1932

Abstract

Two decades of social neuroscience and neuroeconomics research illustrate the brain mechanisms that are engaged when people consider human beings, often in comparison to considering artificial intelligence (AI) as a nonhuman control. AI as an experimental control preserves agency and facilitates social interactions but lacks a human presence, providing insight into brain mechanisms that are engaged by human presence and the presence of AI. Here, I review this literature to determine how the brain instantiates human and AI presence across social perception and decision-making paradigms commonly used to realize a social context. People behave toward humans differently than they do toward AI. Moreover, brain regions more engaged by humans compared to AI extend beyond the social cognition brain network to all parts of the brain, and the brain sometimes is engaged more by AI than by humans. Finally, I discuss gaps in the literature, limitations in current neuroscience approaches, and how an understanding of the brain correlates of human and AI presence can inform social science in the wild.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-013123-123421
2024-01-18
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/psych/75/1/annurev-psych-013123-123421.html?itemId=/content/journals/10.1146/annurev-psych-013123-123421&mimeType=html&fmt=ahah

Literature Cited

  1. Amodio DM, Frith CD. 2006. Meeting of minds: the medial frontal cortex and social cognition. Nat. Rev. Neurosci. 4:268–77
    [Google Scholar]
  2. Anders S, Heussen Y, Sprenger A, Haynes JD, Ethofer T. 2015. Social gating of sensory information during ongoing communication. NeuroImage 104:189–98
    [Google Scholar]
  3. Assaf M, Kahn I, Pearlson GD, Johnson MR, Yeshurun Y, Calhoun VD, Hendler T. 2009. Brain activity dissociates mentalization from motivation during an interpersonal competitive game. Brain Imaging Behav 3:24–37
    [Google Scholar]
  4. Basile M, Lemasson A, Blois-Heulin C. 2009. Social and emotional values of sounds influence human (Homo sapiens) and non-human primate (Cercopithecus campbelli) auditory laterality. PLOS ONE 4:e6295
    [Google Scholar]
  5. Baumgartner T, Knoch D, Hotz P, Eisenegger C, Fehr E. 2011. Dorsolateral and ventromedial prefrontal cortex orchestrate normative choice. Nat. Neurosci. 14::1468–74
    [Google Scholar]
  6. Baylis GC, Rolls ET, Leonard CM. 1987. Functional subdivisions of the temporal lobe neocortex. J. Neurosci. 7:330–42
    [Google Scholar]
  7. Bender EM, Gebru T, McMillan-Major A, Shmitchell S. 2021. On the dangers of stochastic parrots: Can language models be too big?. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency610–23 New York: ACM
    [Google Scholar]
  8. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. 2001. Conflict monitoring and cognitive control. Psychol. Rev. 108:624–52
    [Google Scholar]
  9. Bruce C, Desimone R, Gross CG. 1981. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J. Neurophys. 46:369–84
    [Google Scholar]
  10. Carter EJ, Hodgins JK, Rakison DH. 2011. Exploring the neural correlates of goal-directed action and intention understanding. NeuroImage 54:1634–42
    [Google Scholar]
  11. Carter RM, Bowling DL, Reeck C, Huettel SA. 2012. A distinct role of the temporal-parietal junction in predicting socially guided decisions. Science 337:109–11
    [Google Scholar]
  12. Chaminade T, Da Fonseca D, Rosset D, Cheng G, Deruelle C 2015. Atypical modulation of hypothalamic activity by social context in ASD. Res. Autism Spectr. Dis. 10:41–50
    [Google Scholar]
  13. Chaminade T, Hodgins J, Kawato M. 2007. Anthropomorphism influences perception of computer-animated characters’ actions. Soc. Cogn. Affect. Neurosci. 2:206–16
    [Google Scholar]
  14. Chaminade T, Rosset D, Da Fonseca D, Nazarian B, Lutcher E et al. 2012. How do we think machines think? An fMRI study of alleged competition with an artificial intelligence. Front. Hum. Neurosci. 6:103
    [Google Scholar]
