1932

Abstract

The intestine is supported by a complex vascular system that undergoes dynamic and transient daily shifts in blood perfusion, depending on the metabolic state. Moreover, the intestinal villi have a steep oxygen gradient from the hypoxic epithelium adjacent to the anoxic lumen to the relative higher tissue oxygenation at the base of villi. Due to the daily changes in tissue oxygen levels in the intestine, the hypoxic transcription factors hypoxia-inducible factor (HIF)-1α and HIF-2α are essential in maintaining intestinal homeostasis. HIF-2α is essential in maintaining proper micronutrient balance, the inflammatory response, and the regenerative and proliferative capacity of the intestine following an acute injury. However, chronic activation of HIF-2α leads to enhanced proinflammatory response, intestinal injury, and colorectal cancer. In this review, we detail the major mechanisms by which HIF-2α contributes to health and disease of the intestine and the therapeutic implications of targeting HIF-2α in intestinal diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021115-105202
2016-02-10
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/physiol/78/1/annurev-physiol-021115-105202.html?itemId=/content/journals/10.1146/annurev-physiol-021115-105202&mimeType=html&fmt=ahah

Literature Cited

  1. Helander HF, Fandriks L. 1.  2014. Surface area of the digestive tract—revisited. Scand. J. Gastroenterol. 49:681–89 [Google Scholar]
  2. Colgan SP, Eltzschig HK. 2.  2012. Adenosine and hypoxia-inducible factor signaling in intestinal injury and recovery. Annu. Rev. Physiol. 74:153–75 [Google Scholar]
  3. Colgan SP, Taylor CT. 3.  2010. Hypoxia: an alarm signal during intestinal inflammation. Nat. Rev. Gastroenterol. Hepatol. 7:281–87 [Google Scholar]
  4. Glover LE, Colgan SP. 4.  2011. Hypoxia and metabolic factors that influence inflammatory bowel disease pathogenesis. Gastroenterology 140:1748–55 [Google Scholar]
  5. Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. 5.  2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. PNAS 104:13780–85 [Google Scholar]
  6. Sekirov I, Russell SL, Antunes LC, Finlay BB. 6.  2010. Gut microbiota in health and disease. Physiol. Rev. 90:859–904 [Google Scholar]
  7. Fanaro S, Chierici R, Guerrini P, Vigi V. 7.  2003. Intestinal microflora in early infancy: composition and development. Acta Paediatr. 91:48–55 [Google Scholar]
  8. Albenberg L, Esipova TV, Judge CP, Bittinger K, Chen J. 8.  et al. 2014. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 147:1055–63.e8 [Google Scholar]
  9. He G, Shankar RA, Chzhan M, Samouilov A, Kuppusamy P, Zweier JL. 9.  1999. Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. PNAS 96:4586–91 [Google Scholar]
  10. Matheson PJ, Wilson MA, Garrison RN. 10.  2000. Regulation of intestinal blood flow. J. Surg. Res. 93:182–96 [Google Scholar]
  11. Shepherd AP, Riedel GL. 11.  1988. Intramural distribution of intestinal blood flow during sympathetic stimulation. Am. J. Physiol. Heart Circ. Physiol. 255:H1091–95 [Google Scholar]
  12. Crissinger KD, Burney DL. 12.  1992. Influence of luminal nutrient composition on hemodynamics and oxygenation in developing intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 263:G254–60 [Google Scholar]
  13. Shepherd AP, Kiel JW. 13.  1992. A model of countercurrent shunting of oxygen in the intestinal villus. Am. J. Physiol. Heart Cir. Physiol. 262:H1136–42 [Google Scholar]
  14. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC. 14.  et al. 2015. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17:662–71 [Google Scholar]
  15. Kaelin WG Jr, Ratcliffe PJ. 15.  2008. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30:393–402 [Google Scholar]
