1932

Abstract

Historically considered a metabolically inert cellular layer separating the blood from the underlying tissue, the endothelium is now recognized as a highly dynamic, metabolically active tissue that is critical to organ homeostasis. Under homeostatic conditions, lung endothelial cells (ECs) in healthy subjects are quiescent, promoting vasodilation, platelet disaggregation, and anti-inflammatory mechanisms. In contrast, lung ECs are essential contributors to the pathobiology of acute respiratory distress syndrome (ARDS), as the quiescent endothelium is rapidly and radically altered upon exposure to environmental stressors, infectious pathogens, or endogenous danger signals into an effective and formidable regulator of innate and adaptive immunity. These dramatic perturbations, produced in a tsunami of inflammatory cascade activation, result in paracellular gap formation between lung ECs, sustained lung edema, and multi-organ dysfunction that drives ARDS mortality. The astonishing plasticity of the lung endothelium in negotiating this inflammatory environment and efforts to therapeutically target the aberrant ARDS endothelium are examined in further detail in this review.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-042222-030731
2024-02-12
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/physiol/86/1/annurev-physiol-042222-030731.html?itemId=/content/journals/10.1146/annurev-physiol-042222-030731&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Beitler JR, Thompson BT, Baron RM, Bastarache JA, Denlinger LC et al. 2022. Advancing precision medicine for acute respiratory distress syndrome. Lancet Respir. Med. 10:107–20
    [Google Scholar]
  2. 2.
    Bachofen M, Weibel ER. 1977. Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am. Rev. Respir. Dis. 116:589–615
    [Google Scholar]
  3. 3.
    Menzies BE, Kourteva I. 1998. Internalization of Staphylococcus aureus by endothelial cells induces apoptosis. Infect. Immun. 66:5994–98
    [Google Scholar]
  4. 4.
    Rengarajan M, Hayer A, Theriot JA. 2016. Endothelial cells use a formin-dependent phagocytosis-like process to internalize the bacterium Listeria monocytogenes. PLOS Pathog. 12:e1005603
    [Google Scholar]
  5. 5.
    Garcia JG, Dodson RF, Callahan KS. 1989. Effect of environmental particulates on cultured human and bovine endothelium. Cellular injury via an oxidant-dependent pathway. Lab. Investig. 61:53–61
    [Google Scholar]
  6. 6.
    Kirsch T, Woywodt A, Beese M, Wyss K, Park JK et al. 2007. Engulfment of apoptotic cells by microvascular endothelial cells induces proinflammatory responses. Blood 109:2854–62
    [Google Scholar]
  7. 7.
    Wang T, Brown ME, Kelly GT, Camp SM, Mascarenhas JB et al. 2018. Myosin light chain kinase (MYLK) coding polymorphisms modulate human lung endothelial cell barrier responses via altered tyrosine phosphorylation, spatial localization, and lamellipodial protrusions. Pulm. Circ. 8:1–7
    [Google Scholar]
  8. 8.
    Mai J, Virtue A, Shen J, Wang H, Yang XF. 2013. An evolving new paradigm: endothelial cells–conditional innate immune cells. J. Hematol. Oncol. 6:61
    [Google Scholar]
  9. 9.
    Schupp JC, Adams TS, Cosme C Jr., Raredon MSB, Yuan Y et al. 2021. Integrated single-cell atlas of endothelial cells of the human lung. Circulation 144:286–302
    [Google Scholar]
  10. 10.
    El Kebir D, Jozsef L, Pan W, Wang L, Filep JG. 2009. Bacterial DNA activates endothelial cells and promotes neutrophil adherence through TLR9 signaling. J. Immunol. 182:4386–94
    [Google Scholar]
  11. 11.
    Li J, Ma Z, Tang ZL, Stevens T, Pitt B, Li S. 2004. CpG DNA-mediated immune response in pulmonary endothelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 287:L552–58
    [Google Scholar]
  12. 12.
    Tissari J, Siren J, Meri S, Julkunen I, Matikainen S. 2005. IFN-α enhances TLR3-mediated antiviral cytokine expression in human endothelial and epithelial cells by up-regulating TLR3 expression. J. Immunol. 174:4289–94
    [Google Scholar]
  13. 13.
    Faure E, Thomas L, Xu H, Medvedev A, Equils O, Arditi M. 2001. Bacterial lipopolysaccharide and IFN-γ induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-κB activation. J. Immunol. 166:2018–24
    [Google Scholar]
  14. 14.
    Dauphinee SM, Karsan A. 2006. Lipopolysaccharide signaling in endothelial cells. Lab. Investig. 86:9–22
    [Google Scholar]
  15. 15.
    Alquraini A, El Khoury J. 2020. Scavenger receptors. Curr. Biol. 30:R790–95
    [Google Scholar]
  16. 16.
    Cao X. 2016. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat. Rev. Immunol. 16:35–50
    [Google Scholar]
  17. 17.
    Opitz B, Eitel J, Meixenberger K, Suttorp N. 2009. Role of Toll-like receptors, NOD-like receptors and RIG-I-like receptors in endothelial cells and systemic infections. Thromb. Haemost. 102:1103–9
    [Google Scholar]
  18. 18.
