1932

Abstract

The discovery of four genes responsible for pseudohypoaldosteronism type II, or familial hyperkalemic hypertension, which features arterial hypertension with hyperkalemia and metabolic acidosis, unmasked a complex multiprotein system that regulates electrolyte transport in the distal nephron. Two of these genes encode the serine-threonine kinases WNK1 and WNK4. The other two genes [kelch-like 3 () and cullin 3 ()] form a RING-type E3-ubiquitin ligase complex that modulates WNK1 and WNK4 abundance. WNKs regulate the activity of the Na+:Cl cotransporter (NCC), the epithelial sodium channel (ENaC), the renal outer medullary potassium channel (ROMK), and other transport pathways. Interestingly, the modulation of NCC occurs via the phosphorylation by WNKs of other serine-threonine kinases known as SPAK-OSR1. In contrast, the process of regulating the channels is independent of SPAK-OSR1. We present a review of the remarkable advances in this area in the past 10 years.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021115-105431
2016-02-10
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/physiol/78/1/annurev-physiol-021115-105431.html?itemId=/content/journals/10.1146/annurev-physiol-021115-105431&mimeType=html&fmt=ahah

Literature Cited

  1. Narayan KM, Ali MK, Koplan JP. 1.  2010. Global noncommunicable diseases—where worlds meet. N. Engl. J. Med. 363:1196–98 [Google Scholar]
  2. Mayan H, Vered I, Mouallem M, Tzadok-Witkon M, Pauzner R, Farfel Z. 2.  2002. Pseudohypoaldosteronism type II: marked sensitivity to thiazides, hypercalciuria, normomagnesemia, and low bone mineral density. J. Clin. Endocrinol. Metab. 87:3248–54 [Google Scholar]
  3. Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A. 3.  et al. 2012. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482:98–102 [Google Scholar]
  4. Louis-Dit-Picard H, Barc J, Trujillano D, Miserey-Lenkei S, Bouatia-Naji N. 4.  et al. 2012. KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat. Genet. 44:456–60 [Google Scholar]
  5. Ohta A, Schumacher FR, Mehellou Y, Johnson C, Knebel A. 5.  et al. 2013. The CUL3–KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: Disease-causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem. J. 451:111–22 [Google Scholar]
  6. McCormick JA, Yang CL, Zhang C, Davidge B, Blankenstein KI. 6.  et al. 2014. Hyperkalemic hypertension-associated cullin 3 promotes WNK signaling by degrading KLHL3. J. Clin. Investig. 124:4723–36 [Google Scholar]
  7. Lifton RP, Gharavi AG, Geller DS. 7.  2001. Molecular mechanisms of human hypertension. Cell 104:545–56 [Google Scholar]
  8. Vidal-Petiot E, Elvira-Matelot E, Mutig K, Soukaseum C, Baudrie V. 8.  et al. 2013. WNK1-related familial hyperkalemic hypertension results from an increased expression of L-WNK1 specifically in the distal nephron. PNAS 110:14366–71 [Google Scholar]
  9. Piechotta K, Lu J, Delpire E. 9.  2002. Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J. Biol. Chem. 277:50812–19 [Google Scholar]
  10. Gamba G. 10.  2005. Molecular physiology and pathophysiology of the electroneutral cation-chloride cotransporters. Physiol. Rev. 85:423–93 [Google Scholar]
  11. Gagnon KB, Delpire E. 11.  2012. Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Physiol. Rev. 92:1577–617 [Google Scholar]
  12. Gagnon KB, England R, Delpire E. 12.  2006. Characterization of SPAK and OSR1, regulatory kinases of the Na-K-2Cl cotransporter. Mol. Cell. Biol. 26:689–98 [Google Scholar]