  16. Semenza GL, Wang GL. 16.  1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12:5447–54 [Google Scholar]
  17. Wang GL, Semenza GL. 17.  1993. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 268:21513–18 [Google Scholar]
  18. Erbel PJ, Card PB, Karakuzu O, Bruick RK, Gardner KH. 18.  2003. Structural basis for PAS domain heterodimerization in the basic helix–loop–helix-PAS transcription factor hypoxia-inducible factor. PNAS 100:15504–9 [Google Scholar]
  19. Kinoshita K, Kikuchi Y, Sasakura Y, Suzuki M, Fujii-Kuriyama Y, Sogawa K. 19.  2004. Altered DNA binding specificity of Arnt by selection of partner bHLH-PAS proteins. Nucleic Acids Res. 32:3169–79 [Google Scholar]
  20. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J. 20.  et al. 2001. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54 [Google Scholar]
  21. Bruick RK, McKnight SL. 21.  2001. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–40 [Google Scholar]
  22. Ivan M, Kondo K, Yang H, Kim W, Valiando J. 22.  et al. 2001. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–68 [Google Scholar]
  23. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J. 23.  et al. 2001. Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–72 [Google Scholar]
  24. Tian H, McKnight SL, Russell DW. 24.  1997. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11:72–82 [Google Scholar]
  25. Karhausen J, Furuta GT, Tomaszewski JE, Johnson RS, Colgan SP, Haase VH. 25.  2004. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Investig. 114:1098–106 [Google Scholar]
  26. Xue X, Ramakrishnan S, Anderson E, Taylor M, Zimmermann EM. 26.  et al. 2013. Endothelial PAS domain protein 1 activates the inflammatory response in the intestinal epithelium to promote colitis in mice. Gastroenterology 145:831–41 [Google Scholar]
  27. Kikuchi H, Pino MS, Zeng M, Shirasawa S, Chung DC. 27.  2009. Oncogenic KRAS and BRAF differentially regulate hypoxia-inducible factor-1α and -2α in colon cancer. Cancer Res. 69:8499–506 [Google Scholar]
  28. Taniguchi CM, Finger EC, Krieg AJ, Wu C, Diep AN. 28.  et al. 2013. Cross-talk between hypoxia and insulin signaling through Phd3 regulates hepatic glucose and lipid metabolism and ameliorates diabetes. Nat. Med. 19:1325–30 [Google Scholar]
  29. Taniguchi CM, Miao YR, Diep AN, Wu C, Rankin EB. 29.  et al. 2014. PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via HIF2. Sci. Transl. Med. 6:236ra64 [Google Scholar]
  30. Knowles HJ, Raval RR, Harris AL, Ratcliffe PJ. 30.  2003. Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res. 63:1764–68 [Google Scholar]
  31. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG. 31.  et al. 2005. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7:77–85 [Google Scholar]
  32. Raimundo N, Baysal BE, Shadel GS. 32.  2011. Revisiting the TCA cycle: signaling to tumor formation. Trends Mol. Med. 17:641–49 [Google Scholar]
  33. Takeda N, O'Dea EL, Doedens A, Kim JW, Weidemann A. 33.  et al. 2010. Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis. Genes Dev. 24:491–501 [Google Scholar]
  34. Gonzalez-Flores A, Aguilar-Quesada R, Siles E, Pozo S, Rodriguez-Lara MI. 34.  et al. 2014. Interaction between PARP-1 and HIF-2α in the hypoxic response. Oncogene 33:891–98 [Google Scholar]
  35. Qi Y, Liu J, Saadat S, Tian X, Han Y. 35.  et al. 2015. PTEN induces apoptosis and cavitation via HIF-2-dependent Bnip3 upregulation during epithelial lumen formation. Cell Death Differ. 22:875–84 [Google Scholar]
  36. Toschi A, Lee E, Gadir N, Ohh M, Foster DA. 36.  2008. Differential dependence of hypoxia-inducible factors 1α and 2α on mTORC1 and mTORC2. J. Biol. Chem. 283:34495–99 [Google Scholar]
  37. Bruning U, Cerone L, Neufeld Z, Fitzpatrick SF, Cheong A. 37.  et al. 2011. MicroRNA-155 promotes resolution of hypoxia-inducible factor 1α activity during prolonged hypoxia. Mol. Cell. Biol. 31:4087–96 [Google Scholar]