  15. Cheetham M, Suter P, Jäncke L. 2011. The human likeness dimension of the “uncanny valley hypothesis”: behavioral and functional MRI findings. Front. Hum. Neurosci. 5:126
    [Google Scholar]
  16. Chen X, Hackett PD, DeMarco AC, Feng C, Stair S, Haroon E. et al. 2016. Effects of oxytocin and vasopressin on the neural response to unreciprocated cooperation within brain regions involved in stress and anxiety in men and women. Brain Imaging Behav 10:581–93
    [Google Scholar]
  17. Coricelli G, Nagel R. 2009. Neural correlates of depth of strategic reasoning in medial prefrontal cortex. PNAS 106:9163–68
    [Google Scholar]
  18. Craig AD. 2009. How do you feel—now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10:59–70
    [Google Scholar]
  19. Critchley HD, Garfinkel SN. 2017. Interoception and emotion. Curr. Opin. Psychol. 17:7–14
    [Google Scholar]
  20. De Kort YA, Ijsselsteijn WA, Poels K. 2007. Digital games as social presence technology: development of the Social Presence in Gaming Questionnaire (SPGQ) Paper presented at PRESENCE 2007, 10th Annual International Workshop on Presence Barcelona: Oct. 25–27
  21. De Quervain DJF, Fischbacher U, Treyer V, Schellhammer M, Schnyder U, Buck A et al. 2004. The neural basis of altruistic punishment. Science 305:1254–58
    [Google Scholar]
  22. Delgado MR, Schotter A, Ozbay EY, Phelps EA. 2008. Understanding overbidding: using the neural circuitry of reward to design economic auctions. Science 321:1849–52
    [Google Scholar]
  23. Descartes R. 1637. Discours de la methode pour bien conduire sa raison, & chercher la verité dans les sciences: plus la dioptrique, les eurons, et la geometrie, qui sont des essais de cete methode Leyde, Neth.: De l'imprimerie de I. Marie
  24. Desimone R, Albright TD, Gross CG, Bruce C. 1984. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4:2051–62
    [Google Scholar]
  25. Desmet C, Deschrijver E, Brass M. 2014. How social is error observation? The neural mechanisms underlying the observation of human and machine errors. Soc. Cogn. Affect. Neurosci. 9:427–35
    [Google Scholar]
  26. Di Cesare G, Fasano F, Errante A, Marchi M, Rizzolatti G. 2016. Understanding the internal states of others by listening to action verbs. Neuropsychologia 89:172–79
    [Google Scholar]
  27. Everts HG, Koolhaas JM. 1997. Lateral septal vasopressin in rats: role in social and object recognition?. Brain Res. 760:1–7
    [Google Scholar]
  28. Fareri DS, Hackett K, Tepfer LJ, Kelly V, Henninger N, Reeck C et al. 2022. Age-related differences in ventral striatal and default mode network function during reciprocated trust. NeuroImage 256:119267
    [Google Scholar]
  29. Fiske ST, Taylor SE. 2013. Social Cognition: From Brains to Culture London: SAGE
  30. Frith U, Frith C. 2001. The biological basis of social interaction. Curr. Dir. Psychol. Sci. 10:151–55
    [Google Scholar]
  31. Gallagher HL, Frith CD. 2003. Functional imaging of “theory of mind. Trends Cogn. Sci. 7:77–83
    [Google Scholar]
  32. Gallagher HL, Jack AI, Roepstorff A, Frith CD. 2002. Imaging the intentional stance in a competitive game. NeuroImage 16:814–21
    [Google Scholar]
  33. Ganesh S, Van Schie HT, De Lange FP, Thompson E, Wigboldus DH. 2012. How the human brain goes virtual: Distinct cortical regions of the person-processing network are involved in self-identification with virtual agents. Cereb. Cortex 22:1577–85
    [Google Scholar]
  34. Gobbini MI, Gentili C, Ricciardi E, Bellucci C, Salvini P et al. 2011. Distinct neural systems involved in agency and animacy detection. J. Cogn. Neurosci. 23:1911–20
    [Google Scholar]
  35. Goffman E. 1959. The Presentation of Self in Everyday Life Garden City, NY: Doubleday
  36. Gross CG, Rocha-Miranda CD, Bender DB. 1972. Visual properties of neurons in inferotemporal cortex of the Macaque. J. Neurophys. 35:96–111
    [Google Scholar]
  37. Hare B, Tomasello M. 2005. Human-like social skills in dogs?. Trends Cogn. Sci. 9:439–44
    [Google Scholar]
  38. Harris LT. 2017. Invisible Mind: Flexible Social Cognition and Dehumanization Cambridge, MA: MIT Press
