1932

Abstract

RNA viruses encode the information required to usurp cellular metabolism and gene regulation and to enable their own replication in two ways: in the linear sequence of their RNA genomes and in higher-order structures that form when the genomic RNA strand folds back on itself. Application of high-resolution SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) structure probing to viral RNA genomes has identified numerous new regulatory elements, defined new principles by which viral RNAs interact with the cellular host and evade host immune responses, and revealed relationships between virus evolution and RNA structure. This review summarizes our current understanding of genome structure-function interrelationships for RNA viruses, as informed by SHAPE structure probing, and outlines opportunities for future studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092917-043315
2019-09-29
2024-05-17
Loading full text...

Full text loading...

/deliver/fulltext/virology/6/1/annurev-virology-092917-043315.html?itemId=/content/journals/10.1146/annurev-virology-092917-043315&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Brion P, Westhof E. 1997. Hierarchy and dynamics of RNA folding. Annu. Rev. Biophys. Biomol. Struct. 26:113–37
    [Google Scholar]
  2. 2. 
    Batey RT, Rambo RP, Doudna JA 1999. Tertiary motifs in RNA structure and folding. Angew. Chem. Int. Ed. 38:162326–43
    [Google Scholar]
  3. 3. 
    Butcher SE, Pyle AM. 2011. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Acc. Chem. Res. 44:121302–11
    [Google Scholar]
  4. 4. 
    Desselberger U, Racaniello VR, Zazra JJ, Palese P 1980. The 3′ and 5′-terminal sequences of influenza A, B and C virus RNA segments are highly conserved and show partial inverted complementarity. Gene 8:3315–28
    [Google Scholar]
  5. 5. 
    Pflug A, Guilligay D, Reich S, Cusack S 2014. Structure of influenza A polymerase bound to the viral RNA promoter. Nature 516:7531355–60
    [Google Scholar]
  6. 6. 
    Berkhout B, Silverman RH, Jeang KT 1989. Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59:2273–82
    [Google Scholar]
  7. 7. 
    Ortín J, Parra F. 2006. Structure and function of RNA replication. Annu. Rev. Microbiol. 60:305–26
    [Google Scholar]
  8. 8. 
    Brierley I, Digard P, Inglis SC 1989. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57:4537–47
    [Google Scholar]
  9. 9. 
    Park S-J, Kim Y-G, Park H-J 2011. Identification of RNA pseudoknot-binding ligand that inhibits the −1 ribosomal frameshifting of SARS-coronavirus by structure-based virtual screening. J. Am. Chem. Soc. 133:2610094–100
    [Google Scholar]
  10. 10. 
    Aldovini A, Young RA. 1990. Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J. Virol. 64:51920–26
    [Google Scholar]
  11. 11. 
    Lu K, Heng X, Summers MF 2011. Structural determinants and mechanism of HIV-1 genome packaging. J. Mol. Biol. 410:4609–33
    [Google Scholar]
  12. 12. 
    Pijlman GP, Funk A, Kondratieva N, Leung J, Torres S et al. 2008. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe 4:6579–91
    [Google Scholar]
  13. 13. 
    Chapman EG, Costantino DA, Rabe JL, Moon SL, Wilusz J et al. 2014. The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production. Science 344:6181307–10
    [Google Scholar]
  14. 14. 
    Akiyama BM, Laurence HM, Massey AR, Costantino DA, Xie X et al. 2016. Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science 354:63161148–52
    [Google Scholar]
  15. 15. 
    Villordo SM, Carballeda JM, Filomatori CV, Gamarnik AV 2016. RNA structure duplications and flavivirus host adaptation. Trends Microbiol 24:4270–83
    [Google Scholar]
  16. 16. 
    Tsukiyama-Kohara K, Iizuka N, Kohara M, Nomoto A 1992. Internal ribosome entry site within hepatitis C virus RNA. J. Virol. 66:31476–83
    [Google Scholar]
  17. 17. 
    Lee K-M, Chen C-J, Shih S-R 2017. Regulation mechanisms of viral IRES-driven translation. Trends Microbiol 25:7546–61
    [Google Scholar]
  18. 18. 
    Gebhard LG, Filomatori CV, Gamarnik AV 2011. Functional RNA elements in the dengue virus genome. Viruses 3:91739–56
    [Google Scholar]
  19. 19. 
    Yamamoto H, Unbehaun A, Loerke J, Behrmann E, Collier M et al. 2014. Structure of the mammalian 80S initiation complex with initiation factor 5B on HCV-IRES RNA. Nat. Struct. Mol. Biol. 21:8721–27
    [Google Scholar]
  20. 20. 
    Fang X, Wang J, O'Carroll IP, Mitchell M, Zuo X et al. 2013. An unusual topological structure of the HIV-1 Rev response element. Cell 155:3594–605
    [Google Scholar]
  21. 21. 
    Boerneke MA, Dibrov SM, Gu J, Wyles DL, Hermann T 2014. Functional conservation despite structural divergence in ligand-responsive RNA switches. PNAS 111:4515952–57