  38. Higashimura Y, Terai T, Yamaji R, Mitani T, Ogawa M. 38.  et al. 2011. Kelch-like 20 up-regulates the expression of hypoxia-inducible factor-2α through hypoxia- and von Hippel–Lindau tumor suppressor protein–independent regulatory mechanisms. Biochem. Biophys. Res. Commun. 413:201–5 [Google Scholar]
  39. Koh MY, Darnay BG, Powis G. 39.  2008. Hypoxia-associated factor, a novel E3-ubiquitin ligase, binds and ubiquitinates hypoxia-inducible factor 1α, leading to its oxygen-independent degradation. Mol. Cell. Biol. 28:7081–95 [Google Scholar]
  40. Shah YM, Matsubara T, Ito S, Yim SH, Gonzalez FJ. 40.  2009. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab. 9:152–64 [Google Scholar]
  41. Sanchez M, Galy B, Muckenthaler MU, Hentze MW. 41.  2007. Iron-regulatory proteins limit hypoxia-inducible factor-2α expression in iron deficiency. Nat. Struct. Mol. Biol. 14:420–26 [Google Scholar]
  42. Zimmer M, Ebert BL, Neil C, Brenner K, Papaioannou I. 42.  et al. 2008. Small-molecule inhibitors of HIF-2α translation link its 5′UTR iron-responsive element to oxygen sensing. Mol. Cell 32:838–48 [Google Scholar]
  43. Anderson SA, Nizzi CP, Chang YI, Deck KM, Schmidt PJ. 43.  et al. 2013. The IRP1-HIF-2α axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab. 17:282–90 [Google Scholar]
  44. Ghosh MC, Zhang DL, Jeong SY, Kovtunovych G, Ollivierre-Wilson H. 44.  et al. 2013. Deletion of iron regulatory protein 1 causes polycythemia and pulmonary hypertension in mice through translational derepression of HIF2α. Cell Metab. 17:271–81 [Google Scholar]
  45. Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC. 45.  2007. HIF-2α promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity. Cancer Cell 11:335–47 [Google Scholar]
  46. Chen R, Xu M, Hogg RT, Li J, Little B. 46.  et al. 2012. The acetylase/deacetylase couple CREB-binding protein/Sirtuin 1 controls hypoxia-inducible factor 2 signaling. J. Biol. Chem. 287:30800–11 [Google Scholar]
  47. Xie L, Xue X, Taylor M, Ramakrishnan SK, Nagaoka K. 47.  et al. 2014. Hypoxia-inducible factor/MAZ-dependent induction of caveolin-1 regulates colon permeability through suppression of occludin, leading to hypoxia-induced inflammation. Mol. Cell. Biol. 34:3013–23 [Google Scholar]
  48. Pawlus MR, Wang L, Ware K, Hu CJ. 48.  2012. Upstream stimulatory factor 2 and hypoxia-inducible factor 2α (HIF2α) cooperatively activate HIF2 target genes during hypoxia. Mol. Cell. Biol. 32:4595–610 [Google Scholar]
  49. Koh MY, Nguyen V, Lemos R Jr, Darnay BG, Kiriakova G. 49.  et al. 2015. Hypoxia-induced SUMOylation of E3 ligase HAF determines specific activation of HIF2 in clear-cell renal cell carcinoma. Cancer Res. 75:316–29 [Google Scholar]
  50. Petrella BL, Brinckerhoff CE. 50.  2009. PTEN suppression of YY1 induces HIF-2 activity in von-Hippel-Lindau-null renal-cell carcinoma. Cancer Biol. Ther. 8:1389–401 [Google Scholar]
  51. Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S, Peyssonnaux C. 51.  2009. HIF-2α, but not HIF-1α, promotes iron absorption in mice. J. Clin. Investig. 119:1159–66 [Google Scholar]
  52. Aprelikova O, Wood M, Tackett S, Chandramouli GV, Barrett JC. 52.  2006. Role of ETS transcription factors in the hypoxia-inducible factor-2 target gene selection. Cancer Res. 66:5641–47 [Google Scholar]
  53. Schodel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR. 53.  2011. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117:e207–17 [Google Scholar]
  54. Morriss GM, New DA. 54.  1979. Effect of oxygen concentration on morphogenesis of cranial neural folds and neural crest in cultured rat embryos. J. Embryol. Exp. Morphol. 54:17–35 [Google Scholar]