  13. Johnston AM, Naselli G, Gonez LJ, Martin RM, Harrison LC, DeAizpurua HJ. 13.  2000. SPAK, a STE20/SPS1-related kinase that activates the p38 pathway. Oncogene 19:4290–97 [Google Scholar]
  14. Tamari M, Daigo Y, Nakamura Y. 14.  1999. Isolation and characterization of a novel serine threonine kinase gene on chromosome 3p22-21.3. J. Hum. Genet. 44:116–20 [Google Scholar]
  15. Piechotta K, Garbarini N, England R, Delpire E. 15.  2003. Characterization of the interaction of the stress kinase SPAK with the Na+-K+-2Cl cotransporter in the nervous system: evidence for a scaffolding role of the kinase. J. Biol. Chem. 278:52848–56 [Google Scholar]
  16. Rafiqi FH, Zuber AM, Glover M, Richardson C, Fleming S. 16.  et al. 2010. Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO Mol. Med. 2:63–75 [Google Scholar]
  17. McCormick JA, Mutig K, Nelson JH, Saritas T, Hoorn EJ. 17.  et al. 2011. A SPAK isoform switch modulates renal salt transport and blood pressure. Cell Metab. 14:352–64 [Google Scholar]
  18. Saritas T, Borschewski A, McCormick JA, Paliege A, Dathe C. 18.  et al. 2013. SPAK differentially mediates vasopressin effects on sodium cotransporters. J. Am. Soc. Nephrol. 24:407–18 [Google Scholar]
  19. Markadieu N, Rios K, Spiller BW, McDonald WH, Welling PA, Delpire E. 19.  2014. Short forms of Ste20-related proline/alanine-rich kinase (SPAK) in the kidney are created by aspartyl aminopeptidase (Dnpep)-mediated proteolytic cleavage. J. Biol. Chem. 289:29273–84 [Google Scholar]
  20. Chen W, Yazicioglu M, Cobb MH. 20.  2004. Characterization of OSR1, a member of the mammalian Ste20p/germinal center kinase subfamily. J. Biol. Chem. 279:11129–36 [Google Scholar]
  21. Grimm PR, Taneja TK, Liu J, Coleman R, Chen YY. 21.  et al. 2012. SPAK isoforms and OSR1 regulate sodium-chloride co-transporters in a nephron-specific manner. J. Biol. Chem. 287:37673–90 [Google Scholar]
  22. Moriguchi T, Urushiyama S, Hisamoto N, Iemura S, Uchida S. 22.  et al. 2005. WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. J. Biol. Chem. 280:42685–93 [Google Scholar]
  23. Gagnon KB, England R, Delpire E. 23.  2006. Volume sensitivity of cation-Cl cotransporters is modulated by the interaction of two kinases: Ste20-related proline-alanine-rich kinase and WNK4. Am. J. Physiol. Cell Physiol. 290:C134–42 [Google Scholar]
  24. Vitari AC, Deak M, Morrice NA, Alessi DR. 24.  2005. The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome, phosphorylate and activate SPAK and OSR1 protein kinases. Biochem. J. 391:17–24 [Google Scholar]
  25. Richardson C, Alessi DR. 25.  2008. The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway. J. Cell Sci. 121:3293–304 [Google Scholar]
  26. Verissimo F, Jordan P. 26.  2001. WNK kinases, a novel protein kinase subfamily in multi-cellular organisms. Oncogene 20:5562–69 [Google Scholar]
  27. Xu B, English JM, Wilsbacher JL, Stippec S, Goldsmith EJ, Cobb MH. 27.  2000. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J. Biol. Chem. 275:16795–801 [Google Scholar]
  28. Chavez-Canales M, Zhang C, Soukaseum C, Moreno E, Pacheco-Alvarez D. 28.  et al. 2014. WNK-SPAK-NCC cascade revisited: WNK1 stimulates the activity of the Na-Cl cotransporter via SPAK, an effect antagonized by WNK4. Hypertension 64:1047–53 [Google Scholar]
