1932

Abstract

Plant disease control requires novel approaches to mitigate the spread of and losses caused by current, emerging, and re-emerging diseases and to adapt plant protection to global climate change and the restrictions on the use of conventional pesticides. Currently, disease management relies mainly on biopesticides, which are required for the sustainable use of plant-protection products. Functional peptides are candidate biopesticides because they originate from living organisms or are synthetic analogs and provide novel mechanisms of action against plant pathogens. Hundreds of compounds exist that cover an extensive range of activities against viruses, bacteria and phytoplasmas, fungi and oomycetes, and nematodes. Natural sources, chemical synthesis, and biotechnological platforms may provide peptides at large scale for the industry and growers. The main challenges for their use in plant disease protection are () the requirement of stability in the plant environment and counteracting resistance in pathogen populations, () the need to develop suitable formulations to increase their shelf life and methods of application, () the selection of compounds with acceptable toxicological profiles, and () the high cost of production for agricultural purposes. In the near future, it is expected that several functional peptides will be commercially available for plant disease control, but more effort is needed to validate their efficacy at the field level and fulfill the requirements of the regulatory framework.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021722-034312
2023-09-05
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/phyto/61/1/annurev-phyto-021722-034312.html?itemId=/content/journals/10.1146/annurev-phyto-021722-034312&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abriouel H, Franz CM, Ben Omar N, Gálvez A 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35:201–32
    [Google Scholar]
  2. 2.
    Acimovic SG, Zeng Q, McGhee GC, Sundin GW, Wise JC. 2015. Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes. Front. Plant Sci. 6:16
    [Google Scholar]
  3. 3.
    Ageitos J, Sanchez-Perez A, Calo-Mata P, Villa TG. 2017. Antimicrobial peptides (AMPs): ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol. 133:117–38
    [Google Scholar]
  4. 4.
    Ali S, Ganai BA, Kamili AN, Bhat AA, Mir ZA et al. 2018. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol. Res. 212–13:29–37
    [Google Scholar]
  5. 5.
    Andersson L, Blomberg L, Flegel M, Lepsa L, Nilsson B. 2020. Large-scale synthesis of peptides. Biopolymers 55:227–50
    [Google Scholar]
  6. 6.
    Arora AK, Pesko KN, Quintero-Hernández V, Possani LD, Miller TA, Durvasula RV. 2018. A paratransgenic strategy to block transmission of Xylella fastidiosa from the glassy-winged sharpshooter Homalodisca vitripennis. BMC Biotechnol. 18:50
    [Google Scholar]
  7. 7.
    Badosa E, Ferré R, Francés J, Bardají E, Feliu L et al. 2009. Sporicidal activity of synthetic antifungal undecapeptides and control of Penicillium rot of apples. Appl. Environ. Microbiol. 75:5563–69
    [Google Scholar]
  8. 8.
    Badosa E, Ferré R, Planas M, Feliu L, Besalú E et al. 2007. A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides 28:2276–85
    [Google Scholar]
  9. 9.
    Badosa E, Moiset G, Montesinos L, Talleda M, Bardají E et al. 2013. Derivatives of the antimicrobial peptide BP100 for expression in plant systems. PLOS ONE 8:e85515
    [Google Scholar]
  10. 10.
    Badosa E, Montesinos L, Camó C, Ruz L, Cabrefiga J et al. 2017. Control of fire blight infections with synthetic peptides that elicit plant defence responses. J. Plant Pathol. 99:65–73
    [Google Scholar]
  11. 11.
    Badosa E, Planas M, Feliu L, Montesinos L, Bonaterra A, Montesinos E. 2022. Synthetic peptides against plant pathogenic bacteria. Microorganisms 10:1784
    [Google Scholar]
  12. 12.
    Baró A, Badosa E, Montesinos L, Feliu L, Planas M et al. 2020. Screening and identification of BP100 peptide conjugates active against Xylella fastidiosa using a viability-qPCR method. BMC Microbiol. 20:229
    [Google Scholar]
  13. 13.
    Baró A, Mora I, Montesinos L, Montesinos E. 2020. Differential susceptibility of Xylella fastidiosa strains to synthetic bactericidal peptides. Phytopathology 110:1018–26
    [Google Scholar]
  14. 14.
    Baró A, Saldarelli P, Saponari M, Montesinos E, Montesinos L. 2022. Nicotiana benthamiana as a model plant host for Xylella fastidiosa: control of infections by transient expression and endotherapy with a bifunctional peptide. Front. Plant Sci. 13:1061463
    [Google Scholar]
  15. 15.
    Bartels S, Boller S. 2015. Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development. J. Exp. Bot. 66:5183–93
    [Google Scholar]
  16. 16.
    Berrocal-Lobo M, Segura A, Moreno M, López G, García-Olmedo F, Molina A. 2002. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol. 128:951–61
    [Google Scholar]
  17. 17.
    Broberg A, Menkis A, Vasiliauskas R. 2006. Kutznerides 1–4, depsipeptides from the actinomycete Kutzneria sp. 744 inhabiting mycorrhizal roots of Picea abies seedlings. J. Nat. Prod. 69:97–102
    [Google Scholar]
  18. 18.
    Brogden KA, Ackermann M, McCray PB, Tack BF. 2003. Antimicrobial peptides in animals and their role in host defences. Int. J. Antimicrob. Agents 22:465–78
    [Google Scholar]
  19. 19.