  55. Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL. 55.  1998. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 12:3320–24 [Google Scholar]
  56. Peng J, Zhang L, Drysdale L, Fong GH. 56.  2000. The transcription factor EPAS-1/hypoxia-inducible factor 2α plays an important role in vascular remodeling. PNAS 97:8386–91 [Google Scholar]
  57. Scortegagna M, Ding K, Oktay Y, Gaur A, Thurmond F. 57.  et al. 2003. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1−/− mice. Nat. Genet. 35:331–40 [Google Scholar]
  58. Zorn AM, Wells JM. 58.  2009. Vertebrate endoderm development and organ formation. Annu. Rev. Cell Dev. Biol. 25:221–51 [Google Scholar]
  59. Grosse AS, Pressprich MF, Curley LB, Hamilton KL, Margolis B. 59.  et al. 2011. Cell dynamics in fetal intestinal epithelium: implications for intestinal growth and morphogenesis. Development 138:4423–32 [Google Scholar]
  60. Grosse AS, Pressprich MF, Curley LB, Hamilton KL, Margolis B. 60.  et al. 2011. Cell dynamics in fetal intestinal epithelium: implications for intestinal growth and morphogenesis. Development 138:4423–32 [Google Scholar]
  61. Barker N. 61.  2014. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol. 15:19–33 [Google Scholar]
  62. Carulli AJ, Samuelson LC, Schnell S. 62.  2014. Unraveling intestinal stem cell behavior with models of crypt dynamics. Integr. Biol. 6:243–57 [Google Scholar]
  63. Ito S, Chen C, Satoh J, Yim S, Gonzalez FJ. 63.  2007. Dietary phytochemicals regulate whole-body CYP1A1 expression through an arylhydrocarbon receptor nuclear translocator–dependent system in gut. J. Clin. Investig. 117:1940–50 [Google Scholar]
  64. Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM. 64.  et al. 2006. HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 20:557–70 [Google Scholar]
  65. Wicklow E, Blij S, Frum T, Hirate Y, Lang RA. 65.  et al. 2014. HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst. PLOS Genet. 10:e1004618 [Google Scholar]
  66. Choi H, Chun YS, Kim TY, Park JW. 66.  2010. HIF-2α enhances β-catenin/TCF-driven transcription by interacting with β-catenin. Cancer Res. 70:10101–11 [Google Scholar]
  67. Hu YY, Fu LA, Li SZ, Chen Y, Li JC. 67.  et al. 2014. Hif-1α and Hif-2α differentially regulate Notch signaling through competitive interaction with the intracellular domain of Notch receptors in glioma stem cells. Cancer Lett. 349:67–76 [Google Scholar]
  68. Chen H, Houshmand G, Mishra S, Fong GH, Gittes GK, Esni F. 68.  2010. Impaired pancreatic development in Hif2-α deficient mice. Biochem. Biophys. Res. Commun. 399:440–45 [Google Scholar]
  69. Scortegagna M, Morris MA, Oktay Y, Bennett M, Garcia JA. 69.  2003. The HIF family member EPAS1/HIF-2α is required for normal hematopoiesis in mice. Blood 102:1634–40 [Google Scholar]
  70. Guitart AV, Subramani C, Armesilla-Diaz A, Smith G, Sepulveda C. 70.  et al. 2013. Hif-2α is not essential for cell-autonomous hematopoietic stem cell maintenance. Blood 122:1741–45 [Google Scholar]
  71. Mastrogiannaki M, Matak P, Peyssonnaux C. 71.  2013. The gut in iron homeostasis: role of HIF-2 under normal and pathological conditions. Blood 122:885–92 [Google Scholar]
  72. Shah YM, Xie L. 72.  2014. Hypoxia-inducible factors link iron homeostasis and erythropoiesis. Gastroenterology 146:630–42 [Google Scholar]
  73. Fleming MD, Trenor CC 3rd, Su MA, Foernzler D, Beier DR. 73.  et al. 1997. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat. Genet. 16:383–86 [Google Scholar]
  74. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF. 74.  et al. 1997. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–88 [Google Scholar]
  75. McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G. 75.  et al. 2001. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291:1755–59 [Google Scholar]
  76. Abboud S, Haile DJ. 76.  2000. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 275:19906–12 [Google Scholar]