  39. Harris LT, Fiske ST. 2011. Dehumanized perception: a psychological means to facilitate atrocities, torture, and genocide?. Z. Psychol./J. Psychol. 219:175–81
    [Google Scholar]
  40. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. 2001. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–30
    [Google Scholar]
  41. Henrich J, Heine S, Norenzayan A. 2010. The weirdest people in the world?. Behav. Brain Sci. 33:61–83
    [Google Scholar]
  42. Hogenhuis A, Hortensius R. 2022. Domain-specific and domain-general neural network engagement during human–robot interactions. Eur. J. Neurosci. 56:5902–16
    [Google Scholar]
  43. Husted JR, McKenna FS. 1966. The use of rats as discriminative stimuli. J. Exp. Anal. Behav. 9:677–79
    [Google Scholar]
  44. Ikeda T, Hirata M, Kasaki M, Alimardani M, Matsushit K et al. 2017. Subthalamic nucleus detects unnatural android movement. Sci. Rep. 7:17851
    [Google Scholar]
  45. James W. 1890. The Principles of Psychology New York: H. Holt & Co
  46. Kanwisher N, McDermott J, Chun MM. 1997. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17:4302–11
    [Google Scholar]
  47. Kätsyri J, De Gelder B, De Borst AW. 2020. Amygdala responds to direct gaze in real but not in computer-generated faces. NeuroImage 204:116216
    [Google Scholar]
  48. Kätsyri J, Hari R, Ravaja N, Nummenmaa L. 2013. The opponent matters: elevated fMRI reward responses to winning against a human versus a computer opponent during interactive video game playing. Cereb. Cortex 23:2829–39
    [Google Scholar]
  49. Keupp S, Titchener R, Bugnyar T, Mussweiler T, Fischer J. 2019. Competition is crucial for social comparison processes in long-tailed macaques. Biol. Lett. 15:20180784
    [Google Scholar]
  50. Klarer M, Weber-Stadlbauer U, Arnold M, Langhans W, Meyer U. 2019. Abdominal vagal deafferentation alters affective behaviors in rats. J. Affect. Disord. 252:404–12
    [Google Scholar]
  51. Koban L, Gianaros PJ, Kober H, Wager TD. 2021. The self in context: brain systems linking mental and physical health. Nat. Rev. Neurosci. 22:309–22
    [Google Scholar]
  52. Koban L, Pichon S, Vuilleumier P. 2014. Responses of medial and ventrolateral prefrontal cortex to interpersonal conflict for resources. Soc. Cogn. Affect. Neurosci. 9:561–69
    [Google Scholar]
  53. Krach S, Blümel I, Marjoram D, Lataster T, Krabbendam L et al. 2009. Are women better mindreaders? Sex differences in neural correlates of mentalizing detected with functional MRI. BMC Neurosci 10:9
    [Google Scholar]
  54. Krach S, Hegel F, Wrede B, Sagerer G, Binkofski F, Kircher T. 2008. Can machines think? Interaction and perspective taking with robots investigated via fMRI. PLOS ONE 3:e2597
    [Google Scholar]
  55. Lee VK, Harris LT. 2014. Sticking with the nice guy: Trait warmth information impairs learning and modulates person perception brain network activity. Cogn. Affect. Behav. Neurosci. 14:1420–37
    [Google Scholar]
  56. Li J, Xiao E, Houser D, Montague PR. 2009. Neural responses to sanction threats in two-party economic exchange. PNAS 106:16835–40
    [Google Scholar]
  57. Lipina TV, Roder JC. 2013. Co-learning facilitates memory in mice: a new avenue in social neuroscience. Neuropharmacology 64:283–93
    [Google Scholar]
  58. Lukas M, Toth I, Veenema AH, Neumann ID. 2013. Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: male juvenile versus female adult conspecifics. Psychoneuroendocrinology 38:916–26
    [Google Scholar]
  59. Markus HR, Kitayama S. 1991. Culture and the self: implications for cognition, emotion, and motivation. Psychol. Rev. 98:224–53
    [Google Scholar]
  60. Mars RB, Neubert FX, Noonan MP, Sallet J, Toni I, Rushworth MF 2012. On the relationship between the “default mode network” and the “social brain. Front. Hum. Neurosci. 6:189
    [Google Scholar]
  61. Matveeva TM, Pisansky MT, Young A, Miller RF, Gewirtz JC. 2019. Sociality deficits in serine racemase knockout mice. Brain Behav 9:e01383
    [Google Scholar]
