1932

Abstract

Interoception, the ability to precisely and timely sense internal body signals, is critical for life. The interoceptive system monitors a large variety of mechanical, chemical, hormonal, and pathological cues using specialized organ cells, organ innervating neurons, and brain sensory neurons. It is important for maintaining body homeostasis, providing motivational drives, and regulating autonomic, cognitive, and behavioral functions. However, compared to external sensory systems, our knowledge about how diverse body signals are coded at a system level is quite limited. In this review, we focus on the unique features of interoceptive signals and the organization of the interoceptive system, with the goal of better understanding the coding logic of interoception.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-042222-023455
2024-02-12
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/physiol/86/1/annurev-physiol-042222-023455.html?itemId=/content/journals/10.1146/annurev-physiol-042222-023455&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Chen WG, Schloesser D, Arensdorf AM, Simmons JM, Cui C et al. 2021. The emerging science of interoception: sensing, integrating, interpreting, and regulating signals within the self. Trends Neurosci. 44:3–16
    [Google Scholar]
  2. 2.
    Hazelton JL, Fittipaldi S, Fraile-Vazquez M, Sourty M, Legaz A et al. 2023. Thinking versus feeling: How interoception and cognition influence emotion recognition in behavioural-variant frontotemporal dementia, Alzheimer's disease, and Parkinson's disease. Cortex 163:66–79
    [Google Scholar]
  3. 3.
    Mazzone SB, Undem BJ. 2016. Vagal afferent innervation of the airways in health and disease. Physiol. Rev. 96:975–1024
    [Google Scholar]
  4. 4.
    Paintal AS. 1973. Vagal sensory receptors and their reflex effects. Physiol. Rev. 53:159–227
    [Google Scholar]
  5. 5.
    Reeh PW, Fischer MJM. 2022. Nobel somatosensations and pain. Pflügers Arch. 474:405–20
    [Google Scholar]
  6. 6.
    Gillespie PG, Muller U. 2009. Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell 139:33–44
    [Google Scholar]
  7. 7.
    Yang X, Lin C, Chen X, Li S, Li X, Xiao B. 2022. Structure deformation and curvature sensing of PIEZO1 in lipid membranes. Nature 604:377–83
    [Google Scholar]
  8. 8.
    Kefauver JM, Ward AB, Patapoutian A. 2020. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587:567–76
    [Google Scholar]
  9. 9.
    Shamsi BH, Chatoo M, Xu XK, Xu X, Chen XQ. 2021. Versatile functions of somatostatin and somatostatin receptors in the gastrointestinal system. Front. Endocrinol. 12:652363
    [Google Scholar]
  10. 10.
    Song K, Wang H, Kamm GB, Pohle J, Reis FC et al. 2016. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353:1393–98
    [Google Scholar]
  11. 11.
    Gribble FM, Reimann F. 2016. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78:277–99
    [Google Scholar]
  12. 12.
    Alcaino C, Knutson KR, Treichel AJ, Yildiz G, Strege PR et al. 2018. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. PNAS 115:E7632–41
    [Google Scholar]
  13. 13.
    Gribble FM, Reimann F. 2019. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 15:226–37
    [Google Scholar]
  14. 14.
    Treichel AJ, Finholm I, Knutson KR, Alcaino C, Whiteman ST et al. 2022. Specialized mechanosensory epithelial cells in mouse gut intrinsic tactile sensitivity. Gastroenterology 162:535–47.e13
    [Google Scholar]
  15. 15.
    Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K et al. 2017. A single-cell survey of the small intestinal epithelium. Nature 551:333–39
    [Google Scholar]
  16. 16.
    Glass LL, Calero-Nieto FJ, Jawaid W, Larraufie P, Kay RG et al. 2017. Single-cell RNA-sequencing reveals a distinct population of proglucagon-expressing cells specific to the mouse upper small intestine. Mol. Metab. 6:1296–303
    [Google Scholar]
  17. 17.
    Beumer J, Puschhof J, Bauza-Martinez J, Martinez-Silgado A, Elmentaite R et al. 2020. High-resolution mRNA and secretome atlas of human enteroendocrine cells. Cell 182:1062–64
    [Google Scholar]
  18. 18.
    Bai L, Sivakumar N, Yu S, Mesgarzadeh S, Ding T et al. 2022. Enteroendocrine cell types that drive food reward and aversion. eLife 11:e74964
    [Google Scholar]
  19. 19.
    Gehart H, van Es JH, Hamer K, Beumer J, Kretzschmar K et al. 2019. Identification of enteroendocrine regulators by real-time single-cell differentiation mapping. Cell 176:1158–73.e16
    [Google Scholar]
  20. 20.
    Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM et al. 2018. A gut-brain neural circuit for nutrient sensory transduction. Science 361:eaat5236
    [Google Scholar]
  21. 21.
    Buchanan KL, Rupprecht LE, Kaelberer MM, Sahasrabudhe A, Klein ME et al. 2022. The preference for sugar over sweetener depends on a gut sensor cell. Nat. Neurosci. 25:191–200
    [Google Scholar]
  22. 22.
    Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C et al. 2017. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170:185–98.e16
    [Google Scholar]
  23. 23.
    Cho HJ, Robinson ES, Rivera LR, McMillan PJ, Testro A et al. 2014. Glucagon-like peptide 1 and peptide YY are in separate storage organelles in enteroendocrine cells. Cell Tissue Res. 357:63–69
    [Google Scholar]
  24. 24.