    Brotman Y, Makovitzki A, Shai Y, Chet I, Viterbo A 2009. Synthetic ultrashort cationic lipopeptides induce systemic plant defense responses against bacterial and fungal pathogens. Appl. Environ. Microbiol. 75:5373–79
    [Google Scholar]
  20. 20.
    Bundó M, Montesinos L, Izquierdo E, Campo S, Mieulet D et al. 2014. Production of cecropin A antimicrobial peptide in rice seed endosperm. BMC Plant Biol. 14:102
    [Google Scholar]
  21. 21.
    Bundó M, Shi X, Vernet M, Marcos JF, López-García B, Coca M. 2019. Rice seeds as biofactories of rationally designed and cell-penetrating antifungal PAF peptides. Front. Plant Sci. 10:731
    [Google Scholar]
  22. 22.
    Cabanos C, Ekyo A, Amari Y, Kato N, Kuroda M et al. 2013. High-level production of lactostatin, a hypocholesterolemic peptide, in transgenic rice using soybean A1aB1b as carrier. Transgenic Res. 22:621–29
    [Google Scholar]
  23. 23.
    Cabrefiga J, Montesinos E. 2017. Lysozyme enhances the bactericidal effect of BP100 peptide against Erwinia amylovora, the causal agent of fire blight of rosaceous plants. BMC Microbiol. 17:39
    [Google Scholar]
  24. 24.
    Campos M, de Souza C, Sampaio de Oliveira K, Campos Dias S, Franco O 2018. The role of antimicrobial peptides in plant immunity. J. Exp. Bot. 69:4997–5011
    [Google Scholar]
  25. 25.
    Cao H, Ke T, Liu R, Yu J, Dong C et al. 2015. Identification of a novel proline-rich antimicrobial peptide from Brassica napus. PLOS ONE 10:e0137414
    [Google Scholar]
  26. 26.
    Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J. 2019. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front. Microbiol. 10:302
    [Google Scholar]
  27. 27.
    Cavallarin L, Andreu D, San Segundo B. 1998. Cecropin A-derived peptides are potent inhibitors of fungal plant pathogens. Mol. Plant-Microbe Interact. 11:218–27
    [Google Scholar]
  28. 28.
    Chaloner TM, Gurr SJ, Bebber DP. 2021. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Change 11:710–15
    [Google Scholar]
  29. 29.
    Chen HC, Pan CY, Rajanbabu V, Lee YY, Tsai WR, Chen JY. 2020. Lack of acute toxicity and mutagenicity from recombinant Epinephelus lanceolatus piscidin expressed in Pichia pastoris. Mar. Drugs. 18:4206
    [Google Scholar]
  30. 30.
    Cheng Q, Shi X, Liu Y, Liu X, Dou S et al. 2018. Production of nisin and lactic acid from corn stover through simultaneous saccharification and fermentation. Biotechnol. Biotechnol. Equip. 32:420–26
    [Google Scholar]
  31. 31.
    Choi Y, Choi YD, Lee JS. 2008. Antimicrobial activity of γ-thionin-like soybean SE60 in E. coli and tobacco plants. Biochem. Biophys. Res. Commun. 375:230–34
    [Google Scholar]
  32. 32.
    Cirac AD, Torné M, Badosa E, Montesinos E, Salvador P et al. 2017. Rational design of cyclic antimicrobial peptides based on BPC194 and BPC198. Molecules 22:1054
    [Google Scholar]
  33. 33.
    Dandekar AM, Gouran H, Ibáñez AM, Uratsu SL, Agüero CB et al. 2012. An engineered innate immune defense protects grapevines from Pierce disease. PNAS 109:3721–25
    [Google Scholar]
  34. 34.
    Dangl J, Horvath D, Staskawicz B. 2013. Pivoting the plant immune system from dissection to deployment. Science 341:746–51
    [Google Scholar]
  35. 35.
    Daniel JF, Filho ER. 2007. Peptaibols of trichoderma. Nat. Prod. Rep. 24:1128–41
    [Google Scholar]
  36. 36.
    De La Fuente L, Montanes E, Meng Y, Li Y, Burr TJ et al. 2007. Assessing adhesion forces of type I and type IV pili of Xylella fastidiosa bacteria by use of a microfluidic flow chamber. Appl. Environ. Microbiol. 73:2690–96
    [Google Scholar]
  37. 37.
    DeGrado WF, Musso GF, Lieber M, Kaiser ET, Kézdy FJ. 1982. Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue. Biophys. J. 37:329–38
    [Google Scholar]
  38. 38.
    Deng T, Ge H, He H, Liu Y, Zhai C et al. 2017. The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr. Purif. 140:52–59
    [Google Scholar]
  39. 39.
    Di Pietro A, Gut-Rella M, Pachlatko JP, Schwinn FJ. 1992. Role of antibiotics produced by Chaetomium globosum in biocontrol of Pythium ultimum, a causal agent of damping-off. Phytopathology 82:131–35
    [Google Scholar]
  40. 40.
    Eggenberger K, Mink C, Wadhwani P, Ulrich AS, Nick P. 2011. Using the peptide BP100 as a cell-penetrating tool for the chemical engineering of actin filaments within living plant cells. ChemBioChem 12:132–37
    [Google Scholar]
  41. 41.