    Takeuchi O, Akira S. 2010. Pattern recognition receptors and inflammation. Cell 140:805–20
    [Google Scholar]
  19. 19.
    Opitz B, Forster S, Hocke AC, Maass M, Schmeck B et al. 2005. Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae. Circ. Res. 96:319–26
    [Google Scholar]
  20. 20.
    Wang C, Armstrong SM, Sugiyama MG, Tabuchi A, Krauszman A et al. 2015. Influenza-induced priming and leak of human lung microvascular endothelium upon exposure to Staphylococcus aureus. Am. J. Respir. Cell Mol. Biol. 53:459–70
    [Google Scholar]
  21. 21.
    Matzinger P. 1994. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12:991–1045
    [Google Scholar]
  22. 22.
    Schaefer L. 2014. Complexity of danger: the diverse nature of damage-associated molecular patterns. J. Biol. Chem. 289:35237–45
    [Google Scholar]
  23. 23.
    Venereau E, Ceriotti C, Bianchi ME. 2015. DAMPs from cell death to new life. Front. Immunol. 6:422
    [Google Scholar]
  24. 24.
    Hong SB, Huang Y, Moreno-Vinasco L, Sammani S, Moitra J et al. 2008. Essential role of pre-B-cell colony enhancing factor in ventilator-induced lung injury. Am. J. Respir. Crit. Care Med. 178:605–17
    [Google Scholar]
  25. 25.
    Acute Respiratory Distress Syndrome Network 2000. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 342:1301–8
    [Google Scholar]
  26. 26.
    Wolfson RK, Chiang ET, Garcia JG. 2011. HMGB1 induces human lung endothelial cell cytoskeletal rearrangement and barrier disruption. Microvasc. Res. 81:189–97
    [Google Scholar]
  27. 27.
    Wolfson RK, Mapes B, Garcia JGN. 2014. Excessive mechanical stress increases HMGB1 expression in human lung microvascular endothelial cells via STAT3. Microvasc. Res. 92:50–55
    [Google Scholar]
  28. 28.
    Adyshev DM, Elangovan VR, Moldobaeva N, Mapes B, Sun X, Garcia JG. 2014. Mechanical stress induces pre-B-cell colony-enhancing factor/NAMPT expression via epigenetic regulation by miR-374a and miR-568 in human lung endothelium. Am. J. Respir. Cell Mol. Biol. 50:409–18
    [Google Scholar]
  29. 29.
    Bime C, Casanova NG, Camp SM, Oita RC, Ndukum J et al. 2022. Circulating eNAMPT as a biomarker in the critically ill: acute pancreatitis, sepsis, trauma, and acute respiratory distress syndrome. BMC Anesthesiol. 22:182
    [Google Scholar]
  30. 30.
    Garcia AN, Casanova NG, Kempf CL, Bermudez T, Valera DG et al. 2022. eNAMPT is a novel damage-associated molecular pattern protein that contributes to the severity of radiation-induced lung fibrosis. Am. J. Respir. Cell Mol. Biol. 66:497–509
    [Google Scholar]
  31. 31.
    Bime C, Casanova NG, Nikolich-Zugich J, Knox KS, Camp SM, Garcia JGN. 2021. Strategies to DAMPen COVID-19-mediated lung and systemic inflammation and vascular injury. Transl. Res. 232:37–48
    [Google Scholar]
  32. 32.
    Ye SQ, Simon BA, Maloney JP, Zambelli-Weiner A, Gao L et al. 2005. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am. J. Respir. Crit. Care Med. 171:361–70
    [Google Scholar]
  33. 33.
    Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A. 2008. HMGB1: endogenous danger signaling. Mol. Med. 14:476–84
    [Google Scholar]
  34. 34.
    Roh JS, Sohn DH. 2018. Damage-associated molecular patterns in inflammatory diseases. Immune Netw. 18:e27
    [Google Scholar]
  35. 35.
    Bertheloot D, Latz E. 2017. HMGB1, IL-1α, IL-33 and S100 proteins: dual-function alarmins. Cell Mol. Immunol. 14:43–64
    [Google Scholar]
  36. 36.
    Camp SM, Ceco E, Evenoski CL, Danilov SM, Zhou T et al. 2015. Unique Toll-like receptor 4 activation by NAMPT/PBEF induces NFκB signaling and inflammatory lung injury. Sci. Rep. 5:13135
    [Google Scholar]
  37. 37.
    Li D, Wu M. 2021. Pattern recognition receptors in health and diseases. Signal. Transduct. Target. Ther. 6:291
    [Google Scholar]
  38. 38.
    McEver RP, Beckstead JH, Moore KL, Marshall-Carlson L, Bainton DF. 1989. GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J. Clin. Investig. 84:92–99
    [Google Scholar]
  39. 39.
    Utgaard JO, Jahnsen FL, Bakka A, Brandtzaeg P, Haraldsen G. 1998. Rapid secretion of prestored interleukin 8 from Weibel-Palade bodies of microvascular endothelial cells. J. Exp. Med. 188:1751–56
    [Google Scholar]
  40. 40.