  29. Thastrup JO, Rafiqi FH, Vitari AC, Pozo-Guisado E, Deak M. 29.  et al. 2012. SPAK/OSR1 regulate NKCC1 and WNK activity: analysis of WNK isoform interactions and activation by T-loop trans-autophosphorylation. Biochem. J. 441:325–37 [Google Scholar]
  30. Delaloy C, Lu J, Houot AM, Disse-Nicodeme S, Gasc JM. 30.  et al. 2003. Multiple promoters in the WNK1 gene: One controls expression of a kidney-specific kinase-defective isoform. Mol. Cell. Biol. 23:9208–21 [Google Scholar]
  31. O'Reilly M, Marshall E, Speirs HJ, Brown RW. 31.  2003. WNK1, a gene within a novel blood pressure control pathway, tissue-specifically generates radically different isoforms with and without a kinase domain. J. Am. Soc. Nephrol. 14:2447–56 [Google Scholar]
  32. Vidal-Petiot E, Cheval L, Faugeroux J, Malard T, Doucet A. 32.  et al. 2012. A new methodology for quantification of alternatively spliced exons reveals a highly tissue-specific expression pattern of WNK1 isoforms. PLOS ONE 7:e37751 [Google Scholar]
  33. Shekarabi M, Girard N, Riviere JB, Dion P, Houle M. 33.  et al. 2008. Mutations in the nervous system-specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II. J. Clin. Investig. 118:2496–505 [Google Scholar]
  34. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C. 34.  et al. 2001. Human hypertension caused by mutations in WNK kinases. Science 293:1107–12 [Google Scholar]
  35. Holden S, Cox J, Raymond FL. 35.  2004. Cloning, genomic organization, alternative splicing and expression analysis of the human gene WNK3 (PRKWNK3). Gene 335:109–19 [Google Scholar]
  36. Kahle KT, Rinehart J, De Los Heros P, Louvi A, Meade P. 36.  et al. 2005. WNK3 modulates transport of Cl in and out of cells: implications for control of cell volume and neuronal excitability. PNAS 102:16783–88 [Google Scholar]
  37. Oi K, Sohara E, Rai T, Misawa M, Chiga M. 37.  et al. 2012. A minor role of WNK3 in regulating phosphorylation of renal NKCC2 and NCC co-transporters in vivo. Biol. Open 1:120–27 [Google Scholar]
  38. O'Reilly M, Marshall E, Macgillivray T, Mittal M, Xue W. 38.  et al. 2006. Dietary electrolyte-driven responses in the renal WNK kinase pathway in vivo. J. Am. Soc. Nephrol. 17:2402–13 [Google Scholar]
  39. Ohno M, Uchida K, Ohashi T, Nitta K, Ohta A. 39.  et al. 2011. Immunolocalization of WNK4 in mouse kidney. Histochem. Cell Biol. 136:25–35 [Google Scholar]
  40. Richardson C, Rafiqi FH, Karlsson HK, Moleleki N, Vandewalle A. 40.  et al. 2008. Activation of the thiazide-sensitive Na+-Cl cotransporter by the WNK-regulated kinases SPAK and OSR1. J. Cell Sci. 121:675–84 [Google Scholar]
  41. Yang SS, Lo YF, Wu CC, Lin SW, Yeh CJ. 41.  et al. 2010. SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J. Am. Soc. Nephrol. 21:1868–77 [Google Scholar]
  42. Grimm PR, Lazo-Fernandez Y, Delpire E, Wall SM, Dorsey SG. 42.  et al. 2015. Integrated compensatory network is activated in the absence of NCC phosphorylation. J. Clin. Investig. 125:2136–50 [Google Scholar]
  43. Loffing J, Vallon V, Loffing-Cueni D, Aregger F, Richter K. 43.  et al. 2004. Altered renal distal tubule structure and renal Na+ and Ca2+ handling in a mouse model for Gitelman's syndrome. J. Am. Soc. Nephrol. 15:2276–88 [Google Scholar]
  44. Lin SH, Yu IS, Jiang ST, Lin SW, Chu P. 44.  et al. 2011. Impaired phosphorylation of Na+-K+-2Cl cotransporter by oxidative stress-responsive kinase-1 deficiency manifests hypotension and Bartter-like syndrome. PNAS 108:17538–43 [Google Scholar]