  62. McCabe K, Houser D, Ryan L, Smith V, Trouard T. 2001. A functional imaging study of cooperation in two-person reciprocal exchange. PNAS 98:11832–35
    [Google Scholar]
  63. McCarthy G, Puce A, Gore JC, Allison T. 1997. Face-specific processing in the human fusiform gyrus. J. Cogn. Neurosci. 9:605–10
    [Google Scholar]
  64. McDonald KR, Pearson JM, Huettel SA. 2020. Dorsolateral and dorsomedial prefrontal cortex track distinct properties of dynamic social behavior. Soc. Cogn. Affect. Neurosci. 15:383–93
    [Google Scholar]
  65. McNeill WH. 1997. Keeping Together in Time Cambridge, MA: Harvard Univ. Press
  66. Monfardini E, Reynaud AJ, Prado J, Meunier M. 2017. Social modulation of cognition: lessons from rhesus macaques relevant to education. Neurosci. Biobehav. Rev. 82:45–57
    [Google Scholar]
  67. Özdem C, Wiese E, Wykowska A, Müller H, Brass M, Van Overwalle F. 2017. Believing androids—fMRI activation in the right temporo-parietal junction is modulated by ascribing intentions to non-human agents. Soc. Neurosci. 12:582–93
    [Google Scholar]
  68. Parr LA, Hecht E, Barks SK, Preuss TM, Votaw JR. 2009. Face processing in the chimpanzee brain. Curr. Biol. 19:50–53
    [Google Scholar]
  69. Perrett DI, Rolls ET, Caan W. 1982. Visual neurones responsive to faces in the monkey temporal cortex. Exp. Brain Res 47:329–42
    [Google Scholar]
  70. Petrulis A. 2009. Neural mechanisms of individual and sexual recognition in Syrian hamsters (Mesocricetus auratus). Behav. Brain Res. 200:260–67
    [Google Scholar]
  71. Phan KL, Sripada CS, Angstadt M, McCabe K. 2010. Reputation for reciprocity engages the brain reward center. PNAS 107:13099–104
    [Google Scholar]
  72. Pinsk MA, DeSimone K, Moore T, Gross CG, Kastner S. 2005. Representations of faces and body parts in macaque temporal cortex: a functional MRI study. PNAS 102:6996–7001
    [Google Scholar]
  73. Piva M, Zhang X, Noah JA, Chang SW, Hirsch J. 2017. Distributed neural activity patterns during human-to-human competition. Front. Hum. Neurosci. 11:571
    [Google Scholar]
  74. Poldrack RA. 2011. Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron 72:692–97
    [Google Scholar]
  75. Powers KG, Ma X-M, Eipper BA, Mains RE. 2021. Cell-type specific knockout of peptidylglycine α-amidating monooxygenase reveals specific behavioral roles in excitatory forebrain neurons and cardiomyocytes. Genes Brain Behav 20:e12699
    [Google Scholar]
  76. Rangel A, Camerer C, Montague PR. 2008. A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9:545–56
    [Google Scholar]
  77. Rao RP, Von Heimendahl M, Bahr V, Brecht M. 2019. Neuronal responses to conspecifics in the ventral CA1. Cell Rep. 27:3460–72
    [Google Scholar]
  78. Rilling JK, Gutman DA, Zeh TR, Pagnoni G, Berns GS, Kilts CD. 2002. A neural basis for social cooperation. Neuron 35:395–405
    [Google Scholar]
  79. Rilling JK, Sanfey AG. 2011. The neuroscience of social decision-making. Annu. Rev. Psychol. 62:23–48
    [Google Scholar]
  80. Rilling JK, Sanfey AG, Aronson JA, Nystrom LE, Cohen JD. 2004a. Opposing BOLD responses to reciprocated and unreciprocated altruism in putative reward pathways. NeuroReport 15:2539–43
    [Google Scholar]
  81. Rilling JK, Sanfey AG, Aronson JA, Nystrom LE, Cohen JD. 2004b. The neural correlates of theory of mind within interpersonal interactions. NeuroImage 22:1694–703
    [Google Scholar]
  82. Rogers TB, Kuiper NA, Kirker WS. 1977. Self-reference and the encoding of personal information. J. Pers. Soc. Psychol. 35:677–88
    [Google Scholar]
  83. Rosenthal-von der Pütten AM, Krämer NC, Maderwald S, Brand M, Grabenhorst F. 2019. Neural mechanisms for accepting and rejecting artificial social partners in the uncanny valley. J. Neurosci. 39:6555–70
    [Google Scholar]
  84. Sanfey AG, Rilling JK, Aronson JA, Nystrom LE, Cohen JD. 2003. The neural basis of economic decision-making in the ultimatum game. Science 300:1755–58
    [Google Scholar]