    Brigham KL, Woolverton WC, Blake LH, Staub NC. 1974. Increased sheep lung vascular permeability caused by Pseudomonas bacteremia. J. Clin. Investig. 54:792–804
    [Google Scholar]
  41. 41.
    Dudek SM, Garcia JG. 2001. Cytoskeletal regulation of pulmonary vascular permeability. J. Appl. Physiol. 91:1487–500
    [Google Scholar]
  42. 42.
    Dudek SM, Chiang ET, Camp SM, Guo Y, Zhao J et al. 2010. Abl tyrosine kinase phosphorylates nonmuscle myosin light chain kinase to regulate endothelial barrier function. Mol. Biol. Cell 21:4042–56
    [Google Scholar]
  43. 43.
    Dudek SM, Jacobson JR, Chiang ET, Birukov KG, Wang P et al. 2004. Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: roles for cortactin and myosin light chain kinase. J. Biol. Chem. 279:24692–700
    [Google Scholar]
  44. 44.
    Garcia JG, Verin AD, Herenyiova M, English D. 1998. Adherent neutrophils activate endothelial myosin light chain kinase: role in transendothelial migration. J. Appl. Physiol. 84:1817–21
    [Google Scholar]
  45. 45.
    Mirzapoiazova T, Moitra J, Moreno-Vinasco L, Sammani S, Turner JR et al. 2011. Non-muscle myosin light chain kinase isoform is a viable molecular target in acute inflammatory lung injury. Am. J. Respir. Cell Mol. Biol. 44:40–52
    [Google Scholar]
  46. 46.
    Gao L, Grant A, Halder I, Brower R, Sevransky J et al. 2006. Novel polymorphisms in the myosin light chain kinase gene confer risk for acute lung injury. Am. J. Respir. Cell Mol. Biol. 34:487–95
    [Google Scholar]
  47. 47.
    Belvitch P, Casanova N, Sun X, Camp SM, Sammani S et al. 2022. A cortactin CTTN coding SNP contributes to lung vascular permeability and inflammatory disease severity in African descent subjects. Transl. Res. 244:56–74
    [Google Scholar]
  48. 48.
    Usatyuk PV, Singleton PA, Pendyala S, Kalari SK, He D et al. 2012. Novel role for non-muscle myosin light chain kinase (MLCK) in hyperoxia-induced recruitment of cytoskeletal proteins, NADPH oxidase activation, and reactive oxygen species generation in lung endothelium. J. Biol. Chem. 287:9360–75
    [Google Scholar]
  49. 49.
    Kempf CL, Sammani S, Bermudez T, Song JH, Hernon VR et al. 2022. Critical role for the lung endothelial nonmuscle myosin light-chain kinase isoform in the severity of inflammatory murine lung injury. Pulm. Circ. 12:e12061
    [Google Scholar]
  50. 50.
    Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA et al. 2001. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J. Clin. Investig. 108:689–701
    [Google Scholar]
  51. 51.
    Song JH, Mascarenhas JB, Sammani S, Kempf CL, Cai H et al. 2022. TLR4 activation induces inflammatory vascular permeability via Dock1 targeting and NOX4 upregulation. Biochim. Biophys. Acta Mol. Basis Dis. 1868:166562
    [Google Scholar]
  52. 52.
    Palumbo S, Shin YJ, Ahmad K, Desai AA, Quijada H et al. 2017. Dysregulated Nox4 ubiquitination contributes to redox imbalance and age-related severity of acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 312:L297–308
    [Google Scholar]
  53. 53.
    Garcia JG, Davis HW, Patterson CE. 1995. Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J. Cell. Physiol. 163:510–22
    [Google Scholar]
  54. 54.
    Garcia JG, Verin AD, Schaphorst K, Siddiqui R, Patterson CE et al. 1999. Regulation of endothelial cell myosin light chain kinase by Rho, cortactin, and p60src. Am. J. Physiol. 276:L989–98
    [Google Scholar]
  55. 55.
    Linz-McGillem LA, Moitra J, Garcia JG. 2004. Cytoskeletal rearrangement and caspase activation in sphingosine 1-phosphate-induced lung capillary tube formation. Stem Cells Dev. 13:496–508
    [Google Scholar]
  56. 56.
    Petrache I, Birukov K, Zaiman AL, Crow MT, Deng H et al. 2003. Caspase-dependent cleavage of myosin light chain kinase (MLCK) is involved in TNF-α-mediated bovine pulmonary endothelial cell apoptosis. FASEB J. 17:407–16
    [Google Scholar]
  57. 57.
    Mascarenhas JB, Tchourbanov AY, Fan H, Danilov SM, Wang T, Garcia JG. 2017. Mechanical stress and single nucleotide variants regulate alternative splicing of the MYLK gene. Am. J. Respir. Cell Mol. Biol. 56:29–37
    [Google Scholar]
  58. 58.
    Sun X, Sun BL, Sammani S, Bermudez T, Dudek SM et al. 2021. Genetic and epigenetic regulation of the non-muscle myosin light chain kinase isoform by lung inflammatory factors and mechanical stress. Clin. Sci. 135:963–77
    [Google Scholar]
  59. 59.