  45. Xie J, Yoon J, Yang SS, Lin SH, Huang CL. 45.  2013. WNK1 protein kinase regulates embryonic cardiovascular development through the OSR1 signaling cascade. J. Biol. Chem. 288:8566–74 [Google Scholar]
  46. Yang CL, Zhu X, Wang Z, Subramanya AR, Ellison DH. 46.  2005. Mechanisms of WNK1 and WNK4 interaction in the regulation of thiazide-sensitive NaCl cotransport. J. Clin. Investig. 115:1379–87 [Google Scholar]
  47. Ellison DH. 47.  2003. The thiazide-sensitive Na-Cl cotransporter and human disease: reemergence of an old player. J. Am. Soc. Nephrol. 14:538–40 [Google Scholar]
  48. Xie J, Wu T, Xu K, Huang IK, Cleaver O, Huang CL. 48.  2009. Endothelial-specific expression of WNK1 kinase is essential for angiogenesis and heart development in mice. Am. J. Pathol. 175:1315–27 [Google Scholar]
  49. Zambrowicz BP, Abuin A, Ramirez-Solis R, Richter LJ, Piggott J. 49.  et al. 2003. Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. PNAS 100:14109–14 [Google Scholar]
  50. Pacheco-Alvarez D, Vazquez N, Castaneda-Bueno M. Heros P, Cortes-Gonzalez C. 50. , de los et al. 2012. WNK3-SPAK interaction is required for the modulation of NCC and other members of the SLC12 family. Cell. Physiol. Biochem. 29:291–302 [Google Scholar]
  51. Rinehart J, Kahle KT, De Los Heros P, Vazquez N, Meade P. 51.  et al. 2005. WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl cotransporters required for normal blood pressure homeostasis. PNAS 102:16777–82 [Google Scholar]
  52. Glover M, Zuber AM, O'Shaughnessy KM. 52.  2009. Renal and brain isoforms of WNK3 have opposite effects on NCCT expression. J. Am. Soc. Nephrol. 20:1314–22 [Google Scholar]
  53. Cruz-Rangel S, Melo Z, Vazquez N, Meade P, Bobadilla NA. 53.  et al. 2011. Similar effects of all WNK3 variants on SLC12 cotransporters. Am. J. Physiol. Cell Physiol. 301:C601–08 [Google Scholar]
  54. Mederle K, Mutig K, Paliege A, Carota I, Bachmann S. 54.  et al. 2013. Loss of WNK3 is compensated for by the WNK1/SPAK axis in the kidney of the mouse. Am. J. Physiol. Ren. Physiol. 304:F1198–209 [Google Scholar]
  55. Bazua-Valenti S, Gamba G. 55.  2015. Revisiting the NaCl cotransporter regulation by with-no-lysine kinases. Am. J. Physiol. Cell Physiol. 308:C779–91 [Google Scholar]
  56. Gamba G. 56.  2012. Regulation of the renal Na+:Cl cotransporter by phosphorylation and ubiquitylation. Am. J. Physiol. Ren. Physiol. 303:F1573–83 [Google Scholar]
  57. San Cristobal P, Pacheco-Alvarez D, Richardson C, Ring AM, Vazquez N. 57.  et al. 2009. Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway. PNAS 106:4384–89 [Google Scholar]
  58. Castaneda-Bueno M, Cervantes-Perez LG, Vazquez N, Uribe N, Kantesaria S. 58.  et al. 2012. Activation of the renal Na+:Cl cotransporter by angiotensin II is a WNK4-dependent process. PNAS 109:7929–34 [Google Scholar]
  59. Rozansky DJ, Cornwall T, Subramanya AR, Rogers S, Yang YF. 59.  et al. 2009. Aldosterone mediates activation of the thiazide-sensitive Na-Cl cotransporter through an SGK1 and WNK4 signaling pathway. J. Clin. Investig. 119:2601–12 [Google Scholar]
  60. Ponce-Coria J, San Cristobal P, Kahle KT, Vazquez N, Pacheco-Alvarez D. 60.  et al. 2008. Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases. PNAS 105:8458–63 [Google Scholar]
  61. Yang CL, Zhu X, Ellison DH. 61.  2007. The thiazide-sensitive Na-Cl cotransporter is regulated by a WNK kinase signaling complex. J. Clin. Investig. 117:3403–11 [Google Scholar]