    Bayrer JR, Castro J, Venkataraman A, Touhara KK, Rossen ND et al. 2023. Gut enterochromaffin cells drive visceral pain and anxiety. Nature 616:137–42
    [Google Scholar]
  25. 25.
    Xu J, Yu H, Sun X. 2020. Less is more: rare pulmonary neuroendocrine cells function as critical sensors in lung. Dev. Cell 55:123–32
    [Google Scholar]
  26. 26.
    Wang D, Youngson C, Wong V, Yeger H, Dinauer MC et al. 1996. NADPH-oxidase and a hydrogen peroxide-sensitive K+ channel may function as an oxygen sensor complex in airway chemoreceptors and small cell lung carcinoma cell lines. PNAS 93:13182–87
    [Google Scholar]
  27. 27.
    Cutz E, Jackson A. 1999. Neuroepithelial bodies as airway oxygen sensors. Respir. Physiol. 115:201–14
    [Google Scholar]
  28. 28.
    Youngson C, Nurse C, Yeger H, Cutz E. 1993. Oxygen sensing in airway chemoreceptors. Nature 365:153–55
    [Google Scholar]
  29. 29.
    Fu XW, Nurse CA, Wong V, Cutz E. 2002. Hypoxia-induced secretion of serotonin from intact pulmonary neuroepithelial bodies in neonatal rabbit. J. Physiol. 539:503–10
    [Google Scholar]
  30. 30.
    Schuller HM, Plummer HK 3rd, Jull BA. 2003. Receptor-mediated effects of nicotine and its nitrosated derivative NNK on pulmonary neuroendocrine cells. Anat. Rec. A. Discov. Mol. Cell Evol. Biol. 270:51–58
    [Google Scholar]
  31. 31.
    Pan J, Copland I, Post M, Yeger H, Cutz E. 2006. Mechanical stretch-induced serotonin release from pulmonary neuroendocrine cells: implications for lung development. Am. J. Physiol. Lung Cell. Mol. Physiol. 290:L185–93
    [Google Scholar]
  32. 32.
    Lembrechts R, Brouns I, Schnorbusch K, Pintelon I, Timmermans JP, Adriaensen D. 2012. Neuroepithelial bodies as mechanotransducers in the intrapulmonary airway epithelium: involvement of TRPC5. Am. J. Respir. Cell Mol. Biol. 47:315–23
    [Google Scholar]
  33. 33.
    Nonomura K, Woo SH, Chang RB, Gillich A, Qiu Z et al. 2017. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature 541:176–81
    [Google Scholar]
  34. 34.
    Kuo CS, Darmanis S, Diaz de Arce A, Liu Y, Almanzar N et al. 2022. Neuroendocrinology of the lung revealed by single-cell RNA sequencing. eLife 11:e78216
    [Google Scholar]
  35. 35.
    Lopez-Barneo J, Ortega-Saenz P, Pardal R, Pascual A, Piruat JI. 2008. Carotid body oxygen sensing. Eur. Respir. J. 32:1386–98
    [Google Scholar]
  36. 36.
    Ortega-Saenz P, Lopez-Barneo J. 2020. Physiology of the carotid body: from molecules to disease. Annu. Rev. Physiol. 82:127–49
    [Google Scholar]
  37. 37.
    López-Barneo J, González-Rodríguez P, Gao L, Fernández-Agüera MC, Pardal R, Ortega-Sáenz P. 2016. Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am. J. Physiol. Cell Physiol. 310:C629–42
    [Google Scholar]
  38. 38.
    Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. 2021. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol. Rev. 101:1177–235
    [Google Scholar]
  39. 39.
    Ortega-Sáenz P, López-Barneo J. 2020. Physiology of the carotid body: from molecules to disease. Annu. Rev. Physiol. 82:127–49
    [Google Scholar]
  40. 40.
    Nurse CA. 1990. Carbonic anhydrase and neuronal enzymes in cultured glomus cells of the carotid body of the rat. Cell Tissue Res. 261:65–71
    [Google Scholar]
  41. 41.
    Pardal R, Lopez-Barneo J. 2002. Low glucose-sensing cells in the carotid body. Nat. Neurosci. 5:197–98
    [Google Scholar]
  42. 42.
    Garcia-Fernandez M, Ortega-Saenz P, Castellano A, Lopez-Barneo J. 2007. Mechanisms of low-glucose sensitivity in carotid body glomus cells. Diabetes 56:2893–900
    [Google Scholar]
  43. 43.
    Zhou T, Chien MS, Kaleem S, Matsunami H. 2016. Single cell transcriptome analysis of mouse carotid body glomus cells. J. Physiol. 594:4225–51
    [Google Scholar]
  44. 44.
    Porzionato A, Rucinski M, Macchi V, Stecco C, Castagliuolo I et al. 2011. Expression of leptin and leptin receptor isoforms in the rat and human carotid body. Brain Res. 1385:56–67
    [Google Scholar]
  45. 45.
    Messenger SA, Moreau JM, Ciriello J. 2012. Intermittent hypoxia and systemic leptin administration induces pSTAT3 and Fos/Fra-1 in the carotid body. Brain Res. 1446:56–70
    [Google Scholar]
  46. 46.
    López-Barneo J, López-López JR, Ureña J, González C. 1988. Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science 241:580–82
    [Google Scholar]
  47. 47.