  77. Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI. 77.  et al. 2005. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 1:191–200 [Google Scholar]
  78. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K. 78.  et al. 2000. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell 5:299–309 [Google Scholar]
  79. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A. 79.  et al. 2004. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–93 [Google Scholar]
  80. Anderson ER, Xue X, Shah YM. 80.  2011. Intestinal hypoxia-inducible factor-2α (HIF-2α) is critical for efficient erythropoiesis. J. Biol. Chem. 286:19533–40 [Google Scholar]
  81. Taylor M, Qu A, Anderson ER, Matsubara T, Martin A. 81.  et al. 2011. Hypoxia-inducible factor-2α mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology 140:2044–55 [Google Scholar]
  82. Anderson ER, Taylor M, Xue X, Ramakrishnan SK, Martin A. 82.  et al. 2013. Intestinal HIF2α promotes tissue-iron accumulation in disorders of iron overload with anemia. PNAS 110:E4922–30 [Google Scholar]
  83. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M. 83.  et al. 2012. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142:46–54.e42 [Google Scholar]
  84. Khor B, Gardet A, Xavier RJ. 84.  2011. Genetics and pathogenesis of inflammatory bowel disease. Nature 474:307–17 [Google Scholar]
  85. Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y. 85.  et al. 2011. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat. Genet. 43:1066–73 [Google Scholar]
  86. Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V. 86.  et al. 2002. Mucosal flora in inflammatory bowel disease. Gastroenterology 122:44–54 [Google Scholar]
  87. Karhausen J, Furuta GT, Tomaszewski JE, Johnson RS, Colgan SP, Haase VH. 87.  2004. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Investig. 114:1098–106 [Google Scholar]
  88. Bacaner MB. 88.  1966. Quantitative measurement of regional colon blood flow in the normal and pathological human bowel. Gastroenterology 51:764–77 [Google Scholar]
  89. Cerecer-Gil NY, Figuera LE, Llamas FJ, Lara M, Escamilla JG. 89.  et al. 2010. Mutation of SDHB is a cause of hypoxia-related high-altitude paraganglioma. Clin. Cancer Res. 16:4148–54 [Google Scholar]
  90. Hewitson KS, Lienard BM, McDonough MA, Clifton IJ, Butler D. 90.  et al. 2007. Structural and mechanistic studies on the inhibition of the hypoxia-inducible transcription factor hydroxylases by tricarboxylic acid cycle intermediates. J. Biol. Chem. 282:3293–301 [Google Scholar]
  91. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF. 91.  et al. 2013. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496:238–42 [Google Scholar]
  92. Campbell EL, Bruyninckx WJ, Kelly CJ, Glover LE, McNamee EN. 92.  et al. 2014. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40:66–77 [Google Scholar]
  93. Block K, Gorin Y, Hoover P, Williams P, Chelmicki T. 93.  et al. 2007. NAD(P)H oxidases regulate HIF-2α protein expression. J. Biol. Chem. 282:8019–26 [Google Scholar]
  94. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW. 94.  et al. 2004. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–96 [Google Scholar]
  95. Nenci A, Becker C, Wullaert A, Gareus R, van Loo G. 95.  et al. 2007. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446:557–61 [Google Scholar]
  96. Shaked H, Hofseth LJ, Chumanevich A, Chumanevich AA, Wang J. 96.  et al. 2012. Chronic epithelial NF-κB activation accelerates APC loss and intestinal tumor initiation through iNOS up-regulation. PNAS 109:14007–12 [Google Scholar]
  97. Zaph C, Troy AE, Taylor BC, Berman-Booty LD, Guild KJ. 97.  et al. 2007. Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis. Nature 446:552–56 [Google Scholar]