  62. Bazua-Valenti S, Chavez-Canales M, Rojas-Vega L, Gonzalez-Rodriguez X, Vazquez N. 62.  et al. 2015. The effect of WNK4 on the Na+-Cl cotransporter is modulated by intracellular chloride. J. Am. Soc. Nephrol. 26:1781–86 [Google Scholar]
  63. Rinehart J, Vazquez N, Kahle KT, Hodson CA, Ring AM. 63.  et al. 2011. WNK2 is a novel regulator of essential neuronal cation-chloride cotransporters. J. Biol. Chem. 286:30171–80 [Google Scholar]
  64. Pacheco-Alvarez D, San Cristobal P, Meade P, Moreno E, Vazquez N. 64.  et al. 2006. The Na-Cl cotransporter is activated and phosphorylated at the amino terminal domain upon intracellular chloride depletion. J. Biol. Chem. 281:28755–63 [Google Scholar]
  65. Dowd BF, Forbush B. 65.  2003. PASK (proline-alanine-rich STE20-related kinase), a regulatory kinase of the Na-K-Cl cotransporter (NKCC1). J. Biol. Chem. 278:27347–53 [Google Scholar]
  66. Lytle C, Forbush B III. 66.  1996. Regulatory phosphorylation of the secretory Na-K-Cl cotransporter: modulation by cytoplasmic Cl. Am. J. Physiol. 270:C437–48 [Google Scholar]
  67. Gamba G. 67.  2005. WNK lies upstream of kinases involved in regulation of ion transporters. Biochem. J. 391:e1–3 [Google Scholar]
  68. Pacheco-Alvarez D, Gamba G. 68.  2011. WNK3 is a putative chloride-sensing kinase. Cell. Physiol. Biochem. 28:1123–34 [Google Scholar]
  69. Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ. 69.  2014. Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci. Signal. 7:ra41 [Google Scholar]
  70. Terker AS, Zhang C, Erspamer KJ, Gamba G, Yang CL, Ellison DH. 70.  2015. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis. Kidney Int. In press. doi: 10.1038/ki.2015.289
  71. Castaneda-Bueno M, Cervantes-Perez LG, Rojas-Vega L, Arroyo-Garza I, Vazquez N. 71.  et al. 2014. Modulation of NCC activity by low and high K+ intake: insights into the signaling pathways involved. Am. J. Physiol. Ren. Physiol. 306:F1507–19 [Google Scholar]
  72. Vallon V, Schroth J, Lang F, Kuhl D, Uchida S. 72.  2009. Expression and phosphorylation of the Na-Cl-cotransporter NCC in vivo is regulated by dietary salt, potassium and SGK1. Am. J. Physiol. Ren. Physiol. 297:F704–12 [Google Scholar]
  73. Sorensen MV, Grossmann S, Roesinger M, Gresko N, Todkar AP. 73.  et al. 2013. Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int. 83:811–24 [Google Scholar]
  74. Nguyen MT, Yang LE, Fletcher NK, Lee DH, Kocinsky H. 74.  et al. 2012. Effects of K+-deficient diets with and without NaCl supplementation on Na+, K+, and H2O transporters' abundance along the nephron. Am. J. Physiol. Ren. Physiol. 303:F92–104 [Google Scholar]
  75. Arroyo JP, Ronzaud C, Lagnaz D, Staub O, Gamba G. 75.  2011. Aldosterone paradox: differential regulation of ion transport in distal nephron. Physiology 26:115–23 [Google Scholar]
  76. Lalioti MD, Zhang J, Volkman HM, Kahle KT, Hoffmann KE. 76.  et al. 2006. WNK4 controls blood pressure and potassium homeostasis via regulation of mass and activity of the distal convoluted tubule. Nat. Genet. 38:1124–32 [Google Scholar]
  77. Wade JB, Liu J, Coleman R, Grimm PR, Delpire E, Welling PA. 77.  2015. SPAK-mediated NCC regulation in response to low-K+ diet. Am. J. Physiol. Ren. Physiol. 308:F923–31 [Google Scholar]
  78. Terker AS, Zhang C, McCormick JA, Lazelle RA, Zhang C. 78.  et al. 2015. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 21:39–50 [Google Scholar]
  79. Moes AD, van der Lubbe N, Zietse R, Loffing J, Hoorn EJ. 79.  2014. The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation. Pflugers Arch. 466:107–18 [Google Scholar]