    Duchen MR, Caddy KW, Kirby GC, Patterson DL, Ponte J, Biscoe TJ. 1988. Biophysical studies of the cellular elements of the rabbit carotid body. Neuroscience 26:291–311
    [Google Scholar]
  48. 48.
    Buckler KJ, Vaughan-Jones RD. 1994. Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells. J. Physiol. 478:Part 1157–71
    [Google Scholar]
  49. 49.
    Gao L, Ortega-Sáenz P, García-Fernández M, González-Rodríguez P, Caballero-Eraso C, López-Barneo J. 2014. Glucose sensing by carotid body glomus cells: potential implications in disease. Front. Physiol. 5:398
    [Google Scholar]
  50. 50.
    Rong W, Gourine AV, Cockayne DA, Xiang Z, Ford APDW et al. 2003. Pivotal role of nucleotide P2X2 receptor subunit of the ATP-gated ion channel mediating ventilatory responses to hypoxia. J. Neurosci. 23:11315–21
    [Google Scholar]
  51. 51.
    Zhang M, Vollmer C, Nurse CA. 2018. Adenosine and dopamine oppositely modulate a hyperpolarization-activated current Ih in chemosensory neurons of the rat carotid body in co-culture. J. Physiol. 596:3101–17
    [Google Scholar]
  52. 52.
    Carroll JL, Boyle KM, Wasicko MJ, Sterni LM. 2005. Dopamine D2 receptor modulation of carotid body type 1 cell intracellular calcium in developing rats. Am. J. Physiol. Lung Cell. Mol. Physiol. 288:L910–16
    [Google Scholar]
  53. 53.
    Conde SV, Monteiro EC, Rigual R, Obeso A, Gonzalez C. 2012. Hypoxic intensity: a determinant for the contribution of ATP and adenosine to the genesis of carotid body chemosensory activity. J. Appl. Physiol. 112:2002–10
    [Google Scholar]
  54. 54.
    Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell 124:783–801
    [Google Scholar]
  55. 55.
    Rehwinkel J, Gack MU. 2020. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat. Rev. Immunol. 20:537–51
    [Google Scholar]
  56. 56.
    Li D, Wu M. 2021. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 6:291
    [Google Scholar]
  57. 57.
    Paudel YN, Angelopoulou E, Akyuz E, Piperi C, Othman I, Shaikh MF. 2020. Role of innate immune receptor TLR4 and its endogenous ligands in epileptogenesis. Pharmacol. Res. 160:105172
    [Google Scholar]
  58. 58.
    Uematsu S, Fujimoto K, Jang MH, Yang B-G, Jung Y-J et al. 2008. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol. 9:769–76
    [Google Scholar]
  59. 59.
    Reis J, Guan XQ, Kisselev AF, Papasian CJ, Qureshi AA et al. 2011. LPS-induced formation of immunoproteasomes: TNF-α and nitric oxide production are regulated by altered composition of proteasome-active sites. Cell. Biochem. Biophys. 60:77–88
    [Google Scholar]
  60. 60.
    Takeuchi O, Akira S. 2010. Pattern recognition receptors and inflammation. Cell 140:805–20
    [Google Scholar]
  61. 61.
    Talker SC, Baumann A, Barut GT, Keller I, Bruggmann R, Summerfield A. 2018. Precise delineation and transcriptional characterization of bovine blood dendritic-cell and monocyte subsets. Front. Immunol. 9:2505
    [Google Scholar]
  62. 62.
    Grandoni F, Scatà MC, Martucciello A, De Carlo E, De Matteis G, Hussen J. 2022. Comprehensive phenotyping of peripheral blood monocytes in healthy bovine. Cytom. A 101:122–30
    [Google Scholar]
  63. 63.
    Klein Wolterink RGJ, Wu GS, Chiu IM, Veiga-Fernandes H. 2022. Neuroimmune interactions in peripheral organs. Annu. Rev. Neurosci. 45:339–60
    [Google Scholar]
  64. 64.
    Alves de Lima K, Rustenhoven J, Kipnis J. 2020. Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annu. Rev. Immunol. 38:597–620
    [Google Scholar]
  65. 65.
    Chu C, Artis D, Chiu IM. 2020. Neuro-immune interactions in the tissues. Immunity 52:464–74
    [Google Scholar]
  66. 66.
    Spencer NJ, Hu H. 2020. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat. Rev. Gastroenterol. Hepatol. 17:338–51
    [Google Scholar]
  67. 67.
    Armour JA. 2008. Potential clinical relevance of the ‘little brain’ on the mammalian heart. Exp. Physiol. 93:165–76
    [Google Scholar]
  68. 68.
    Li W, Yu G, Liu Y, Sha L. 2019. Intrapancreatic ganglia and neural regulation of pancreatic endocrine secretion. Front. Neurosci. 13:21
    [Google Scholar]
  69. 69.
    Jakob MO, Kofoed-Branzk M, Deshpande D, Murugan S, Klose CSN. 2021. An integrated view on neuronal subsets in the peripheral nervous system and their role in immunoregulation. Front. Immunol. 12:679055
    [Google Scholar]
  70. 70.
    Morarach K, Mikhailova A, Knoflach V, Memic F, Kumar R et al. 2021. Diversification of molecularly defined myenteric neuron classes revealed by single-cell RNA sequencing. Nat. Neurosci. 24:34–46
    [Google Scholar]
  71. 71.
    Sharkey KA, Savidge TC. 2014. Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton. Neurosci. 181:94–106
    [Google Scholar]
  72. 72.