  98. Palazon A, Goldrath AW, Nizet V, Johnson RS. 98.  2014. HIF transcription factors, inflammation, and immunity. Immunity 41:518–28 [Google Scholar]
  99. Xavier RJ, Podolsky DK. 99.  2007. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427–34 [Google Scholar]
  100. Murray PJ, Wynn TA. 100.  2011. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11:723–37 [Google Scholar]
  101. Imtiyaz HZ, Williams EP, Hickey MM, Patel SA, Durham AC. 101.  et al. 2010. Hypoxia-inducible factor 2α regulates macrophage function in mouse models of acute and tumor inflammation. J. Clin. Investig. 120:2699–714 [Google Scholar]
  102. Fang HY, Hughes R, Murdoch C, Coffelt SB, Biswas SK. 102.  et al. 2009. Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 114:844–59 [Google Scholar]
  103. Thompson AA, Elks PM, Marriott HM, Eamsamarng S, Higgins KR. 103.  et al. 2014. Hypoxia-inducible factor 2α regulates key neutrophil functions in humans, mice, and zebrafish. Blood 123:366–76 [Google Scholar]
  104. Camilleri M, Madsen K, Spiller R, Greenwood-Van Meerveld B, Verne GN. 104.  2012. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol. Motil. 24:503–12 [Google Scholar]
  105. Katz KD, Hollander D, Vadheim CM, McElree C, Delahunty T. 105.  et al. 1989. Intestinal permeability in patients with Crohn's disease and their healthy relatives. Gastroenterology 97:927–31 [Google Scholar]
  106. Yamada Y, Marshall S, Specian RD, Grisham MB. 106.  1992. A comparative analysis of two models of colitis in rats. Gastroenterology 102:1524–34 [Google Scholar]
  107. Glover LE, Bowers BE, Saeedi B, Ehrentraut SF, Campbell EL. 107.  et al. 2013. Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis. PNAS 110:19820–25 [Google Scholar]
  108. Rieder F, Fiocchi C. 108.  2008. Intestinal fibrosis in inflammatory bowel disease—current knowledge and future perspectives. J. Crohn's Colitis 2:279–90 [Google Scholar]
  109. Medina C, Radomski MW. 109.  2006. Role of matrix metalloproteinases in intestinal inflammation. J. Pharmacol. Exp. Ther. 318:933–38 [Google Scholar]
  110. Yang S, Kim J, Ryu JH, Oh H, Chun CH. 110.  et al. 2010. Hypoxia-inducible factor-2α is a catabolic regulator of osteoarthritic cartilage destruction. Nat. Med. 16:687–93 [Google Scholar]
  111. Gilkes DM, Bajpai S, Chaturvedi P, Wirtz D, Semenza GL. 111.  2013. Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J. Biol. Chem. 288:10819–29 [Google Scholar]
  112. Qu A, Taylor M, Xue X, Matsubara T, Metzger D. 112.  et al. 2011. Hypoxia-inducible transcription factor 2α promotes steatohepatitis through augmenting lipid accumulation, inflammation, and fibrosis. Hepatology 54:472–83 [Google Scholar]
  113. Xue X, Taylor M, Anderson E, Hao C, Qu A. 113.  et al. 2012. Hypoxia-inducible factor-2α activation promotes colorectal cancer progression by dysregulating iron homeostasis. Cancer Res. 72:2285–93 [Google Scholar]
  114. Cummins EP, Seeballuck F, Keely SJ, Mangan NE, Callanan JJ. 114.  et al. 2008. The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134:156–65 [Google Scholar]
  115. Robinson A, Keely S, Karhausen J, Gerich ME, Furuta GT, Colgan SP. 115.  2008. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 134:145–55 [Google Scholar]
  116. Helmlinger G, Yuan F, Dellian M, Jain RK. 116.  1997. Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation. Nat. Med. 3:177–82 [Google Scholar]
  117. Brown JM, Wilson WR. 117.  2004. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 4:437–47 [Google Scholar]
  118. Hanahan D, Weinberg RA. 118.  2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  119. Itzkowitz SH, Yio X. 119.  2004. Inflammation and cancer. IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 287:G7–17 [Google Scholar]