  80. Scholl UI, Choi M, Liu T, Ramaekers VT, Hausler MG. 80.  et al. 2009. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. PNAS 106:5842–47 [Google Scholar]
  81. Zhang C, Wang L, Zhang J, Su XT, Lin DH. 81.  et al. 2014. KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1). PNAS 111:11864–69 [Google Scholar]
  82. Cope G, Murthy M, Golbang AP, Hamad A, Liu CH. 82.  et al. 2006. WNK1 affects surface expression of the ROMK potassium channel independent of WNK4. J. Am. Soc. Nephrol. 17:1867–74 [Google Scholar]
  83. Lazrak A, Liu Z, Huang CL. 83.  2006. Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms. PNAS 103:1615–20 [Google Scholar]
  84. He G, Wang HR, Huang SK, Huang CL. 84.  2007. Intersectin links WNK kinases to endocytosis of ROMK1. J. Clin. Investig. 117:1078–87 [Google Scholar]
  85. Fang L, Garuti R, Kim BY, Wade JB, Welling PA. 85.  2009. The ARH adaptor protein regulates endocytosis of the ROMK potassium secretory channel in mouse kidney. J. Clin. Investig. 119:3278–89 [Google Scholar]
  86. Wang HR, Liu Z, Huang CL. 86.  2008. Domains of WNK1 kinase in the regulation of ROMK1. Am. J. Physiol. Ren. Physiol. 295:F438–45 [Google Scholar]
  87. Fang L, Welling PA. 87.  2011. L-WNK1 stimulates ROMK endocytosis by phosphorylation-dependent stabilization of ARH. FASEB J. 25:Suppl.1041.33 [Google Scholar]
  88. Wade JB, Fang L, Liu J, Li D, Yang CL. 88.  et al. 2006. WNK1 kinase isoform switch regulates renal potassium excretion. PNAS 103:8558–63 [Google Scholar]
  89. Liu Z, Wang HR, Huang CL. 89.  2009. Regulation of ROMK channel and K+ homeostasis by kidney-specific WNK1 kinase. J. Biol. Chem. 284:12198–206 [Google Scholar]
  90. Cheng CJ, Baum M, Huang CL. 90.  2013. Kidney-specific WNK1 regulates sodium reabsorption and potassium secretion in mouse cortical collecting duct. Am. J. Physiol. Ren. Physiol. 304:F397–402 [Google Scholar]
  91. Hadchouel J, Soukaseum C, Busst C, Zhou XO, Baudrie V. 91.  et al. 2010. Decreased ENaC expression compensates the increased NCC activity following inactivation of the kidney-specific isoform of WNK1 and prevents hypertension. PNAS 107:18109–14 [Google Scholar]
  92. Kahle KT, Wilson FH, Leng Q, Lalioti MD, O'Connell AD. 92.  et al. 2003. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat. Genet. 35:372–76 [Google Scholar]
  93. Ring AM, Leng Q, Rinehart J, Wilson FH, Kahle KT. 93.  et al. 2007. An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis. PNAS 104:4025–29 [Google Scholar]
  94. Yue P, Lin DH, Pan CY, Leng Q, Giebisch G. 94.  et al. 2009. Src family protein tyrosine kinase (PTK) modulates the effect of SGK1 and WNK4 on ROMK channels. PNAS 106:15061–66 [Google Scholar]
  95. Lin DH, Yue P, Yarborough O 3rd, Scholl UI, Giebisch G. 95.  et al. 2015. Src-family protein tyrosine kinase phosphorylates WNK4 and modulates its inhibitory effect on KCNJ1 (ROMK). PNAS 112:4495–500 [Google Scholar]
  96. Liu Y, Song X, Shi Y, Shi Z, Niu W. 96.  et al. 2015. WNK1 activates large-conductance Ca2+-activated K+ channels through modulation of ERK1/2 signaling. J. Am. Soc. Nephrol. 26:844–54 [Google Scholar]
  97. Zhuang J, Zhang X, Wang D, Li J, Zhou B. 97.  et al. 2011. WNK4 kinase inhibits Maxi K channel activity by a kinase-dependent mechanism. Am. J. Physiol. Ren. Physiol. 301:F410–19 [Google Scholar]