    Lai NY, Mills K, Chiu IM. 2017. Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence. J. Intern. Med. 282:5–23
    [Google Scholar]
  73. 73.
    Mao YK, Kasper DL, Wang B, Forsythe P, Bienenstock J, Kunze WA. 2013. Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. Nat. Commun. 4:1465
    [Google Scholar]
  74. 74.
    Cardoso V, Chesne J, Ribeiro H, Garcia-Cassani B, Carvalho T et al. 2017. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549:277–81
    [Google Scholar]
  75. 75.
    Beaumont E, Salavatian S, Southerland EM, Vinet A, Jacquemet V et al. 2013. Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function. J. Physiol. 591:4515–33
    [Google Scholar]
  76. 76.
    Hopkins DA, Armour JA. 1989. Ganglionic distribution of afferent neurons innervating the canine heart and cardiopulmonary nerves. J. Auton. Nerv. Syst. 26:213–22
    [Google Scholar]
  77. 77.
    Wang Y, Leung VH, Zhang Y, Nudell VS, Loud M et al. 2022. The role of somatosensory innervation of adipose tissues. Nature 609:569–74
    [Google Scholar]
  78. 78.
    Qi L, Lin SH, Ma Q. 2023. Spinal VGLUT3 lineage neurons drive visceral mechanical allodynia but not sensitized visceromotor reflexes. Neuron 111:669–81
    [Google Scholar]
  79. 79.
    Prescott SL, Liberles SD. 2022. Internal senses of the vagus nerve. Neuron 110:579–99
    [Google Scholar]
  80. 80.
    Prescott SL, Umans BD, Williams EK, Brust RD, Liberles SD. 2020. An airway protection program revealed by sweeping genetic control of vagal afferents. Cell 181:574–89.e14
    [Google Scholar]
  81. 81.
    Livneh Y, Andermann ML. 2021. Cellular activity in insular cortex across seconds to hours: sensations and predictions of bodily states. Neuron 109:3576–93
    [Google Scholar]
  82. 82.
    Cutsforth-Gregory JK, Benarroch EE. 2017. Nucleus of the solitary tract, medullary reflexes, and clinical implications. Neurology 88:1187–96
    [Google Scholar]
  83. 83.
    Ran C, Boettcher JC, Kaye JA, Gallori CE, Liberles SD. 2022. A brainstem map for visceral sensations. Nature 609:320–26
    [Google Scholar]
  84. 84.
    Grundy L, Brierley SM. 2018. Cross-organ sensitization between the colon and bladder: to pee or not to pee?. Am. J. Physiol. Gastrointest Liver. Physiol. 314:G301–8
    [Google Scholar]
  85. 85.
    Zhao Q, Yu CD, Wang R, Xu QJ, Dai Pra R et al. 2022. A multidimensional coding architecture of the vagal interoceptive system. Nature 603:878–84
    [Google Scholar]
  86. 86.
    Yoshikawa S, Kawamorita N, Oguchi T, Funahashi Y, Tyagi P et al. 2015. Pelvic organ cross-sensitization to enhance bladder and urethral pain behaviors in rats with experimental colitis. Neuroscience 284:422–29
    [Google Scholar]
  87. 87.
    Bai L, Mesgarzadeh S, Ramesh KS, Huey EL, Liu Y et al. 2019. Genetic identification of vagal sensory neurons that control feeding. Cell 179:1129–43.e23
    [Google Scholar]
  88. 88.
    Williams EK, Chang RB, Strochlic DE, Umans BD, Lowell BB, Liberles SD. 2016. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166:209–21
    [Google Scholar]
  89. 89.
    Hockley JRF, Taylor TS, Callejo G, Wilbrey AL, Gutteridge A et al. 2019. Single-cell RNAseq reveals seven classes of colonic sensory neuron. Gut 68:633–44
    [Google Scholar]
  90. 90.
    Yu J, Wang YF, Zhang JW. 2003. Structure of slowly adapting pulmonary stretch receptors in the lung periphery. J. Appl. Physiol. 95:385–93
    [Google Scholar]
  91. 91.
    Yu J. 2020. Spectrum of myelinated pulmonary afferents (III) cracking intermediate adapting receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 319:R724–32
    [Google Scholar]
  92. 92.
    Xia G, Tawhai MH, Hoffman EA, Lin CL. 2010. Airway wall stiffening increases peak wall shear stress: a fluid-structure interaction study in rigid and compliant airways. Ann. Biomed. Eng. 38:1836–53
    [Google Scholar]
  93. 93.
    Ruhl CR, Pasko BL, Khan HS, Kindt LM, Stamm CE et al. 2020. Mycobacterium tuberculosis sulfolipid-1 activates nociceptive neurons and induces cough. Cell 181:293–305.e11
    [Google Scholar]
  94. 94.
    Han L, Limjunyawong N, Ru F, Li Z, Hall OJ et al. 2018. Mrgprs on vagal sensory neurons contribute to bronchoconstriction and airway hyper-responsiveness. Nat. Neurosci. 21:324–28
    [Google Scholar]
  95. 95.
    Crosson T, Wang JC, Doyle B, Merrison H, Balood M et al. 2021. FcεR1-expressing nociceptors trigger allergic airway inflammation. J. Allergy Clin. Immunol. 147:2330–42
    [Google Scholar]
  96. 96.
    Talbot S, Abdulnour RE, Burkett PR, Lee S, Cronin SJ et al. 2015. Silencing nociceptor neurons reduces allergic airway inflammation. Neuron 87:341–54
    [Google Scholar]
  97. 97.