    Liu P, Rojo de la Vega M, Sammani S, Mascarenhas JB, Kerins M et al. 2018. RPA1 binding to NRF2 switches ARE-dependent transcriptional activation to ARE-NRE-dependent repression. PNAS 115:E10352–61
    [Google Scholar]
  60. 60.
    Wojciak-Stothard B, Ridley AJ. 2002. Rho GTPases and the regulation of endothelial permeability. Vascul. Pharmacol. 39:187–99
    [Google Scholar]
  61. 61.
    Shikata Y, Rios A, Kawkitinarong K, DePaola N, Garcia JG, Birukov KG. 2005. Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells. Exp. Cell Res. 304:40–49
    [Google Scholar]
  62. 62.
    Finigan JH, Boueiz A, Wilkinson E, Damico R, Skirball J et al. 2009. Activated protein C protects against ventilator-induced pulmonary capillary leak. Am. J. Physiol. Lung Cell. Mol. Physiol. 296:L1002–11
    [Google Scholar]
  63. 63.
    Birukova AA, Birukov KG, Adyshev D, Usatyuk P, Natarajan V et al. 2005. Involvement of microtubules and Rho pathway in TGF-β1-induced lung vascular barrier dysfunction. J. Cell. Physiol. 204:934–47
    [Google Scholar]
  64. 64.
    Brown M, Adyshev D, Bindokas V, Moitra J, Garcia JG, Dudek SM. 2010. Quantitative distribution and colocalization of non-muscle myosin light chain kinase isoforms and cortactin in human lung endothelium. Microvasc. Res. 80:75–88
    [Google Scholar]
  65. 65.
    Liu F, Schaphorst KL, Verin AD, Jacobs K, Birukova A et al. 2002. Hepatocyte growth factor enhances endothelial cell barrier function and cortical cytoskeletal rearrangement: potential role of glycogen synthase kinase-3β. FASEB J. 16:950–62
    [Google Scholar]
  66. 66.
    Ephstein Y, Singleton PA, Chen W, Wang L, Salgia R et al. 2013. Critical role of S1PR1 and integrin β4 in HGF/c-Met-mediated increases in vascular integrity. J. Biol. Chem. 288:2191–200
    [Google Scholar]
  67. 67.
    Chen W, Pendyala S, Natarajan V, Garcia JG, Jacobson JR. 2008. Endothelial cell barrier protection by simvastatin: GTPase regulation and NADPH oxidase inhibition. Am. J. Physiol. Lung Cell. Mol. Physiol. 295:L575–83
    [Google Scholar]
  68. 68.
    Venkataraman K, Lee YM, Michaud J, Thangada S, Ai Y et al. 2008. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ. Res. 102:669–76
    [Google Scholar]
  69. 69.
    Ancellin N, Colmont C, Su J, Li Q, Mittereder N et al. 2002. Extracellular export of sphingosine kinase-1 enzyme: sphingosine 1-phosphate generation and the induction of angiogenic vascular maturation. J. Biol. Chem. 277:6667–75
    [Google Scholar]
  70. 70.
    Schaphorst KL, Chiang E, Jacobs KN, Zaiman A, Natarajan V et al. 2003. Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. Am. J. Physiol. Lung Cell. Mol. Physiol. 285:L258–67
    [Google Scholar]
  71. 71.
    Camerer E, Regard JB, Cornelissen I, Srinivasan Y, Duong DN et al. 2009. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J. Clin. Investig. 119:1871–79
    [Google Scholar]
  72. 72.
    Li JJ, Huang YQ, Basch R, Karpatkin S. 2001. Thrombin induces the release of angiopoietin-1 from platelets. Thromb. Haemost. 85:204–6
    [Google Scholar]
  73. 73.
    Tauseef M, Kini V, Knezevic N, Brannan M, Ramchandaran R et al. 2008. Activation of sphingosine kinase-1 reverses the increase in lung vascular permeability through sphingosine-1-phosphate receptor signaling in endothelial cells. Circ. Res. 103:1164–72
    [Google Scholar]
  74. 74.
    Obinata H, Kuo A, Wada Y, Swendeman S, Liu CH et al. 2019. Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient mice. J. Lipid Res. 60:1912–21
    [Google Scholar]
  75. 75.
    Singleton PA, Dudek SM, Chiang ET, Garcia JG. 2005. Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and α-actinin. FASEB J. 19:1646–56
    [Google Scholar]
  76. 76.
    Oo ML, Chang SH, Thangada S, Wu MT, Rezaul K et al. 2011. Engagement of S1P1-degradative mechanisms leads to vascular leak in mice. J. Clin. Investig. 121:2290–300
    [Google Scholar]
  77. 77.
    Sun X, Singleton PA, Letsiou E, Zhao J, Belvitch P et al. 2012. Sphingosine-1-phosphate receptor-3 is a novel biomarker in acute lung injury. Am. J. Respir. Cell Mol. Biol. 47:628–36
    [Google Scholar]
  78. 78.