  85. Saygin AP, Chaminade T, Ishiguro H, Driver J, Frith C. 2012. The thing that should not be: predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Soc. Cogn. Affect. Neurosci. 7:413–22
    [Google Scholar]
  86. Schindler S, Kruse O, Stark R, Kissler J. 2019. Attributed social context and emotional content recruit frontal and limbic brain regions during virtual feedback processing. Cogn. Affect. Behav. Neurosci. 19:239–52
    [Google Scholar]
  87. Schwarz N, Clore GL. 1983. Mood, misattribution, and judgments of well-being: informative and directive functions of affective states. J. Pers. Soc. Psychol. 45:513–23
    [Google Scholar]
  88. Singer T, Kiebel SJ, Winston JS, Dolan RJ, Frith CD. 2004. Brain responses to the acquired moral status of faces. Neuron 41:653–62
    [Google Scholar]
  89. Spitzer M, Fischbacher U, Herrnberger B, Grön G, Fehr E. 2007. The neural signature of social norm compliance. Neuron 56:185–96
    [Google Scholar]
  90. Sun D, Chan CC, Hu Y, Wang Z, Lee TM. 2015. Neural correlates of outcome processing post dishonest choice: an fMRI and ERP study. Neuropsychologia 68:148–57
    [Google Scholar]
  91. Tanaka K, Saito HA, Fukada Y, Moriya M. 1991. Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J. Neurophys. 66:170–89
    [Google Scholar]
  92. Tang S, Harris L. 2015. Construing a transgression as a moral or a value violation impacts other versus self-dehumanisation. Rev. Int. Psychol. Soc. 28:95–123
    [Google Scholar]
  93. Terwiesch C. 2023. Would Chat GPT3 get a Wharton MBA? A prediction based on its performance in the operations management course Work. Pap., Mack Inst. Innov. Manag. Wharton Sch., Univ. Pa. Philadelphia:
  94. Thor DH, Holloway WR. 1982. Social memory of the male laboratory rat. J. Comp. Phys. Psychol. 96:1000–6
    [Google Scholar]
  95. Tso IF, Rutherford S, Fang Y, Angstadt M, Taylor SF. 2018. The “social brain” is highly sensitive to the mere presence of social information: an automated meta-analysis and an independent study. PLOS ONE 13:e0196503
    [Google Scholar]
  96. Vaitonyte J, Alimardani M, Louwerse MM. 2023. Scoping review of the neural evidence on the uncanny valley. Comput. Hum. Behav. Rep. 9:100263
    [Google Scholar]
  97. Van den Bos W, McClure SM, Harris LT, Fiske ST, Cohen JD. 2007. Dissociating affective evaluation and social cognitive processes in the ventral medial prefrontal cortex. Cogn. Affect. Behav. Neurosci. 7:337–46
    [Google Scholar]
  98. Van Dijk E, De Dreu CK. 2021. Experimental games and social decision making. Annu. Rev. Psychol. 72:415–38
    [Google Scholar]
  99. Van Overwalle F. 2009. Social cognition and the brain: a meta-analysis. Hum. Brain Mapp. 30:829–58
    [Google Scholar]
  100. Van't Wout M, Kahn RS, Sanfey AG, Aleman A. 2005. Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex affects strategic decision-making. NeuroReport 16:1849–52
    [Google Scholar]
  101. Wang Y, Quadflieg S. 2015. In our own image? Emotional and neural processing differences when observing human–human versus human–robot interactions. Soc. Cogn. Affect. Neurosci. 10:515–24
    [Google Scholar]
  102. Wen T, Hsieh S. 2015. Neuroimaging of the joint Simon effect with believed biological and non-biological co-actors. Front. Hum. Neurosci. 9:483
    [Google Scholar]
  103. Wittgenstein L. 1993. Philosophical Occasions 1912–1951 JC Klagge, A Nordmann Indianapolis, IN: Hackett Publ. Co.
  104. Xiong W, Gao X, He Z, Yu H, Liu H, Zhou X. 2020. Affective evaluation of others’ altruistic decisions under risk and ambiguity. NeuroImage 218:116996
    [Google Scholar]
  105. Yamane S, Kaji S, Kawano K. 1988. What facial features activate face neurons in the inferotemporal cortex of the monkey?. Exp. Brain Res. 73:209–14
    [Google Scholar]
  106. Zhang Y, Yu H, Yin Y, Zhou X. 2016. Intention modulates the effect of punishment threat in norm enforcement via the lateral orbitofrontal cortex. J. Neurosci. 36:9217–26
    [Google Scholar]
/content/journals/10.1146/annurev-psych-013123-123421
Loading
/content/journals/10.1146/annurev-psych-013123-123421
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error