    Faccio P, Vazquez-Rovere C, Hopp E, González G, Décima-Oneto G et al. 2011. Increased tolerance to wheat powdery mildew by heterologous constitutive expression of the Solanum chacoense Snakin-1 gene. Czech J. Genet. Plant Breed. 47:135–41
    [Google Scholar]
  42. 42.
    Favilla M, Macchia L, Gallo A, Altomare C. 2006. Toxicity assessment of metabolites of fungal biocontrol agents using two different (Artemia salina and Daphnia magna) invertebrate bioassays. Food. Chem. Toxicol. 44:1922–31
    [Google Scholar]
  43. 43.
    Fei D, Zhou G, Yu Z, Gang H, Liu J et al. 2020. Low-toxic and nonirritant biosurfactant surfactin and its performances in detergent formulations. J. Surfactants Deterg. 23:109–18
    [Google Scholar]
  44. 44.
    Fogaça AC, Zaini PA, Wulff NA, Da Silva PIP, Fázio MA et al. 2010. Effects of the antimicrobial peptide gomesin on the global gene expression profile, virulence and biofilm formation of Xylella fastidiosa. FEMS Microbiol. Lett. 306:152–59
    [Google Scholar]
  45. 45.
    Foix L, Nadal A, Zagorščak M, Ramšak Ž, Esteve-Codina A et al. 2021. Prunus persica plant endogenous peptides PpPep1 and PpPep2 cause PTI-like transcriptome reprogramming in peach and enhance resistance to Xanthomonas arboricola pv. pruni. BMC Genom. 22:360
    [Google Scholar]
  46. 46.
    Fukuta S, Kawamoto K, Mizukami Y, Yoshimura Y, Ueda JI et al. 2012. Transgenic tobacco plants expressing antimicrobial peptide bovine lactoferricin show enhanced resistance to phytopathogens. Plant Biotechnol. 29:383–89
    [Google Scholar]
  47. 47.
    Furman N, Kobayashi K, Zanek MC, Calcagno J, García ML, Mentaberry A. 2013. Transgenic sweet orange plants expressing a dermaseptin coding sequence show reduced symptoms of citrus canker disease. J. Biotechnol. 167:412–19
    [Google Scholar]
  48. 48.
    Geudens N, Martins JC. 2018. Cyclic lipodepsipeptides from Pseudomonas spp. biological Swiss-army knives. Front. Microbiol. 9:1867
    [Google Scholar]
  49. 49.
    Ghag SB, Shekhawat UKS, Ganapathi TR. 2012. Petunia floral defensins with unique prodomains as novel candidates for development of fusarium wilt resistance in transgenic banana plants. PLOS ONE 7:6e39557
    [Google Scholar]
  50. 50.
    Güell I, Cabrefiga J, Badosa E, Ferre R, Talleda M et al. 2011. Improvement of the efficacy of linear undecapeptides against plant-pathogenic bacteria by incorporation of D-amino acids. Appl. Environ. Microbiol. 77:2667–75
    [Google Scholar]
  51. 51.
    Guo C, Huang Y, Zheng H, Tang L, He J et al. 2012. Secretion and activity of antimicrobial peptide cecropin D expressed in Pichia pastoris. Exp. Theor. Med. 4:61063–68
    [Google Scholar]
  52. 52.
    Gust A, Pruitt R, Nürnberger T. 2017. Sensing danger: key to activating plant immunity. Trends Plant Sci. 22:779–91
    [Google Scholar]
  53. 53.
    Hagen S, Marx F, Ram AF, Meyer V. 2007. The antifungal protein AFP from Aspergillus giganteus inhibits chitin synthesis in sensitive fungi. Appl. Environ. Microbiol. 73:2128–34
    [Google Scholar]
  54. 54.
    Hancock REW, Scott MG. 2000. The role of antimicrobial peptides in animal defenses. PNAS 97:8856–61
    [Google Scholar]
  55. 55.
    Hao G, Zhang S, Stover E. 2017. Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus. PLOS ONE 12:e0186810
    [Google Scholar]
  56. 56.
    Hegedüs N, Marx F. 2013. Antifungal proteins: more than antimicrobials?. Fungal Biol. Rev. 26:132–45
    [Google Scholar]
  57. 57.
    Herzig V, de Araujo AD, Greenwood KP, Chin YK, Windley MJ et al. 2018. Evaluation of chemical strategies for improving the stability and oral toxicity of insecticidal peptides. Biomedicines 6:90
    [Google Scholar]
  58. 58.
    Holásková E, Galuszka P, Mičúchová A, Šebela M, Öz MT, Frébort I. 2018. Molecular farming in barley: development of a novel production platform to produce human antimicrobial peptide LL-37. Biotechnol. J. 13:e1700628
    [Google Scholar]
  59. 59.
    Hou S, Wang X, Chen D, Yang X, Wang M et al. 2014. The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7. PLOS Pathog. 10:9e1004331
    [Google Scholar]
  60. 60.
    Hou X, Sun R, Feng Y, Zhang R, Zhu T et al. 2022. Peptaibols: diversity, bioactivity, and biosynthesis. Eng. Microbiol. 2:100026
    [Google Scholar]
  61. 61.
    Huan Y, Kong Q, Mou H, Yi H. 2020. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front. Microbiol. 11:582779
    [Google Scholar]
  62. 62.
    Huang CY, Araujo K, Sánchez JN, Kund G, Trumble J et al. 2021. A stable antimicrobial peptide with dual functions of treating and preventing citrus Huanglongbing. PNAS 118:e2019628118
    [Google Scholar]
  63. 63.