    Sun X, Ma SF, Wade MS, Acosta-Herrera M, Villar J et al. 2013. Functional promoter variants in sphingosine 1-phosphate receptor 3 associate with susceptibility to sepsis-associated acute respiratory distress syndrome. Am. J. Physiol. Lung Cell. Mol. Physiol. 305:L467–77
    [Google Scholar]
  79. 79.
    David S, Ghosh CC, Mukherjee A, Parikh SM. 2011. Angiopoietin-1 requires IQ domain GTPase-activating protein 1 to activate Rac1 and promote endothelial barrier defense. Arterioscler. Thromb. Vasc. Biol. 31:2643–52
    [Google Scholar]
  80. 80.
    Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. 2000. Vascular-specific growth factors and blood vessel formation. Nature 407:242–48
    [Google Scholar]
  81. 81.
    Daly C, Wong V, Burova E, Wei Y, Zabski S et al. 2004. Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev. 18:1060–71
    [Google Scholar]
  82. 82.
    Korhonen EA, Lampinen A, Giri H, Anisimov A, Kim M et al. 2016. Tie1 controls angiopoietin function in vascular remodeling and inflammation. J. Clin. Investig. 126:3495–510
    [Google Scholar]
  83. 83.
    Ziegler T, Horstkotte J, Schwab C, Pfetsch V, Weinmann K et al. 2013. Angiopoietin 2 mediates microvascular and hemodynamic alterations in sepsis. J. Clin. Investig. 123:3436–45
    [Google Scholar]
  84. 84.
    Parikh SM, Mammoto T, Schultz A, Yuan HT, Christiani D et al. 2006. Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLOS Med. 3:e46
    [Google Scholar]
  85. 85.
    Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S et al. 2006. Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation. Nat. Med. 12:235–39
    [Google Scholar]
  86. 86.
    Stiehl T, Thamm K, Kaufmann J, Schaeper U, Kirsch T et al. 2014. Lung-targeted RNA interference against angiopoietin-2 ameliorates multiple organ dysfunction and death in sepsis. Crit. Care Med. 42:e654–62
    [Google Scholar]
  87. 87.
    Higgins SJ, De Ceunynck K, Kellum JA, Chen X, Gu X et al. 2018. Tie2 protects the vasculature against thrombus formation in systemic inflammation. J. Clin. Investig. 128:1471–84
    [Google Scholar]
  88. 88.
    Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Forster R et al. 1998. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391:591–94
    [Google Scholar]
  89. 89.
    Zarbock A, Singbartl K, Ley K. 2006. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J. Clin. Investig. 116:3211–19
    [Google Scholar]
  90. 90.
    Caudrillier A, Kessenbrock K, Gilliss BM, Nguyen JX, Marques MB et al. 2012. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J. Clin. Investig. 122:2661–71
    [Google Scholar]
  91. 91.
    Gimbrone MA Jr., Aster RH, Cotran RS, Corkery J, Jandl JH, Folkman J. 1969. Preservation of vascular integrity in organs perfused in vitro with a platelet-rich medium. Nature 222:33–36
    [Google Scholar]
  92. 92.
    Lo SK, Burhop KE, Kaplan JE, Malik AB. 1988. Role of platelets in maintenance of pulmonary vascular permeability to protein. Am. J. Physiol. 254:H763–71
    [Google Scholar]
  93. 93.
    Price DR, Benedetti E, Hoffman KL, Gomez-Escobar L, Alvarez-Mulett S et al. 2022. Angiopoietin 2 is associated with vascular necroptosis induction in coronavirus disease 2019 acute respiratory distress syndrome. Am. J. Pathol. 192:1001–15
    [Google Scholar]
  94. 94.
    Libby P, Luscher T. 2020. COVID-19 is, in the end, an endothelial disease. Eur. Heart J. 41:3038–44
    [Google Scholar]
  95. 95.
    Coalson JJ, Hinshaw LB, Guenter CA. 1970. The pulmonary ultrastructure in septic shock. Exp. Mol. Pathol. 12:84–103
    [Google Scholar]
  96. 96.
    Choi ME, Price DR, Ryter SW, Choi AMK. 2019. Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight 8:e128834
    [Google Scholar]
  97. 97.
    Zelic M, Roderick JE, O'Donnell JA, Lehman J, Lim SE et al. 2018. RIP kinase 1-dependent endothelial necroptosis underlies systemic inflammatory response syndrome. J. Clin. Investig. 128:2064–75
    [Google Scholar]
  98. 98.
    Qing DY, Conegliano D, Shashaty MG, Seo J, Reilly JP et al. 2014. Red blood cells induce necroptosis of lung endothelial cells and increase susceptibility to lung inflammation. Am. J. Respir. Crit. Care Med. 190:1243–54
    [Google Scholar]
  99. 99.
    Singla S, Sysol JR, Dille B, Jones N, Chen J, Machado RF. 2017. Hemin causes lung microvascular endothelial barrier dysfunction by necroptotic cell death. Am. J. Respir. Cell Mol. Biol. 57:307–14
    [Google Scholar]
  100. 100.
    Huang W, Xie W, Gong J, Wang W, Cai S et al. 2020. Heat stress induces RIP1/RIP3-dependent necroptosis through the MAPK, NF-κB, and c-Jun signaling pathways in pulmonary vascular endothelial cells. Biochem. Biophys. Res. Commun. 528:206–12
    [Google Scholar]
  101. 101.