    Trankner D, Hahne N, Sugino K, Hoon MA, Zuker C. 2014. Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways. PNAS 111:11515–20
    [Google Scholar]
  98. 98.
    Bin NR, Prescott SL, Horio N, Wang Y, Chiu IM, Liberles SD. 2023. An airway-to-brain sensory pathway mediates influenza-induced sickness. Nature 615:660–67
    [Google Scholar]
  99. 99.
    Chang RB, Strochlic DE, Williams EK, Umans BD, Liberles SD. 2015. Vagal sensory neuron subtypes that differentially control breathing. Cell 161:622–33
    [Google Scholar]
  100. 100.
    Kim SH, Patil MJ, Hadley SH, Bahia PK, Butler SG et al. 2022. Mapping of the sensory innervation of the mouse lung by specific vagal and dorsal root ganglion neuronal subsets. eNeuro 9:ENEURO.0026–22.2022124
    [Google Scholar]
  101. 101.
    Berthoud HR, Neuhuber WL. 2000. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85:1–17
    [Google Scholar]
  102. 102.
    Powley TL, Spaulding RA, Haglof SA. 2011. Vagal afferent innervation of the proximal gastrointestinal tract mucosa: chemoreceptor and mechanoreceptor architecture. J. Comp. Neurol. 519:644–60
    [Google Scholar]
  103. 103.
    Zagorodnyuk VP, Chen BN, Costa M, Brookes SJ. 2003. Mechanotransduction by intraganglionic laminar endings of vagal tension receptors in the guinea-pig oesophagus. J. Physiol. 553:575–87
    [Google Scholar]
  104. 104.
    Zagorodnyuk VP, Brookes SJ. 2000. Transduction sites of vagal mechanoreceptors in the guinea pig esophagus. J. Neurosci. 20:6249–55
    [Google Scholar]
  105. 105.
    Zagorodnyuk VP, Chen BN, Brookes SJ. 2001. Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. J. Physiol. 534:255–68
    [Google Scholar]
  106. 106.
    Powley TL, Hudson CN, McAdams JL, Baronowsky EA, Phillips RJ. 2016. Vagal intramuscular arrays: the specialized mechanoreceptor arbors that innervate the smooth muscle layers of the stomach examined in the rat. J. Comp. Neurol. 524:713–37
    [Google Scholar]
  107. 107.
    Barton JR, Londregran AK, Alexander TD, Entezari AA, Bar-Ad S et al. 2023. Intestinal neuropod cell GUCY2C regulates visceral pain. J. Clin. Investig. 133:e165578
    [Google Scholar]
  108. 108.
    Ranade SS, Woo SH, Dubin AE, Moshourab RA, Wetzel C et al. 2014. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516:121–25
    [Google Scholar]
  109. 109.
    Woo SH, Ranade S, Weyer AD, Dubin AE, Baba Y et al. 2014. Piezo2 is required for Merkel-cell mechanotransduction. Nature 509:622–26
    [Google Scholar]
  110. 110.
    Ichiki T, Wang T, Kennedy A, Pool AH, Ebisu H et al. 2022. Sensory representation and detection mechanisms of gut osmolality change. Nature 602:468–74
    [Google Scholar]
  111. 111.
    Tan HE, Sisti AC, Jin H, Vignovich M, Villavicencio M et al. 2020. The gut-brain axis mediates sugar preference. Nature 580:511–16
    [Google Scholar]
  112. 112.
    Li M, Tan HE, Lu Z, Tsang KS, Chung AJ, Zuker CS. 2022. Gut-brain circuits for fat preference. Nature 610:722–30
    [Google Scholar]
  113. 113.
    Borgmann D, Ciglieri E, Biglari N, Brandt C, Cremer AL et al. 2021. Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism. Cell Metab. 133:1466–82.e7
    [Google Scholar]
  114. 114.
    Brookes SJ, Spencer NJ, Costa M, Zagorodnyuk VP. 2013. Extrinsic primary afferent signalling in the gut. Nat. Rev. Gastroenterol. Hepatol. 10:286–96
    [Google Scholar]
  115. 115.
    Grundy L, Erickson A, Brierley SM. 2019. Visceral pain. Annu. Rev. Physiol. 81:261–84
    [Google Scholar]
  116. 116.
    Staurengo-Ferrari L, Deng L, Chiu IM. 2022. Interactions between nociceptor sensory neurons and microbial pathogens in pain. Pain 163:S57–68
    [Google Scholar]
  117. 117.
    Lai NY, Musser MA, Pinho-Ribeiro FA, Baral P, Jacobson A et al. 2020. Gut-innervating nociceptor neurons regulate Peyer's patch microfold cells and SFB levels to mediate Salmonella host defense. Cell 180:33–49.e22
    [Google Scholar]
  118. 118.
    Xie Z, Feng J, Hibberd TJ, Chen BN, Zhao Y et al. 2023. Piezo2 channels expressed by colon-innervating TRPV1-lineage neurons mediate visceral mechanical hypersensitivity. Neuron 111:526–38.e4
    [Google Scholar]
  119. 119.
    Zhang T, Perkins MH, Chang H, Han W, de Araujo IE. 2022. An inter-organ neural circuit for appetite suppression. Cell 185:2478–94.e28
    [Google Scholar]
  120. 120.