    Huffaker A, Pearce G, Ryan CA. 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. PNAS 103:10098–103
    [Google Scholar]
  64. 64.
    Imamura T, Yasuda M, Kusano H, Nakashita H, Ohno Y, Kamakura T et al. 2010. Acquired resistance to the rice blast in transgenic rice accumulating the antimicrobial peptide thanatin. Transgenic Res. 19:415–24
    [Google Scholar]
  65. 65.
    Iqbal A, Khan RS, Shehryar K, Imran A, Ali F et al. 2019. Antimicrobial peptides as effective tools for enhanced disease resistance in plants. Plant Cell Tissue Organ Cult. 139:1–15
    [Google Scholar]
  66. 66.
    Jha S, Chattoo BB. 2010. Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res. 19:373–84
    [Google Scholar]
  67. 67.
    Jung YJ, Lee SY, Moon YS, Kang KK. 2012. Enhanced resistance to bacterial and fungal pathogens by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage. Plant Biotechnol. Rep. 6:39–46
    [Google Scholar]
  68. 68.
    Khan R, Najeeb S, Hussain S, Xie B, Li Y. 2020. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms 8:817
    [Google Scholar]
  69. 69.
    Khosa S, Scholz R, Schwarz C, Trilling M, Hengel H et al. 2017. An A/U-rich enhancer region is required for high-level protein secretion through the HlyA Type I secretion system. Appl. Environ. Microbiol. 15:e01163–17
    [Google Scholar]
  70. 70.
    Kim YS, Kim HM, Chang C, Hwang IC, Oh H et al. 2007. Biological evaluation of neopeptins isolated from a Streptomyces strain. Pest Manag. Sci. 63:1208–14
    [Google Scholar]
  71. 71.
    Kishi RNI, Stach-Machado D, de Lacorte Singulani J, Santos CT et al. 2018. Evaluation of cytotoxicity features of antimicrobial peptides with potential to control bacterial diseases of citrus. PLOS ONE 13:e0203451
    [Google Scholar]
  72. 72.
    Klausmann P, Hennemann K, Hoffmann M, Treinen C, Aschern M et al. 2021. Bacillus subtilis high cell density fermentation using a sporulation-deficient strain for the production of surfactin. Appl. Microbiol. Biotechnol. 105:4141–51
    [Google Scholar]
  73. 73.
    Klelissa S, Chihib N, Gharsallaoul A. 2021. Conditions of nisin production by Lactococcus lactis subsp. lactis and its main uses as a food preservative. Arch. Microbiol. 203:465–80
    [Google Scholar]
  74. 74.
    Kobayashi AK, Vieira LGE, Bespalhok Filho JC, Leite RP et al. 2017. Enhanced resistance to citrus canker in transgenic sweet orange expressing the sarcotoxin IA gene. Eur. J. Plant Pathol. 149:865–73
    [Google Scholar]
  75. 75.
    Koo JC, Chun HJ, Park HC, Kim MC, Koo YD et al. 2002. Over-expression of a seed specific hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants. Plant Mol. Biol. 5:441–52
    [Google Scholar]
  76. 76.
    Kościuczuk EM, Lisowski P, Jarczak J, Strzałkowska N, Jóźwik A et al. 2012. Cathelicidins: family of antimicrobial peptides. A review. Mol. Biol. Rep. 39:10957–70
    [Google Scholar]
  77. 77.
    Krahulec J, Hyrsová M, Pepeliaev S, Jílková J, Cerný Z, Machálková J. 2010. High level expression and purification of antimicrobial human cathelicidin LL-37 in Escherichia coli. Appl. Microbiol. Biotechnol. 88:167–75
    [Google Scholar]
  78. 78.
    Kuddus MR, Rumi F, Tsutsumi M, Takahashi R, Yamano M et al. 2016. Expression, purification and characterization of the recombinant cysteine-rich antimicrobial peptide snakin-1 in Pichia pastoris. Protein Expr. Purif. 122:15–22
    [Google Scholar]
  79. 79.
    Kunihiro S, Kaneda M. 2003. Glomecidin, a novel antifungal cyclic tetrapeptide produced by Streptomyces lavendulae H698 SY2. J. Antibiot. 56:30–33
    [Google Scholar]
  80. 80.
    Lacerda A, Vasconcelos E, Pelegrini P, Grossi-de-Sa MF. 2014. Antifungal defensins and their role in plant defense. Front. Microbiol. 5:116
    [Google Scholar]
  81. 81.
    Lacerda AF, Del Sarto RP, Silva MS, de Vasconcelos EAR, Coelho RR et al. 2016. The recombinant pea defensin Drr230a is active against impacting soybean and cotton pathogenic fungi from the genera Fusarium, Colletotrichum and Phakopsora. 3 Biotech 6:59
    [Google Scholar]
  82. 82.
    Le CF, Fang CM, Sekaran SD. 2017. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob. Agents Chemother. 61:4e02340–16
    [Google Scholar]
  83. 83.
    Lee DW, Kim BS. 2015. Antimicrobial cyclic peptides for plant disease control. Plant Pathol. J. 31:1–11
    [Google Scholar]
  84. 84.
    Lee H, Lee DG. 2015. Mode of action of antimicrobial peptides identified from insects. J. Life Sci. 25:715–23
    [Google Scholar]
  85. 85.