  98. Wang Z, Subramanya AR, Satlin LM, Pastor-Soler NM, Carattino MD, Kleyman TR. 98.  2013. Regulation of large-conductance Ca2+-activated K+ channels by WNK4 kinase. Am. J. Physiol. Cell Physiol. 305:C846–53 [Google Scholar]
  99. Yue P, Zhang C, Lin DH, Sun P, Wang WH. 99.  2013. WNK4 inhibits Ca2+-activated big-conductance potassium channels (BK) via mitogen-activated protein kinase-dependent pathway. Biochim. Biophys. Acta 1833:2101–10 [Google Scholar]
  100. Ring AM, Cheng SX, Leng Q, Kahle KT, Rinehart J. 100.  et al. 2007. WNK4 regulates activity of the epithelial Na+ channel in vitro and in vivo. PNAS 104:4020–24 [Google Scholar]
  101. Yu L, Cai H, Yue Q, Alli AA, Wang D. 101.  et al. 2013. WNK4 inhibition of ENaC is independent of Nedd4-2-mediated ENaC ubiquitination. Am. J. Physiol. Ren. Physiol. 305:F31–41 [Google Scholar]
  102. Yang SS, Morimoto T, Rai T, Chiga M, Sohara E. 102.  et al. 2007. Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4D561A/+ knockin mouse model. Cell Metab. 5:331–44 [Google Scholar]
  103. Xu BE, Stippec S, Chu PY, Lazrak A, Li XJ. 103.  et al. 2005. WNK1 activates SGK1 to regulate the epithelial sodium channel. PNAS 102:10315–20 [Google Scholar]
  104. Heise CJ, Xu BE, Deaton SL, Cha SK, Cheng CJ. 104.  et al. 2010. Serum and glucocorticoid-induced kinase (SGK) 1 and the epithelial sodium channel are regulated by multiple with no lysine (WNK) family members. J. Biol. Chem. 285:25161–67 [Google Scholar]
  105. Yang CL, Liu X, Paliege A, Zhu X, Bachmann S. 105.  et al. 2007. WNK1 and WNK4 modulate CFTR activity. Biochem. Biophys. Res. Commun. 353:535–40 [Google Scholar]
  106. Kahle KT, Gimenez I, Hassan H, Wilson FH, Wong RD. 106.  et al. 2004. WNK4 regulates apical and basolateral Cl flux in extrarenal epithelia. PNAS 101:2064–69 [Google Scholar]
  107. Ohta A, Yang SS, Rai T, Chiga M, Sasaki S, Uchida S. 107.  2006. Overexpression of human WNK1 increases paracellular chloride permeability and phosphorylation of claudin-4 in MDCKII cells. Biochem. Biophys. Res. Commun. 349:804–8 [Google Scholar]
  108. Yamauchi K, Rai T, Kobayashi K, Sohara E, Suzuki T. 108.  et al. 2004. Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. PNAS 101:4690–94 [Google Scholar]
  109. Tatum R, Zhang Y, Lu Q, Kim K, Jeansonne BG, Chen YH. 109.  2007. WNK4 phosphorylates ser206 of claudin-7 and promotes paracellular Cl permeability. FEBS Lett. 581:3887–91 [Google Scholar]
  110. Yang SS, Hsu YJ, Chiga M, Rai T, Sasaki S. 110.  et al. 2010. Mechanisms for hypercalciuria in pseudohypoaldosteronism type II-causing WNK4 knock-in mice. Endocrinology 151:1829–36 [Google Scholar]
  111. Jiang Y, Cong P, Williams SR, Zhang W, Na T. 111.  et al. 2008. WNK4 regulates the secretory pathway via which TRPV5 is targeted to the plasma membrane. Biochem. Biophys. Res. Commun. 375:225–29 [Google Scholar]
  112. Jiang Y, Ferguson WB, Peng JB. 112.  2007. WNK4 enhances TRPV5-mediated calcium transport: potential role in hypercalciuria of familial hyperkalemic hypertension caused by gene mutation of WNK4. Am. J. Physiol. Ren. Physiol. 292:F545–54 [Google Scholar]
  113. Cha SK, Huang CL. 113.  2010. WNK4 kinase stimulates caveola-mediated endocytosis of TRPV5 amplifying the dynamic range of regulation of the channel by protein kinase C. J. Biol. Chem. 285:6604–11 [Google Scholar]
  114. Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U. 114.  et al. 2014. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J. 33:229–46 [Google Scholar]