    Zeng WZ, Marshall KL, Min S, Daou I, Chapleau MW et al. 2018. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science 362:464–67
    [Google Scholar]
  121. 121.
    Min S, Chang RB, Prescott SL, Beeler B, Joshi NR et al. 2019. Arterial baroreceptors sense blood pressure through decorated aortic claws. Cell Rep 29:2192–201.e3
    [Google Scholar]
  122. 122.
    Rajendran PS, Hadaya J, Khalsa SS, Yu C, Chang R, Shivkumar K. 2023. The vagus nerve in cardiovascular physiology and pathophysiology: from evolutionary insights to clinical medicine. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2023.01.001
    [Google Scholar]
  123. 123.
    Nurse CA, Piskuric NA. 2013. Signal processing at mammalian carotid body chemoreceptors. Semin. Cell Dev. Biol. 24:22–30
    [Google Scholar]
  124. 124.
    Bellinger DL, Lorton D, Felten SY, Felten DL. 1992. Innervation of lymphoid organs and implications in development, aging, and autoimmunity. Int. J. Immunopharmacol. 14:329–44
    [Google Scholar]
  125. 125.
    Huang S, Ziegler CGK, Austin J, Mannoun N, Vukovic M et al. 2021. Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential. Cell 184:441–59.e25
    [Google Scholar]
  126. 126.
    Siso S, Jeffrey M, Gonzalez L. 2010. Sensory circumventricular organs in health and disease. Acta Neuropathol. 120:689–705
    [Google Scholar]
  127. 127.
    Zimmerman CA, Leib DE, Knight ZA. 2017. Neural circuits underlying thirst and fluid homeostasis. Nat. Rev. Neurosci. 18:459–69
    [Google Scholar]
  128. 128.
    Augustine V, Lee S, Oka Y. 2020. Neural control and modulation of thirst, sodium appetite, and hunger. Cell 180:25–32
    [Google Scholar]
  129. 129.
    Ilanges A, Shiao R, Shaked J, Luo JD, Yu X, Friedman JM. 2022. Brainstem ADCYAP1+ neurons control multiple aspects of sickness behaviour. Nature 609:761–71
    [Google Scholar]
  130. 130.
    Borison HL. 1989. Area postrema: chemoreceptor circumventricular organ of the medulla oblongata. Prog. Neurobiol. 32:351–90
    [Google Scholar]
  131. 131.
    Zhang C, Kaye JA, Cai Z, Wang Y, Prescott SL, Liberles SD. 2021. Area postrema cell types that mediate nausea-associated behaviors. Neuron 109:461–72.e5
    [Google Scholar]
  132. 132.
    Hsu JY, Crawley S, Chen M, Ayupova DA, Lindhout DA et al. 2017. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 550:255–59
    [Google Scholar]
  133. 133.
    Luan HH, Wang A, Hilliard BK, Carvalho F, Rosen CE et al. 2019. GDF15 is an inflammation-induced central mediator of tissue tolerance. Cell 178:1231–44
    [Google Scholar]
  134. 134.
    Zhang C, Vincelette LK, Reimann F, Liberles SD. 2022. A brainstem circuit for nausea suppression. Cell Rep. 39:110953
    [Google Scholar]
  135. 135.
    Watanabe E, Hiyama TY, Shimizu H, Kodama R, Hayashi N et al. 2006. Sodium-level-sensitive sodium channel Nax is expressed in glial laminate processes in the sensory circumventricular organs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:R568–76
    [Google Scholar]
  136. 136.
    Hiyama TY, Watanabe E, Ono K, Inenaga K, Tamkun MM et al. 2002. Nax channel involved in CNS sodium-level sensing. Nat. Neurosci. 5:511–12
    [Google Scholar]
  137. 137.
    Miyata S. 2015. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Front. Neurosci. 9:390
    [Google Scholar]
  138. 138.
    Hicks AI, Kobrinsky S, Zhou S, Yang J, Prager-Khoutorsky M. 2021. Anatomical organization of the rat subfornical organ. Front. Cell Neurosci. 15:691711
    [Google Scholar]
  139. 139.
    Levin BE, Magnan C, Dunn-Meynell A, Le Foll C 2011. Metabolic sensing and the brain: Who, what, where, and how?. Endocrinology 152:2552–57
    [Google Scholar]
  140. 140.
    Jais A, Bruning JC. 2022. Arcuate nucleus-dependent regulation of metabolism-pathways to obesity and diabetes mellitus. Endocr. Rev. 43:314–28
    [Google Scholar]
  141. 141.
    Langlet F, Levin BE, Luquet S, Mazzone M, Messina A et al. 2013. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 17:607–17
    [Google Scholar]
  142. 142.
    Schaeffer M, Langlet F, Lafont C, Molino F, Hodson DJ et al. 2013. Rapid sensing of circulating ghrelin by hypothalamic appetite-modifying neurons. PNAS 110:1512–17
    [Google Scholar]
  143. 143.
    Chen SR, Chen H, Zhou JJ, Pradhan G, Sun Y et al. 2017. Ghrelin receptors mediate ghrelin-induced excitation of agouti-related protein/neuropeptide Y but not pro-opiomelanocortin neurons. J. Neurochem. 142:512–20
    [Google Scholar]
  144. 144.
    Wang Q, Liu C, Uchida A, Chuang JC, Walker A et al. 2014. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin. Mol. Metab. 3:64–72
    [Google Scholar]
  145. 145.