    Li A, Huang R, Wang C, Hu Q, Li H, Li X. 2021. Expression of anti-lipopolysaccharide factor isoform 3 in Chlamydomonas reinhardtii showing high antimicrobial activity. Mar. Drugs 19:239
    [Google Scholar]
  86. 86.
    Li J, Hu S, Jian W, Xie C, Yang X. 2021. Plant antimicrobial peptides: structures, functions, and applications. Bot. Stud. 62:5
    [Google Scholar]
  87. 87.
    Li L, Wang JX, Zhao XF, Kang CJ, Liu N et al. 2005. High level expression, purification, and characterization of the shrimp antimicrobial peptide, Ch-penaeidin, in Pichia pastoris. Protein Expr. Purif. 39:144–51
    [Google Scholar]
  88. 88.
    Lima PG, Oliveira JTA, Amaral JL, Freitas CDT, Souza PFN. 2021. Synthetic antimicrobial peptides: characteristics, design, and potential as alternative molecules to overcome microbial resistance. Life Sci. 278:119647
    [Google Scholar]
  89. 89.
    Liu Q, Shen Q, Bian X, Chen H, Fu J et al. 2016. Simple and rapid direct cloning and heterologous expression of natural product biosynthetic gene cluster in Bacillus subtilis via Red/ET recombineering. Sci. Rep. 6:34623
    [Google Scholar]
  90. 90.
    Lori M, van Verk M, Hander T, Schatowitz H, Klauser D et al. 2015. Evolutionary divergence of the plant elicitor peptides Peps produced interfamily incompatibility. J. Exp. Bot. 66:5315–25
    [Google Scholar]
  91. 91.
    Ma Z, Ongena M, Höfte M. 2017. The cyclic lipopeptide orfamide induces systemic resistance in rice to Cochliobolus miyabeanus but not to Magnaporthe oryzae. Plant Cell Rep. 36:1731–46
    [Google Scholar]
  92. 92.
    Mansour SC, Pena OM, Hancock REW. 2014. Host defense peptides: front-line immunomodulators. Trends Immunol. 35:443–50
    [Google Scholar]
  93. 93.
    Marcos JF, Muñoz A, Pérez-Payá E, Misra S, López-García B. 2008. Identification and rational design of novel antimicrobial peptides for plant protection. Annu. Rev. Phytopathol. 46:273–301
    [Google Scholar]
  94. 94.
    McDonald BA, Linde C. 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40:349–79
    [Google Scholar]
  95. 95.
    McMillan KAM, Coombs MRP. 2020. Review: examining the natural role of amphibian antimicrobial peptide magainin. Molecules 25:5436
    [Google Scholar]
  96. 96.
    Meneguetti BT, Machado LS, Oshiro KGN, Nogueira ML, Carvalho CME, Franco OL. 2017. Antimicrobial peptides from fruits and their potential use as biotechnological tools—a review and outlook. Front. Microbiol. 7:2136
    [Google Scholar]
  97. 97.
    Michelsen CF, Jensen H, Venditto VJ, Hennessy RC, Stougaard P. 2015. Bioactivities by a crude extract from the Greenlandic Pseudomonas sp. In5 involves the non-ribosomal peptides, nunamycin and nunapeptin. PeerJ 3:e1476
    [Google Scholar]
  98. 98.
    Mika JT, Moiset G, Cirac AD, Feliu L, Bardají E et al. 2011. Structural basis for the enhanced activity of cyclic antimicrobial peptides: the case of BPC194. Biochim. Biophys. Acta 1808:2197–205
    [Google Scholar]
  99. 99.
    Miller SA, Ferreira JP, LeJeune JT. 2022. Antimicrobial use and resistance in plant agriculture: a One Health perspective. Agriculture 12:2289
    [Google Scholar]
  100. 100.
    Mirzaee M, Holásková E, Mičúchová A, Kopečný DJ, Osmani Z, Frébort I. 2021. Long-lasting stable expression of human LL-37 antimicrobial peptide in transgenic barley plants. Antibiotics 10:898
    [Google Scholar]
  101. 101.
    Miyashita M, Oda M, Ono Y, Komoda E, Miyagawa H. 2011. Discovery of a small peptide from combinatorial libraries that can activate the plant immune system by a jasmonic acid signaling pathway. ChemBioChem 12:91323–29
    [Google Scholar]
  102. 102.
    Mohan S, Meiyalaghan S, Latimer JM, Gatehouse ML, Monaghan KS et al. 2014. GSL2 over-expression confers resistance to Pectobacterium atrosepticum in potato. Theor. Appl. Genet. 127:677–89
    [Google Scholar]
  103. 103.
    Moll L, Badosa E, Planas M, Feliu L, Montesinos E, Bonaterra A. 2021. Antimicrobial peptides with antibiofilm activity against Xylella fastidiosa. Front. Microbiol. 12:753874
    [Google Scholar]
  104. 104.
    Moll L, Baró A, Montesinos L, Badosa E, Bonaterra A, Montesinos E. 2022. Induction of defense responses and protection of almond plants against Xylella fastidiosa by endotherapy with a bifunctional peptide. Phytopathology 112:91907–16
    [Google Scholar]
  105. 105.
    Monroc S, Badosa E, Feliu L, Planas M, Montesinos E, Bardají E. 2006. De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria. Peptides 27:2567–74
    [Google Scholar]
  106. 106.