    Yu X, Mao M, Liu X, Shen T, Li T et al. 2020. A cytosolic heat shock protein 90 and co-chaperone p23 complex activates RIPK3/MLKL during necroptosis of endothelial cells in acute respiratory distress syndrome. J. Mol. Med. 98:569–83
    [Google Scholar]
  102. 102.
    Bhandari V, Choo-Wing R, Lee CG, Zhu Z, Nedrelow JH et al. 2006. Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat. Med. 12:1286–93
    [Google Scholar]
  103. 103.
    Cheng KT, Xiong S, Ye Z, Hong Z, Di A et al. 2017. Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J. Clin. Investig. 127:4124–35
    [Google Scholar]
  104. 104.
    Bime C, Poongkunran C, Borgstrom M, Natt B, Desai H et al. 2016. Racial differences in mortality from severe acute respiratory failure in the United States, 2008–2012. Ann. Am. Thorac. Soc. 13:2184–89
    [Google Scholar]
  105. 105.
    Cochi SE, Kempker JA, Annangi S, Kramer MR, Martin GS. 2016. Mortality trends of acute respiratory distress syndrome in the United States from 1999 to 2013. Ann. Am. Thorac. Soc. 13:1742–51
    [Google Scholar]
  106. 106.
    Garcia JGN, Sznajder JI. 2013. Healthcare disparities in patients with acute respiratory distress syndrome. Toward equity. Am. J. Respir. Crit. Care Med. 188:631–38
    [Google Scholar]
  107. 107.
    Garcia JGN. 2011. Focusing on the flood: targeting functional polymorphisms in ALI permeability pathways. Am. J. Respir. Crit. Care Med. 183:1287–89
    [Google Scholar]
  108. 108.
    Christie JD, Ma SF, Aplenc R, Li M, Lanken PN et al. 2008. Variation in the myosin light chain kinase gene is associated with development of acute lung injury after major trauma. Crit. Care Med. 36:2794–800
    [Google Scholar]
  109. 109.
    Choi S, Camp SM, Dan A, Garcia JG, Dudek SM, Leckband DE 2015. A genetic variant of cortactin linked to acute lung injury impairs lamellipodia dynamics and endothelial wound healing. Am. J. Physiol. Lung Cell. Mol. Physiol. 309:L983–94
    [Google Scholar]
  110. 110.
    Shen K, Ramirez B, Mapes B, Shen GR, Gokhale V et al. 2015. Structure-function analysis of the non-muscle myosin light chain kinase (nmMLCK) isoform by NMR spectroscopy and molecular modeling: influence of MYLK variants. PLOS ONE 10:e0130515
    [Google Scholar]
  111. 111.
    Wang T, Zhou T, Saadat L, Garcia JG. 2015. A MYLK variant regulates asthmatic inflammation via alterations in mRNA secondary structure. Eur. J. Hum. Genet. 23:874–76
    [Google Scholar]
  112. 112.
    Ma SF, Flores C, Wade MS, Dudek SM, Nicolae DL et al. 2008. A common cortactin gene variation confers differential susceptibility to severe asthma. Genet. Epidemiol. 32:757–66
    [Google Scholar]
  113. 113.
    Szilagyi KL, Liu C, Zhang X, Wang T, Fortman JD et al. 2017. Epigenetic contribution of the myosin light chain kinase gene to the risk for acute respiratory distress syndrome. Transl. Res. 180:12–21
    [Google Scholar]
  114. 114.
    Sun X, Sun BL, Babicheva A, Vanderpool R, Oita RC et al. 2020. Direct extracellular NAMPT involvement in pulmonary hypertension and vascular remodeling. Transcriptional regulation by SOX and HIF-2α. Am. J. Respir. Cell Mol. Biol. 63:92–103
    [Google Scholar]
  115. 115.
    Elangovan VR, Camp SM, Kelly GT, Desai AA, Adyshev D et al. 2016. Endotoxin- and mechanical stress-induced epigenetic changes in the regulation of the nicotinamide phosphoribosyltransferase promoter. Pulm. Circ. 6:539–44
    [Google Scholar]
  116. 116.
    Sun X, Elangovan VR, Mapes B, Camp SM, Sammani S et al. 2014. The NAMPT promoter is regulated by mechanical stress, signal transducer and activator of transcription 5, and acute respiratory distress syndrome-associated genetic variants. Am. J. Respir. Cell Mol. Biol. 51:660–67
    [Google Scholar]
  117. 117.
    Lynn H, Sun X, Casanova NG, Bime C, Reyes Hernon V et al. 2023. Linkage of NAMPT promoter variants to eNAMPT secretion, plasma eNAMPT levels, and ARDS severity. Ther. Adv. Respir. Dis. 17:17534666231181262
    [Google Scholar]
  118. 118.
    Bajwa EK, Yu CL, Gong MN, Thompson BT, Christiani DC. 2007. Pre-B-cell colony-enhancing factor gene polymorphisms and risk of acute respiratory distress syndrome. Crit. Care Med. 35:1290–95
    [Google Scholar]
  119. 119.