  120. Eaden JA, Abrams KR, Mayberry JF. 120.  2001. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 48:526–35 [Google Scholar]
  121. Brentnall TA, Crispin DA, Rabinovitch PS, Haggitt RC, Rubin CE. 121.  et al. 1994. Mutations in the p53 gene: an early marker of neoplastic progression in ulcerative colitis. Gastroenterology 107:369–78 [Google Scholar]
  122. Burmer GC, Rabinovitch PS, Haggitt RC, Crispin DA, Brentnall TA. 122.  et al. 1992. Neoplastic progression in ulcerative colitis: histology, DNA content, and loss of a p53 allele. Gastroenterology 103:1602–10 [Google Scholar]
  123. Redston MS, Papadopoulos N, Caldas C, Kinzler KW, Kern SE. 123.  1995. Common occurrence of APC and K-ras gene mutations in the spectrum of colitis-associated neoplasias. Gastroenterology 108:383–92 [Google Scholar]
  124. Sourbier C, Srivastava G, Ghosh MC, Ghosh S, Yang Y. 124.  et al. 2012. Targeting HIF2α translation with Tempol in VHL-deficient clear cell renal cell carcinoma. Oncotarget 3:1472–82 [Google Scholar]
  125. Cancer Genome Atlas N. 125.  2012. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–37 [Google Scholar]
  126. Rawluszko-Wieczorek AA, Horbacka K, Krokowicz P, Misztal M, Jagodzinski PP. 126.  2014. Prognostic potential of DNA methylation and transcript levels of HIF1A and EPAS1 in colorectal cancer. Mol. Cancer Res. 12:1112–27 [Google Scholar]
  127. Franovic A, Holterman CE, Payette J, Lee S. 127.  2009. Human cancers converge at the HIF-2α oncogenic axis. PNAS 106:21306–11 [Google Scholar]
  128. Imamura T, Kikuchi H, Herraiz MT, Park DY, Mizukami Y. 128.  et al. 2009. HIF-1α and HIF-2α have divergent roles in colon cancer. Int. J. Cancer 124:763–71 [Google Scholar]
  129. Xue X, Ramakrishnan SK, Shah YM. 129.  2014. Activation of HIF-1α does not increase intestinal tumorigenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 307:G187–95 [Google Scholar]
  130. Shay JE, Imtiyaz HZ, Sivanand S, Durham AC, Skuli N. 130.  et al. 2014. Inhibition of hypoxia-inducible factors limits tumor progression in a mouse model of colorectal cancer. Carcinogenesis 35:1067–77 [Google Scholar]
  131. Rankin EB, Rha J, Unger TL, Wu CH, Shutt HP. 131.  et al. 2008. Hypoxia-inducible factor-2 regulates vascular tumorigenesis in mice. Oncogene 27:5354–58 [Google Scholar]
  132. Hendrix MJ, Seftor EA, Hess AR, Seftor RE. 132.  2003. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat. Rev. Cancer 3:411–21 [Google Scholar]
  133. Le Bras A, Lionneton F, Mattot V, Lelievre E, Caetano B. 133.  et al. 2007. HIF-2α specifically activates the VE-cadherin promoter independently of hypoxia and in synergy with Ets-1 through two essential ETS-binding sites. Oncogene 26:7480–89 [Google Scholar]
  134. Masi G, Allegrini G, Cupini S, Marcucci L, Cerri E. 134.  et al. 2004. First-line treatment of metastatic colorectal cancer with irinotecan, oxaliplatin and 5-fluorouracil/leucovorin (FOLFOXIRI): results of a phase II study with a simplified biweekly schedule. Ann. Oncol. 15:1766–72 [Google Scholar]
  135. Loupakis F, Cremolini C, Masi G, Lonardi S, Zagonel V. 135.  et al. 2014. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N. Engl. J. Med. 371:1609–18 [Google Scholar]
  136. Cairns RA, Harris IS, Mak TW. 136.  2011. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11:85–95 [Google Scholar]
  137. Boroughs LK, DeBerardinis RJ. 137.  2015. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17:351–59 [Google Scholar]
  138. Doherty JR, Cleveland JL. 138.  2013. Targeting lactate metabolism for cancer therapeutics. J. Clin. Investig. 123:3685–92 [Google Scholar]
  139. Yang W, Lu Z. 139.  2013. Nuclear PKM2 regulates the Warburg effect. Cell Cycle 12:3154–58 [Google Scholar]
  140. Luo W, Hu H, Chang R, Zhong J, Knabel M. 140.  et al. 2011. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145:732–44 [Google Scholar]