    Montesinos E. 2007. Antimicrobial peptides and plant disease control. FEMS Microbiol. Lett. 270:1–11
    [Google Scholar]
  107. 107.
    Montesinos L, Bundó M, Badosa E, San Segundo B, Coca M, Montesinos E 2017. Production of BP178, a derivative of the synthetic antibacterial peptide BP100, in the rice seed endosperm. BMC Plant Biol. 17:63
    [Google Scholar]
  108. 108.
    Montesinos L, Bundó M, Izquierdo E, Campo S, Badosa E et al. 2016. Production of biologically active cecropin A peptide in rice seed oil bodies. PLOS ONE 11:e0146919
    [Google Scholar]
  109. 109.
    Montesinos L, Gascón B, Ruz L, Badosa E, Planas M et al. 2021. A bifunctional synthetic peptide with antimicrobial and plant elicitation properties that protect tomato plants from bacterial and fungal infections. Front. Plant Sci. 12:756357
    [Google Scholar]
  110. 110.
    Mora I, Cabrefiga J, Montesinos E. 2015. Cyclic lipopeptide biosynthetic genes and products, and inhibitory activity of plant-associated Bacillus against phytopathogenic bacteria. PLOS ONE 10:e0127738
    [Google Scholar]
  111. 111.
    Mouloud G, Daoud H, Bassem J, Atef I, Hani B. 2013. New bacteriocin from Bacillus clausii strain GM17: purification, characterization, and biological activity. Appl. Biochem. Biotechnol. 171:2186–200
    [Google Scholar]
  112. 112.
    Mueller LK, Baumruck AC, Zhdanova H, Tietze AA. 2020. Challenges and perspectives in chemical synthesis of highly hydrophobic peptides. Front. Bioeng. Biotechnol. 8:162
    [Google Scholar]
  113. 113.
    Muñoz A, Gandía M, Harries E, Carmona L, Read D, Marcos JF. 2013. Understanding the mechanism of action of cell-penetrating antifungal peptides using the rationally designed hexapeptide PAF26 as a model. Fungal Biol. Rev. 26:146–55
    [Google Scholar]
  114. 114.
    Muramoto N, Tanaka T, Shimamura T, Mitsukawa N, Hori E et al. 2012. Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots. Plant Cell Rep. 31:6987–97
    [Google Scholar]
  115. 115.
    Ng-Choi I, Soler M, Güell I, Badosa E, Cabrefiga J, Bardají E et al. 2014. Antimicrobial peptides incorporating non-natural amino acids as agents for plant protection. Protein Pept. Lett. 21:4
    [Google Scholar]
  116. 116.
    Nguyen BN, Tieves F, Rohr T, Wobst H, Schöpf FS et al. 2021. Numaswitch: an efficient high-titer expression platform to produce peptides and small proteins. AMB Express 11:48
    [Google Scholar]
  117. 117.
    Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sorensen J. 2000. Structure, production characteristics and fungal antagonism of tensin: a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96–578. J. Appl. Microbiol. 89:6992–1001
    [Google Scholar]
  118. 118.
    Numata K, Ohtani M, Yoshizumi T, Demura T, Kodama Y. 2014. Local gene silencing in plants via synthetic dsRNA and carrier peptide. Plant Biotechnol. J. 12:81027–34
    [Google Scholar]
  119. 119.
    Oerke E. 2006. Crop losses to pests. J. Agric. Sci. 144:131–43
    [Google Scholar]
  120. 120.
    Oliveras A, Moll L, Riesco-Llach G, Tolosa-Canudas A, Gil-Caballero S et al. 2021. D-amino acid-containing lipopeptides derived from the lead peptide BP100 with activity against plant pathogens. Int. J. Mol. Sci. 22:12
    [Google Scholar]
  121. 121.
    Ongena M, Jourdan E, Adam A, Paquot M, Brans A et al. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9:1084–90
    [Google Scholar]
  122. 122.
    Osada H. 2019. Discovery and applications of nucleoside antibiotics beyond polyoxin. J. Antibiot. 72:855–64
    [Google Scholar]
  123. 123.
    Parachin NS, Mulder KC, Viana AA, Dias SC, Franco OL. 2012. Expression systems for heterologous production of antimicrobial peptides. Peptides 38:446–56
    [Google Scholar]
  124. 124.
    Patel RR, Sundin GW, Yang CH, Wang J, Huntley RB et al. 2017. Exploration of using antisense peptide nucleic acid (PNA)-cell penetrating peptide (CPP) as a novel bactericide against fire blight pathogen Erwinia amylovora. Front. Microbiol. 8:687
    [Google Scholar]
  125. 125.
    Puig M, Moragrega C, Ruz L, Calderón CE, Cazorla FM et al. 2016. Interaction of antifungal peptide BP15 with Stemphylium vesicarium, the causal agent of brown spot of pear. Fungal Biol. 120:161–71
    [Google Scholar]
  126. 126.
    Puig M, Moragrega C, Ruz L, Montesinos E, Llorente I. 2015. Controlling brown spot of pear by a synthetic antimicrobial peptide under field conditions. Plant Dis. 99:1816–22
    [Google Scholar]
  127. 127.
    Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 34:1037–62
    [Google Scholar]
  128. 128.
    Rahnamaeian M, Vilcinskas A. 2012. Defense gene expression is potentiated in transgenic barley expressing antifungal peptide metchnikowin throughout powdery mildew challenge. J. Plant Res. 125:1115–24
    [Google Scholar]
  129. 129.