    Wu CS, Bongmba OYN, Yue J, Lee JH, Lin L et al. 2017. Suppression of GHS-R in AgRP neurons mitigates diet-induced obesity by activating thermogenesis. Int. J. Mol. Sci. 18:832
    [Google Scholar]
  146. 146.
    Van de Wall E, Leshan R, Xu AW, Balthasar N, Coppari R et al. 2008. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149:1773–85
    [Google Scholar]
  147. 147.
    Xu J, Bartolome CL, Low CS, Yi X, Chien CH et al. 2018. Genetic identification of leptin neural circuits in energy and glucose homeostases. Nature 556:505–9
    [Google Scholar]
  148. 148.
    Vong L, Ye C, Yang Z, Choi B, Chua S Jr., Lowell BB 2011. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71:142–54
    [Google Scholar]
  149. 149.
    Guyenet PG, Stornetta RL, Souza G, Abbott SBG, Shi Y, Bayliss DA. 2019. The retrotrapezoid nucleus: central chemoreceptor and regulator of breathing automaticity. Trends Neurosci. 42:807–24
    [Google Scholar]
  150. 150.
    Guyenet PG, Bayliss DA. 2015. Neural control of breathing and CO2 homeostasis. Neuron 87:946–61
    [Google Scholar]
  151. 151.
    Guyenet PG, Stornetta RL, Bayliss DA. 2010. Central respiratory chemoreception. J. Comp. Neurol. 518:3883–906
    [Google Scholar]
  152. 152.
    Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A et al. 2004. Respiratory control by ventral surface chemoreceptor neurons in rats. Nat. Neurosci. 7:1360–69
    [Google Scholar]
  153. 153.
    Abbott SB, Stornetta RL, Coates MB, Guyenet PG. 2011. Phox2b-expressing neurons of the parafacial region regulate breathing rate, inspiration, and expiration in conscious rats. J. Neurosci. 31:16410–22
    [Google Scholar]
  154. 154.
    Souza G, Kanbar R, Stornetta DS, Abbott SBG, Stornetta RL, Guyenet PG. 2018. Breathing regulation and blood gas homeostasis after near complete lesions of the retrotrapezoid nucleus in adult rats. J. Physiol. 596:2521–45
    [Google Scholar]
  155. 155.
    Goncalves CM, Mulkey DK. 2018. Bicarbonate directly modulates activity of chemosensitive neurons in the retrotrapezoid nucleus. J. Physiol. 596:4033–42
    [Google Scholar]
  156. 156.
    Meigh L, Greenhalgh SA, Rodgers TL, Cann MJ, Roper DI, Dale N. 2013. CO2 directly modulates connexin 26 by formation of carbamate bridges between subunits. eLife 2:e01213
    [Google Scholar]
  157. 157.
    Hawkins VE, Takakura AC, Trinh A, Malheiros-Lima MR, Cleary CM et al. 2017. Purinergic regulation of vascular tone in the retrotrapezoid nucleus is specialized to support the drive to breathe. eLife 6:e25232
    [Google Scholar]
  158. 158.
    Rasmussen MK, Mestre H, Nedergaard M. 2022. Fluid transport in the brain. Physiol. Rev. 102:1025–151
    [Google Scholar]
  159. 159.
    Olsson B, Lautner R, Andreasson U, Ohrfelt A, Portelius E et al. 2016. CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis. Lancet Neurol. 15:673–84
    [Google Scholar]
  160. 160.
    Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T et al. 2018. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17:162–73
    [Google Scholar]
  161. 161.
    Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W et al. 2006. The cells and logic for mammalian sour taste detection. Nature 442:934–38
    [Google Scholar]
  162. 162.
    Bohm UL, Prendergast A, Djenoune L, Nunes Figueiredo S, Gomez J et al. 2016. CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits. Nat. Commun. 7:10866
    [Google Scholar]
  163. 163.
    Gerstmann K, Jurcic N, Blasco E, Kunz S, de Almeida Sassi F et al. 2022. The role of intraspinal sensory neurons in the control of quadrupedal locomotion. Curr. Biol. 32:2442–53.e4
    [Google Scholar]
  164. 164.
    Prendergast AE, Jim KK, Marnas H, Desban L, Quan FB et al. 2023. CSF-contacting neurons respond to Streptococcus pneumoniae and promote host survival during central nervous system infection. Curr. Biol. 33:940–56.e10
    [Google Scholar]
  165. 165.
    Gamboa-Esteves FO, Lima D, Batten TF. 2001. Neurochemistry of superficial spinal neurones projecting to nucleus of the solitary tract that express c-fos on chemical somatic and visceral nociceptive input in the rat. Metabolic. Brain Dis. 16:151–64
    [Google Scholar]
  166. 166.
    Abegg K, Hermann A, Boyle CN, Bouret SG, Lutz TA, Riediger T. 2017. Involvement of amylin and leptin in the development of projections from the area postrema to the nucleus of the solitary tract. Front. Endocrinol. 8:324
    [Google Scholar]
  167. 167.
    Neyens D, Zhao H, Huston NJ, Wayman GA, Ritter RC, Appleyard SM. 2020. Leptin sensitizes NTS neurons to vagal input by increasing postsynaptic NMDA receptor currents. J. Neurosci. 40:7054–64
    [Google Scholar]
  168. 168.
    Kim SH, Hadley SH, Maddison M, Patil M, Cha B et al. 2020. Mapping of sensory nerve subsets within the vagal ganglia and the brainstem using reporter mice for Pirt, TRPV1, 5-HT3, and Tac1 expression. eNeuro 7:ENEURO.0494–19.2020
    [Google Scholar]
  169. 169.