  115. Alessi DR, Zhang J, Khanna A, Hochdorfer T, Shang Y, Kahle KT. 115.  2014. The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters. Sci. Signal. 7:re3 [Google Scholar]
  116. Cohen P, Alessi DR. 116.  2013. Kinase drug discovery—what's next in the field?. ACS Chem. Biol. 8:96–104 [Google Scholar]
  117. Kikuchi E, Mori T, Zeniya M, Isobe K, Ishigami-Yuasa M. 117.  et al. 2015. Discovery of novel SPAK inhibitors that block WNK kinase signaling to cation chloride transporters. J. Am. Soc. Nephrol. 26:1525–36 [Google Scholar]
  118. Wakabayashi M, Mori T, Isobe K, Sohara E, Susa K. 118.  et al. 2013. Impaired KLHL3-mediated ubiquitination of WNK4 causes human hypertension. Cell Rep. 3:858–68 [Google Scholar]
  119. Wu G, Peng JB. 119.  2013. Disease-causing mutations in KLHL3 impair its effect on WNK4 degradation. FEBS Lett. 587:1717–22 [Google Scholar]
  120. Na T, Wu G, Zhang W, Dong WJ, Peng JB. 120.  2013. Disease-causing R1185C mutation of WNK4 disrupts a regulatory mechanism involving calmodulin binding and SGK1 phosphorylation sites. Am. J. Physiol. Ren. Physiol. 304:F8–18 [Google Scholar]
  121. Shibata S, Zhang J, Puthumana J, Stone KL, Lifton RP. 121.  2013. Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. PNAS 110:7838–43 [Google Scholar]
  122. Liu Z, Xie J, Wu T, Truong T, Auchus RJ, Huang CL. 122.  2011. Downregulation of NCC and NKCC2 cotransporters by kidney-specific WNK1 revealed by gene disruption and transgenic mouse models. Hum. Mol. Genet. 20:855–66 [Google Scholar]
  123. Ohta A, Rai T, Yui N, Chiga M, Yang SS. 123.  et al. 2009. Targeted disruption of the Wnk4 gene decreases phosphorylation of Na-Cl cotransporter, increases Na excretion, and lowers blood pressure. Hum. Mol. Genet. 18:3978–86 [Google Scholar]
  124. Takahashi D, Mori T, Nomura N, Khan MZ, Araki Y. 124.  et al. 2014. WNK4 is the major WNK positively regulating NCC in the mouse kidney. Biosci. Rep. 34:e00107 [Google Scholar]
  125. 125.  Deleted in proof
  126. Cheng CJ, Yoon J, Baum M, Huang CL. 126.  2015. STE20/SPS1-related proline/alanine-rich kinase (SPAK) is critical for sodium reabsorption in isolated, perfused thick ascending limb. Am. J. Physiol. Ren. Physiol. 308:F437–43 [Google Scholar]
  127. Chiga M, Rafiqi FH, Alessi DR, Sohara E, Ohta A. 127.  et al. 2011. Phenotypes of pseudohypoaldosteronism type II caused by the WNK4 D561A missense mutation are dependent on the WNK-OSR1/SPAK kinase cascade. J. Cell Sci. 124:1391–95 [Google Scholar]
  128. Susa K, Kita S, Iwamoto T, Yang SS, Lin SH. 128.  et al. 2012. Effect of heterozygous deletion of WNK1 on the WNK-OSR1/SPAK-NCC/NKCC1/NKCC2 signal cascade in the kidney and blood vessels. Clin. Exp. Nephrol. 16:530–38 [Google Scholar]
  129. Chu PY, Cheng CJ, Wu YC, Fang YW, Chau T. 129.  et al. 2013. SPAK deficiency corrects pseudohypoaldosteronism II caused by WNK4 mutation. PLOS ONE 8:e72969 [Google Scholar]
  130. Weinstein AM. 130.  2005. A mathematical model of rat distal convoluted tubule. I. Cotransporter function in early DCT. Am. J. Physiol. Ren. Physiol. 289:F699–720 [Google Scholar]
  131. Boettger T, Hubner CA, Maier H, Rust MB, Beck FX, Jentsch TJ. 131.  2002. Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature 416:874–78 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021115-105431
Loading
/content/journals/10.1146/annurev-physiol-021115-105431
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error