    Rajasekaran K, Cary J, Jaynes J, Montesinos E, eds. 2012. Small Wonders: Peptides for Disease Control Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  130. 130.
    Ramadevi R, Rao KV, Reddy VD. 2014. Agrobacterium tumefaciens-mediated genetic transformation and production of stable transgenic pearl millet (Pennisetum glaucum [L.] R. Br.). In Vitro Cell. Dev. Biol. Plant 50:392–400
    [Google Scholar]
  131. 131.
    Rhee KH. 2003. Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus, Pyricularia oryzae. J. Mol. Microbiol. Biotechnol. 13:984–88
    [Google Scholar]
  132. 132.
    Ross A, Yamada K, Hiruma K, Yamashita-Yamada M, Lu X et al. 2014. The Arabidopsis PEPR pathway couples local and systemic plant immunity. EMBO J. 33:62–75
    [Google Scholar]
  133. 133.
    Rufo R, Batlle A, Camprubi A, Montesinos E, Calvet C. 2017. Control of Rubus stunt and stolbur diseases in Madagascar periwinkle with mycorrhizae and a synthetic antibacterial peptide. Plant Pathol. 66:551–58
    [Google Scholar]
  134. 134.
    Ruiz C, Nadal A, Foix L, Montesinos L, Montesinos E, Pla M. 2018. Diversity of plant defense elicitor peptides within the Rosaceae. BMC Genet. 19:11
    [Google Scholar]
  135. 135.
    Ruiz C, Nadal A, Montesinos E, Pla M. 2018. Novel Rosaceae plant elicitor peptides as sustainable tools to control Xanthomonas arboricola pv. pruni in Prunus spp. Mol. Plant Pathol. 19:418–31
    [Google Scholar]
  136. 136.
    Sánchez A, Vázquez A. 2017. Bioactive peptides: a review. Food Qual. Saf. 1:29–46
    [Google Scholar]
  137. 137.
    Santos VSV, Silveira E, Pereira BB. 2019. Ecotoxicological assessment of synthetic and biogenic surfactants using freshwater cladoceran species. Chemosphere 221:519–25
    [Google Scholar]
  138. 138.
    Saponari M, Giampetruzzi G, Loconsole G, Boscia D, Saldarelli P. 2019. Xylella fastidiosa in olive in Apulia: where we stand. Phytopathology 109:175–86
    [Google Scholar]
  139. 139.
    Sarwar A, Hassan MN, Imran M, Iqbal M, Majeed S et al. 2018. Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease. Microbiol. Res. 209:1–13
    [Google Scholar]
  140. 140.
    Saucedo-Vázquez JP, Gushque F, Vispo NS, Rodriguez J, Jurado Gudiño-Gomez et al. 2022. Marine arthropods as a source of antimicrobial peptides. Mar. Drugs 20:501
    [Google Scholar]
  141. 141.
    Schaefer SC, Gasic K, Cammue B, Broekaert W, van Damme EJ et al. 2005. Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes. Planta 222:858–66
    [Google Scholar]
  142. 142.
    Scholz R, Vater J, Budiharjo A, Wang Z, He Y et al. 2014. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J. Bacteriol. 196:1842–52
    [Google Scholar]
  143. 143.
    Schubert M, Houdelet M, Kogel KH, Fischer R, Schillberg S, Nölke G. 2015. Thanatin confers partial resistance against aflatoxigenic fungi in maize (Zea mays). Transgenic Res. 24:885–95
    [Google Scholar]
  144. 144.
    Schwinges P, Pariyar S, Jakob F, Rahimi M, Apitius L et al. 2019. A bifunctional dermaseptin-thanatin dipeptide functionalizes the crop surface for sustainable pest management. Green Chem. 21:92316–25
    [Google Scholar]
  145. 145.
    Scortichini M, Loreti S, Pucci N, Scala V, Tatulli G et al. 2021. Progress towards sustainable control of Xylella fastidiosa subsp. pauca in olive groves of Salento (Apulia, Italy). Pathogens 10:668
    [Google Scholar]
  146. 146.
    Shanmugaraj B, Bulaon CJI, Malla A, Phoolcharoen W. 2021. Biotechnological insights on the expression and production of antimicrobial peptides in plants. Molecules 26:4032
    [Google Scholar]
  147. 147.
    Sharma A, Abrahamian P, Carvalho R, Choudhary M, Paret ML et al. 2022. Future of bacterial disease management in crop production. Annu. Rev. Phytopathol. 60:259–82
    [Google Scholar]
  148. 148.
    Sharma AK, Sharma MK. 2009. Plants as bioreactors: recent developments and emerging opportunities. Biotechnol. Adv. 27:811–32
    [Google Scholar]
  149. 149.
    Shi M, Chen L, Wang XW, Zhang T, Zhao PB et al. 2012. Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiology 158:166–75
    [Google Scholar]
  150. 150.
    Soler M, González-Bártulos M, Soriano-Castell D et al. 2014. Identification of BP16 as a non-toxic cell-penetrating peptide with highly efficient drug delivery properties. Org. Biomol. Chem. 12:101652–63
    [Google Scholar]
  151. 151.
    Song XY, Xie ST, Chen XL, Sun CY, Shi M, Zhang YZ. 2007. Solid-state fermentation for trichokonins production from Trichoderma koningii SMF2 and preparative purification of trichokonin VI by a simple protocol. J. Biotechnol. 131:209–15
    [Google Scholar]
  152. 152.
    Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56:845–57
    [Google Scholar]
  153. 153.
    Stein T, Borchert S, Conrad B, Feesche J, Hofemeister B et al. 2002. Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. J Bacteriol. 184:61703–11
    [Google Scholar]
  154. 154.
    Stover ED, Stange RR, McCollum TG, Jaynes J, Irey M, Mirkov E. 2013. Screening antimicrobial peptides in vitro for use in developing transgenic Citrus resistant to huanglongbing and citrus canker. J. Am. Soc. Hortic. Sci. 138:142–48
    [Google Scholar]
  155. 155.
    Sundin GW, Castiblanco LF, Yuan X, Zeng Q, Yang C-H. 2016. Bacterial disease management: challenges, experience, innovation and future prospects. Mol. Plant Pathol. 17:91506–18
    [Google Scholar]
  156. 156.
    Thayer A. 2011. Making peptides at large scale. Chem. Eng. News 89:2221–25
    [Google Scholar]
  157. 157.
    Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K. 1991. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J. Dairy Sci. 74:4137–42
    [Google Scholar]
  158. 158.
    Topman S, Tamir-Ariel D, Bochnic-Tamir H, Bauer TS, Shafir S et al. 2018. Random peptide mixtures as new crop protection agents. Microb. Biotechnol. 11:1027–36
    [Google Scholar]
  159. 159.
    Tran H, Ficke A, Asiimwe T, Hofte M, Raaijmakers JM. 2007. Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol. 175:731–42
    [Google Scholar]
  160. 160.
    Vasilshenko AS, Rogozhin EA, Vasilichenko AV, Kartashova OL, Sycheva MV. 2016. Novel haemoglobin-derived antimicrobial peptides from chicken (Gallus gallus) blood: purification, structural aspects and biological activity. J. Appl. Microbiol. 121:1546–57
    [Google Scholar]
  161. 161.
    Vila L, Lacadena V, Fontanet P, Martinez del Pozo A, San Segundo B. 2001. A protein from the mold Aspergillus giganteus is a potent inhibitor of fungal plant pathogens. Mol. Plant-Microbe Interact. 14:1327–31
    [Google Scholar]
  162. 162.
    Vilà S, Badosa E, Montesinos E, Planas M, Feliu L. 2016. Synthetic cyclolipopeptides selective against microbial, plant and animal cell targets by incorporation of D-amino acids or histidine. PLOS ONE 11:3e0151639
    [Google Scholar]
  163. 163.
    Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C 2007. The 18 mer peptaibols from Trichoderma virens elicit plant defence responses. Mol. Plant Pathol. 8:737–46
    [Google Scholar]
  164. 164.
    Wang N, Pierson EA, Setubal JC, Xu J, Levy JG et al. 2017. The Candidatus Liberibacter–host interface: insights into pathogenesis mechanisms and disease control. Annu. Rev. Phytopathol. 55:451–82
    [Google Scholar]
  165. 165.
    Wang W, Zheng G, Lu Y. 2021. Recent advances in strategies for the cloning of natural product biosynthetic gene clusters. Front. Bioeng. Biotechnol. 9:692797
    [Google Scholar]
  166. 166.
    Wang YQ, Cai JY. 2007. High-level expression of acidic partner-mediated antimicrobial peptide from tandem genes in Escherichia coli. Appl. Biochem. Biotechnol. 141:203–13
    [Google Scholar]
  167. 167.
    Wu Q, Patočka J, Kuča K. 2018. Insect antimicrobial peptides, a mini review. Toxins 10:461
    [Google Scholar]
  168. 168.
    Yuan M, Jiang Z, Bi G, Nomura K, Liu M et al. 2021. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592:7852105–9
    [Google Scholar]
  169. 169.
    Zachow C, Jahanshah G, de Bruijn I, Song C, Ianni F et al. 2015. The novel lipopeptide poaeamide of the endophyte Pseudomonas poae RE1114 is involved in pathogen suppression and root colonization. Mol. Plant-Microbe Interact. 28:800–10
    [Google Scholar]
  170. 170.
    Zeitler B, Bernhard A, Meyer H, Sattler M, Koop HU, Lindermayr C. 2013. Production of a de-novo designed antimicrobial peptide in Nicotiana benthamiana. Plant Mol. Biol. 81:259–72
    [Google Scholar]
  171. 171.
    Zhang D, Lu Y, Chen H, Wu C, Zhang H et al. 2020. Antifungal peptides produced by actinomycetes and their biological activities against plant diseases. J. Antibiot. 73:265–82
    [Google Scholar]
  172. 172.
    Zhou M, Hu Q, Li Z, Li D, Chen CF, Luo H 2011. Expression of a novel antimicrobial peptide penaeidin4–1 in creeping bentgrass (Agrostis stolonifera L.) enhances plant fungal disease resistance. PLOS ONE 6:8–10
    [Google Scholar]
  173. 173.
    Zhou YR, Song XY, Li Y, Shi JC, Shi WL et al. 2019. Enhancing peptaibols production in the biocontrol fungus Trichoderma longibrachiatum SMF2 by elimination of a putative glucose sensor. Biotechnol. Bioeng. 116:3030–40
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-021722-034312
Loading
/content/journals/10.1146/annurev-phyto-021722-034312
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error