  141. Yang W, Zheng Y, Xia Y, Ji H, Chen X. 141.  et al. 2012. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. 14:1295–304 [Google Scholar]
  142. Luo W, Semenza GL. 142.  2012. Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol. Metab. 23:560–66 [Google Scholar]
  143. Katoh H, Wang D, Daikoku T, Sun H, Dey SK, Dubois RN. 143.  2013. CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell 24:631–44 [Google Scholar]
  144. Elamin EE, Masclee AA, Dekker J, Pieters HJ, Jonkers DM. 144.  2013. Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers. J. Nutr. 143:1872–81 [Google Scholar]
  145. Jess T, Rungoe C, Peyrin-Biroulet L. 145.  2012. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin. Gastroenterol. Hepatol. 10:639–45 [Google Scholar]
  146. Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B. 146.  et al. 2012. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491:254–58 [Google Scholar]
  147. Imtiyaz HZ, Simon MC. 147.  2010. Hypoxia-inducible factors as essential regulators of inflammation. Curr. Top. Microbiol. Immunol. 345:105–20 [Google Scholar]
  148. Ashmore JH, Rogers CJ, Kelleher SL, Lesko SM, Hartman TJ. 148.  2015. Dietary iron and colorectal cancer risk: a review of human population studies. Crit. Rev. Food Sci. Nutr. In press
  149. Nelson RL. 149.  2001. Iron and colorectal cancer risk: human studies. Nutr. Rev. 59:140–48 [Google Scholar]
  150. Zacharski LR, Chow BK, Howes PS, Shamayeva G, Baron JA. 150.  et al. 2008. Decreased cancer risk after iron reduction in patients with peripheral arterial disease: results from a randomized trial. J. Natl. Cancer Inst. 100:996–1002 [Google Scholar]
  151. Radulescu S, Brookes MJ, Salgueiro P, Ridgway RA, McGhee E. 151.  et al. 2012. Luminal iron levels govern intestinal tumorigenesis after Apc loss in vivo. Cell Rep. 2:270–82 [Google Scholar]
  152. Brookes MJ, Hughes S, Turner FE, Reynolds G, Sharma N. 152.  et al. 2006. Modulation of iron transport proteins in human colorectal carcinogenesis. Gut 55:1449–60 [Google Scholar]
  153. Scheuermann TH, Li Q, Ma HW, Key J, Zhang L. 153.  et al. 2013. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat. Chem. Biol. 9:271–76 [Google Scholar]
  154. Beuck S, Schanzer W, Thevis M. 154.  2012. Hypoxia-inducible factor stabilizers and other small-molecule erythropoiesis-stimulating agents in current and preventive doping analysis. Drug Test. Anal. 4:830–45 [Google Scholar]
  155. Furuta GT, Turner JR, Taylor CT, Hershberg RM, Comerford K. 155.  et al. 2001. Hypoxia-inducible factor 1–dependent induction of intestinal trefoil factor protects barrier function during hypoxia. J. Exp. Med. 193:1027–34 [Google Scholar]
  156. Kelly CJ, Glover LE, Campbell EL, Kominsky DJ, Ehrentraut SF. 156.  et al. 2013. Fundamental role for HIF-1α in constitutive expression of human β defensin-1. Mucosal Immunol. 6:1110–18 [Google Scholar]
  157. Geng H, Liu Q, Xue C, David LL, Beer TM. 157.  et al. 2012. HIF1α protein stability is increased by acetylation at lysine 709. J. Biol. Chem. 287:35496–505 [Google Scholar]
  158. Walmsley SR, Print C, Farahi N, Peyssonnaux C, Johnson RS. 158.  et al. 2005. Hypoxia-induced neutrophil survival is mediated by HIF-1α-dependent NF-κB activity. J. Exp. Med. 201:105–15 [Google Scholar]
  159. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B. 159.  et al. 2007. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11:407–20 [Google Scholar]
  160. Kaidi A, Williams AC, Paraskeva C. 160.  2007. Interaction between β-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat. Cell Biol. 9:210–17 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021115-105202
Loading
/content/journals/10.1146/annurev-physiol-021115-105202
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error