    Bime C, Pouladi N, Sammani S, Batai K, Casanova N et al. 2018. Genome-wide association study in African Americans with acute respiratory distress syndrome identifies the selectin P ligand gene as a risk factor. Am. J. Respir. Crit. Care Med. 197:1421–32
    [Google Scholar]
  120. 120.
    Sun X, Sammani S, Hufford M, Sun BL, Kempf CL et al. 2023. Targeting SELPLG/P-selectin glycoprotein ligand 1 in preclinical ARDS: genetic and epigenetic regulation of the SELPLG promoter. Pulm. Circ. 13:e12206
    [Google Scholar]
  121. 121.
    Natarajan V, Dudek SM, Jacobson JR, Moreno-Vinasco L, Huang LS et al. 2013. Sphingosine-1-phosphate, FTY720, and sphingosine-1-phosphate receptors in the pathobiology of acute lung injury. Am. J. Respir. Cell Mol. Biol. 49:6–17
    [Google Scholar]
  122. 122.
    Sun X, Ma SF, Wade MS, Flores C, Pino-Yanes M et al. 2010. Functional variants of the sphingosine-1-phosphate receptor 1 gene associate with asthma susceptibility. J. Allergy Clin. Immunol. 126:241–49
    [Google Scholar]
  123. 123.
    Marsolais D, Rosen H. 2009. Chemical modulators of sphingosine-1-phosphate receptors as barrier-oriented therapeutic molecules. Nat. Rev. Drug Discov. 8:297–307
    [Google Scholar]
  124. 124.
    Su L, Zhai R, Sheu CC, Gallagher DC, Gong MN et al. 2009. Genetic variants in the angiopoietin-2 gene are associated with increased risk of ARDS. Intensive Care Med. 35:1024–30
    [Google Scholar]
  125. 125.
    Meyer NJ, Li M, Feng R, Bradfield J, Gallop R et al. 2011. ANGPT2 genetic variant is associated with trauma-associated acute lung injury and altered plasma angiopoietin-2 isoform ratio. Am. J. Respir. Crit. Care Med. 183:1344–53
    [Google Scholar]
  126. 126.
    Zhai R, Gong MN, Zhou W, Thompson TB, Kraft P et al. 2007. Genotypes and haplotypes of the VEGF gene are associated with higher mortality and lower VEGF plasma levels in patients with ARDS. Thorax 62:718–22
    [Google Scholar]
  127. 127.
    Hernandez-Pacheco N, Guillen-Guio B, Acosta-Herrera M, Pino-Yanes M, Corrales A et al. 2018. A vascular endothelial growth factor receptor gene variant is associated with susceptibility to acute respiratory distress syndrome. Intensive Care Med. Exp. 6:16
    [Google Scholar]
  128. 128.
    Gillich A, Zhang F, Farmer CG, Travaglini KJ, Tan SY et al. 2020. Capillary cell-type specialization in the alveolus. Nature 586:785–89
    [Google Scholar]
  129. 129.
    Rustam S, Hu Y, Mahjour SB, Rendeiro AF, Ravichandran H et al. 2023. A unique cellular organization of human distal airways and its disarray in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 207:1171–82
    [Google Scholar]
  130. 130.
    Niethamer TK, Stabler CT, Leach JP, Zepp JA, Morley MP et al. 2020. Defining the role of pulmonary endothelial cell heterogeneity in the response to acute lung injury. eLife 9:e53072
    [Google Scholar]
  131. 131.
    Ognibene FP, Martin SE, Parker MM, Schlesinger T, Roach P et al. 1986. Adult respiratory distress syndrome in patients with severe neutropenia. N. Engl. J. Med. 315:547–51
    [Google Scholar]
  132. 132.
    Price DR, Hoffman KL, Oromendia C, Torres LK, Schenck EJ et al. 2021. Effect of neutropenic critical illness on development and prognosis of acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 203:504–8
    [Google Scholar]
  133. 133.
    Daley JM, Thomay AA, Connolly MD, Reichner JS, Albina JE. 2008. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J. Leukoc. Biol. 83:64–70
    [Google Scholar]
  134. 134.
    Price DR, Hoffman KL, Sanchez E, Choi AMK, Siempos II. 2021. Temporal trends of outcomes of neutropenic patients with ARDS enrolled in therapeutic clinical trials. Intensive Care Med. 47:122–23
    [Google Scholar]
  135. 135.
    Moitra J, Evenoski C, Sammani S, Wadgaonkar R, Turner JR et al. 2008. A transgenic mouse with vascular endothelial over-expression of the non-muscle myosin light chain kinase-2 isoform is susceptible to inflammatory lung injury: role of sexual dimorphism and age. Transl. Res. 151:141–53
    [Google Scholar]
  136. 136.
    Quijada H, Bermudez T, Kempf CL, Valera DG, Garcia AN et al. 2021. Endothelial eNAMPT amplifies pre-clinical acute lung injury: efficacy of an eNAMPT-neutralising monoclonal antibody. Eur. Respir. J. 57:2002536
    [Google Scholar]
  137. 137.
