
    [Google Scholar]
  35. 35.
    Bristow AD, Zhang T, Siemens ME, Cundiff ST, Mirin R. 2011. Separating homogeneous and inhomogeneous line widths of heavy- and light-hole excitons in weakly disordered semiconductor quantum wells. J. Phys. Chem. B 115:185365–71
    [Google Scholar]
  36. 36.
    Li H, Piryatinski A, Srimath Kandada AR, Silva C, Bittner ER 2019. Photon entanglement entropy as a probe of many-body correlations and fluctuations. J. Chem. Phys. 150:18184106
    [Google Scholar]
  37. 37.
    Srimath Kandada AR, Li H, Thouin F, Bittner ER, Silva C. 2020. Stochastic scattering theory for excitation-induced dephasing: time-dependent nonlinear coherent exciton lineshapes. J. Chem. Phys. 153:16164706
    [Google Scholar]
  38. 38.
    Neutzner S, Thouin F, Cortecchia D, Petrozza A, Silva C, Srimath Kandada AR 2018. Exciton-polaron spectral structures in two dimensional hybrid lead-halide perovskites. Phys. Rev. Mater. 2:6064605
    [Google Scholar]
  39. 39.
    Thouin F, Neutzner S, Cortecchia D, Dragomir VA, Soci C et al. 2018. Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder. Phys. Rev. Mater. 2:3034001
    [Google Scholar]
  40. 40.
    Thouin F, Valverde-Chávez DA, Quarti C, Cortecchia D, Bargigia I et al. 2019. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 18:349–56
    [Google Scholar]
  41. 41.
    Thouin F, Srimath Kandada AR, Valverde-Chávez DA, Cortecchia D, Bargigia I et al. 2019. Electron-phonon couplings inherent in polarons drive exciton dynamics in two-dimensional metal-halide perovskites. Chem. Mater. 31:7085–91
    [Google Scholar]
  42. 42.
    Srimath Kandada AR, Li H, Bittner ER, Silva-Acuña C. 2022. Homogeneous optical line widths in hybrid Ruddlesden–Popper metal halides can only be measured using nonlinear spectroscopy. J. Phys. Chem. C 126:125378–87
    [Google Scholar]
  43. 43.
    Cho M. 2008. Coherent two-dimensional optical spectroscopy. Chem. Rev. 108:41331–418
    [Google Scholar]
  44. 44.
    Mukamel S. 1995. Principles of Nonlinear Optics and Spectroscopy Oxford, UK: Oxford Univ. Press
  45. 45.
    Hamm P, Zanni M. 2011. Concepts and Methods of 2D Infrared Spectroscopy Cambridge, UK: Cambridge Univ. Press
  46. 46.
    Born M. 1926. Quantenmechanik der stoßvorgänge. Z. Phys. 38:11–12803–27
    [Google Scholar]
  47. 47.
    Li H, Srimath Kandada AR, Silva C, Bittner ER 2020. Stochastic scattering theory for excitation-induced dephasing: comparison to the Anderson–Kubo lineshape. J. Chem. Phys. 153:15154115
    [Google Scholar]
  48. 48.
    de Gennes PG. 1999. Superconductivity of Metals and Alloys Boca Raton, FL: CRC Press
  49. 49.
    Marcinkiewicz J. 1939. Sur une propriété de la loi de Gauß. Math. Z. 44:1612–18
    [Google Scholar]
  50. 50.
    Rajagopal AK, Sudarshan ECG. 1974. Some generalizations of the Marcinkiewicz theorem and its implications to certain approximation schemes in many-particle physics. Phys. Rev. A 10:51852–57
    [Google Scholar]
  51. 51.
    Fuller FD, Ogilvie JP. 2015. Experimental implementations of two-dimensional Fourier transform electronic spectroscopy. Annu. Rev. Phys. Chem. 66:667–90
    [Google Scholar]
  52. 52.
    Tokmakoff A. 2000. Two-dimensional line shapes derived from coherent third-order nonlinear spectroscopy. J. Phys. Chem. A 104:184247–55
    [Google Scholar]
  53. 53.
    Jensen JLWV. 1906. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30:175–93
    [Google Scholar]
  54. 54.
    Kubo R. 1969. A stochastic theory of line shape. Advances in Chemical Physics KE Shuler 101–27. New York: John Wiley & Sons
    [Google Scholar]
  55. 55.
    Reichman D, Silbey RJ, Suárez A. 1996. On the nonperturbative theory of pure dephasing in condensed phases at low temperatures. J. Chem. Phys. 105:2310500–6
    [Google Scholar]
  56. 56.
    Hsu D, Skinner JL. 1984. On the thermal broadening of zero–phonon impurity lines in absorption and fluorescence spectra. J. Chem. Phys. 81:41604–13
    [Google Scholar]
  57. 57.
    Skinner JL, Hsu D. 1986. Pure dephasing of a two-level system. J. Phys. Chem. 90:214931–38
    [Google Scholar]
  58. 58.
    Mukamel S. 1985. Stochastic theory of resonance Raman line shapes of polyatomic molecules in condensed phases. J. Chem. Phys. 82:5398–408
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-102822-100922
Loading
/content/journals/10.1146/annurev-physchem-102822-100922
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error