    Chen J, Cheng M, Wang L, Zhang L, Xu D et al. 2020. A vagal-NTS neural pathway that stimulates feeding. Curr. Biol. 30:3986–98.e5
    [Google Scholar]
  170. 170.
    Chirila AM, Rankin G, Tseng SY, Emanuel AJ, Chavez-Martinez CL et al. 2022. Mechanoreceptor signal convergence and transformation in the dorsal horn flexibly shape a diversity of outputs to the brain. Cell 185:4541–59.e23
    [Google Scholar]
  171. 171.
    Veerakumar A, Yung AR, Liu Y, Krasnow MA. 2022. Molecularly defined circuits for cardiovascular and cardiopulmonary control. Nature 606:739–46
    [Google Scholar]
  172. 172.
    Yao Y, Barger Z, Saffari Doost M, Tso CF, Darmohray D et al. 2022. Cardiovascular baroreflex circuit moonlights in sleep control. Neuron 110:3986–99.e6
    [Google Scholar]
  173. 173.
    Travagli RA, Anselmi L. 2016. Vagal neurocircuitry and its influence on gastric motility. Nat. Rev. Gastroenterol. Hepatol. 13:389–401
    [Google Scholar]
  174. 174.
    Teratani T, Mikami Y, Nakamoto N, Suzuki T, Harada Y et al. 2020. The liver-brain-gut neural arc maintains the Treg cell niche in the gut. Nature 585:591–96
    [Google Scholar]
  175. 175.
    Fawley JA, Hegarty DM, Aicher SA, Beaumont E, Andresen MC. 2021. Dedicated C-fiber vagal sensory afferent pathways to the paraventricular nucleus of the hypothalamus. Brain Res. 1769:147625
    [Google Scholar]
  176. 176.
    Critchley HD, Harrison NA. 2013. Visceral influences on brain and behavior. Neuron 77:624–38
    [Google Scholar]
  177. 177.
    Merrill L, Gonzalez EJ, Girard BM, Vizzard MA. 2016. Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nat. Rev. Urol. 13:193–204
    [Google Scholar]
  178. 178.
    Craig AD. 2002. How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3:655–66
    [Google Scholar]
  179. 179.
    Abraira VE, Ginty DD. 2013. The sensory neurons of touch. Neuron 79:618–39
    [Google Scholar]
  180. 180.
    Campos CA, Bowen AJ, Roman CW, Palmiter RD. 2018. Encoding of danger by parabrachial CGRP neurons. Nature 555:617–22
    [Google Scholar]
  181. 181.
    Chiang MC, Bowen A, Schier LA, Tupone D, Uddin O, Heinricher MM. 2019. Parabrachial complex: a hub for pain and aversion. J. Neurosci. 39:8225–30
    [Google Scholar]
  182. 182.
    Han W, Tellez LA, Perkins MH, Perez IO, Qu T et al. 2018. A neural circuit for gut-induced reward. Cell 175:665–78.e23
    [Google Scholar]
  183. 183.
    Pauli JL, Chen JY, Basiri ML, Park S, Carter ME et al. 2022. Molecular and anatomical characterization of parabrachial neurons and their axonal projections. eLife 11:e81868
    [Google Scholar]
  184. 184.
    Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. 2004. Neural systems supporting interoceptive awareness. Nat. Neurosci. 7:189–95
    [Google Scholar]
  185. 185.
    Hsueh B, Chen R, Jo Y, Tang D, Raffiee M et al. 2023. Cardiogenic control of affective behavioural state. Nature 615:292–99
    [Google Scholar]
  186. 186.
    Klein AS, Dolensek N, Weiand C, Gogolla N. 2021. Fear balance is maintained by bodily feedback to the insular cortex in mice. Science 374:1010–15
    [Google Scholar]
  187. 187.
    Phillips ML, Gregory LJ, Cullen S, Coen S, Ng V et al. 2003. The effect of negative emotional context on neural and behavioural responses to oesophageal stimulation. Brain 126:669–84
    [Google Scholar]
  188. 188.
    Drewes AM, Dimcevski G, Sami SAK, Funch-Jensen P, Huynh KD et al. 2006. The “human visceral homunculus” to pain evoked in the oesophagus, stomach, duodenum and sigmoid colon. Exp. Brain Res. 174:443–52
    [Google Scholar]
  189. 189.
    Craig AD, Chen K, Bandy D, Reiman EM. 2000. Thermosensory activation of insular cortex. Nat. Neurosci. 3:184–90
    [Google Scholar]
  190. 190.
    Craig ADB. 2009. How do you feel—now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10:59–70
    [Google Scholar]
  191. 191.
    Wang F, Kim BS. 2020. Itch: a paradigm of neuroimmune crosstalk. Immunity 52:753–66
    [Google Scholar]
  192. 192.
    Proske U, Gandevia SC. 2012. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 92:1651–97
    [Google Scholar]
  193. 193.
    Craig AD. 2003. Pain mechanisms: labeled lines versus convergence in central processing. Annu. Rev. Neurosci. 26:1–30
    [Google Scholar]
  194. 194.
    Ji RR, Chamessian A, Zhang YQ. 2016. Pain regulation by non-neuronal cells and inflammation. Science 354:572–77
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-042222-023455
Loading
/content/journals/10.1146/annurev-physiol-042222-023455
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error