    Sammani S, Bermudez T, Kempf CL, Song JH, Fleming JC et al. 2022. eNAMPT neutralization preserves lung fluid balance and reduces acute renal injury in porcine sepsis/VILI-induced inflammatory lung injury. Front. Physiol. 13:916159
    [Google Scholar]
  138. 138.
    Bermudez T, Sammani S, Song JH, Hernon VR, Kempf CL et al. 2022. eNAMPT neutralization reduces preclinical ARDS severity via rectified NFkB and Akt/mTORC2 signaling. Sci. Rep. 12:696
    [Google Scholar]
  139. 139.
    McVerry BJ, Peng X, Hassoun PM, Sammani S, Simon BA, Garcia JG. 2004. Sphingosine 1-phosphate reduces vascular leak in murine and canine models of acute lung injury. Am. J. Respir. Crit. Care Med. 170:987–93
    [Google Scholar]
  140. 140.
    Wang L, Letsiou E, Wang H, Belvitch P, Meliton LN et al. 2022. MRSA-induced endothelial permeability and acute lung injury are attenuated by FTY720 S-phosphonate. Am. J. Physiol. Lung Cell. Mol. Physiol. 322:L149–61
    [Google Scholar]
  141. 141.
    Sammani S, Moreno-Vinasco L, Mirzapoiazova T, Singleton PA, Chiang ET et al. 2010. Differential effects of sphingosine 1-phosphate receptors on airway and vascular barrier function in the murine lung. Am. J. Respir. Cell Mol. Biol. 43:394–402
    [Google Scholar]
  142. 142.
    Peng X, Hassoun PM, Sammani S, McVerry BJ, Burne MJ et al. 2004. Protective effects of sphingosine 1-phosphate in murine endotoxin-induced inflammatory lung injury. Am. J. Respir. Crit. Care Med. 169:1245–51
    [Google Scholar]
  143. 143.
    Mathew B, Jacobson JR, Berdyshev E, Huang Y, Sun X et al. 2011. Role of sphingolipids in murine radiation-induced lung injury: protection by sphingosine 1-phosphate analogs. FASEB J. 25:3388–400
    [Google Scholar]
  144. 144.
    Sammani S, Park KS, Zaidi SR, Mathew B, Wang T et al. 2011. A sphingosine 1-phosphate 1 receptor agonist modulates brain death-induced neurogenic pulmonary injury. Am. J. Respir. Cell Mol. Biol. 45:1022–27
    [Google Scholar]
  145. 145.
    Ribeil JA, Pollock G, Frangoul H, Steinberg MH. 2023. An integrated therapeutic approach to sickle cell disease management beyond infancy. Am. J. Hematol. 98:1087–96
    [Google Scholar]
  146. 146.
    Sugiyama MG, Armstrong SM, Wang C, Hwang D, Leong-Poi H et al. 2015. The Tie2-agonist vasculotide rescues mice from influenza virus infection. Sci. Rep. 5:11030
    [Google Scholar]
  147. 147.
    Gutbier B, Jiang X, Dietert K, Ehrler C, Lienau J et al. 2017. Vasculotide reduces pulmonary hyperpermeability in experimental pneumococcal pneumonia. Crit. Care 21:274
    [Google Scholar]
  148. 148.
    Jones RS, Smith PS, Berg PH, de la Pena A, Cook PP et al. 2022. Efficacy and safety of LY3127804, an anti-angiopoietin-2 antibody, in a randomized, double-blind, placebo-controlled clinical trial in patients hospitalized with pneumonia and presumed or confirmed COVID-19. Clin. Med. Insights Circ. Respir. Pulm. Med. 16:1–7
    [Google Scholar]
  149. 149.
    Fredenburgh LE, Perrella MA, Barragan-Bradford D, Hess DR, Peters E et al. 2018. A phase I trial of low-dose inhaled carbon monoxide in sepsis-induced ARDS. JCI Insight 6:e124039
    [Google Scholar]
  150. 150.
    National Heart, Lung, Blood Inst. ARDS Clin. Trials Netw 2014. Rosuvastatin for sepsis-associated acute respiratory distress syndrome. N. Engl. J. Med. 370:2191–200
    [Google Scholar]
  151. 151.
    Taylor RW, Zimmerman JL, Dellinger RP, Straube RC, Criner GJ et al. 2004. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA 291:1603–9
    [Google Scholar]
  152. 152.
    Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS et al. 2012. Drotrecogin alfa (activated) in adults with septic shock. N. Engl. J. Med. 366:2055–64
    [Google Scholar]
  153. 153.
    Cytlak UM, Dyer DP, Honeychurch J, Williams KJ, Travis MA, Illidge TM. 2022. Immunomodulation by radiotherapy in tumour control and normal tissue toxicity. Nat. Rev. Immunol. 22:124–38
    [Google Scholar]
  154. 154.
    O'Mahoney DS, Glavan BJ, Holden TJ, Fong C, Black RA et al. 2012. Inflammation and immune-related candidate gene associations with acute lung injury susceptibility and severity: a validation study. PLOS ONE 7:e51104
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-042222-030731
Loading
/content/journals/10.1146/annurev-physiol-042222-030731
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error