    [Google Scholar]
  22. 22. 
    Frankel AD, Young JAT. 1998. HIV-1: fifteen proteins and an RNA. Annu. Rev. Biochem. 67:1–25
    [Google Scholar]
  23. 23. 
    Damgaard CK, Andersen ES, Knudsen B, Gorodkin J, Kjems J 2004. RNA interactions in the 5′ region of the HIV-1 genome. J. Mol. Biol. 336:2369–79
    [Google Scholar]
  24. 24. 
    Goff SP. 2007. Host factors exploited by retroviruses. Nat. Rev. Microbiol. 5:4253–63
    [Google Scholar]
  25. 25. 
    Fraser C, Doudna J. 2007. Structural and mechanistic insights into hepatitis C viral translation initiation. Nat. Rev. Microbiol. 5:129–38
    [Google Scholar]
  26. 26. 
    Kieft JS. 2008. Viral IRES RNA structures and ribosome interactions. Trends Biochem. Sci. 33:6274–83
    [Google Scholar]
  27. 27. 
    Komar AA, Mazumder B, Merrick WC 2012. A new framework for understanding IRES-mediated translation. Gene 502:275–86
    [Google Scholar]
  28. 28. 
    Dibrov SM, Parsons J, Carnevali M, Zhou S, Rynearson KD et al. 2014. Hepatitis C virus translation inhibitors targeting the internal ribosomal entry site. J. Med. Chem. 57:1694–707
    [Google Scholar]
  29. 29. 
    Khawaja A, Vopalensky V, Pospisek M 2015. Understanding the potential of hepatitis C virus internal ribosome entry site domains to modulate translation initiation via their structure and function. Wiley Interdiscip. Rev. RNA 6:2211–24
    [Google Scholar]
  30. 30. 
    Nicholson BL, White KA. 2014. Functional long-range RNA-RNA interactions in positive-strand RNA viruses. Nat. Rev. Microbiol. 12:7493–504
    [Google Scholar]
  31. 31. 
    de Borba L, Villordo SM, Iglesias NG, Filomatori CV, Gebhard LG, Gamarnik AV 2015. Overlapping local and long-range RNA-RNA interactions modulate dengue virus genome cyclization and replication. J. Virol. 89:63430–37
    [Google Scholar]
  32. 32. 
    Kjems J, Brown M, Chang DD, Sharp PA 1991. Structural analysis of the interaction between the human immunodeficiency virus Rev protein and the Rev response element. PNAS 88:3683–87
    [Google Scholar]
  33. 33. 
    Clyde K, Barrera J, Harris E 2008. The capsid-coding region hairpin element (cHP) is a critical determinant of dengue virus and West Nile virus RNA synthesis. Virology 379:2314–23
    [Google Scholar]
  34. 34. 
    Groat-Carmona AM, Orozco S, Friebe P, Payne A, Kramer L, Harris E 2012. A novel coding-region RNA element modulates infectious dengue virus particle production in both mammalian and mosquito cells and regulates viral replication in Aedes aegypti mosquitoes. Virology 432:2511–26
    [Google Scholar]
  35. 35. 
    Liu Z-Y, Li X-F, Jiang T, Deng Y-Q, Zhao H et al. 2013. Novel cis-acting element within the capsid-coding region enhances flavivirus viral-RNA replication by regulating genome cyclization. J. Virol. 87:126804–18
    [Google Scholar]
  36. 36. 
    Liu Z-Y, Li X-F, Jiang T, Deng Y-Q, Ye Q et al. 2016. Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization. eLife 5:e17636
    [Google Scholar]
  37. 37. 
    Siegfried NA, Busan S, Rice GM, Nelson JAE, Weeks KM 2014. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11:9959–65
    [Google Scholar]
  38. 38. 
    Smola MJ, Rice GM, Busan S, Siegfried NA, Weeks KM 2015. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc. 10:111643–69
    [Google Scholar]
  39. 39. 
    Lucks JB, Mortimer SA, Trapnell C, Luo S, Aviran S et al. 2011. Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). PNAS 108:2711063–68
    [Google Scholar]
  40. 40. 
    Loughrey D, Watters KE, Settle AH, Lucks JB 2014. SHAPE-Seq 2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing. Nucleic Acids Res 42:21e165
    [Google Scholar]
  41. 41. 
    Homan PJ, Favorov OV, Lavender CA, Kursun O, Ge X et al. 2014. Single-molecule correlated chemical probing of RNA. PNAS 111:3813858–63
    [Google Scholar]
  42. 42. 
    Lu Z, Zhang QC, Lee B, Flynn RA, Smith MA et al. 2016. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165:51267–79
    [Google Scholar]
  43. 43. 
    Aw JGA, Shen Y, Wilm A, Sun M, Lim XN et al. 2016. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell 62:4603–17
    [Google Scholar]
  44. 44. 
    Peattie DA, Gilbert W. 1980. Chemical probes for higher-order structure in RNA. PNAS 77:84679–82
    [Google Scholar]
  45. 45. 
    Ehresmann B. 1987. Probing the structure of RNAs in solution. Nucleic Acids Res 15:229109–28
    [Google Scholar]
  46. 46. 
    Stern S, Moazed D, Noller HF 1988. Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol 164:481–89
    [Google Scholar]
  47. 47. 
    Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM 2005. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127:124223–31
    [Google Scholar]
  48. 48. 
    Weeks KM. 2010. Advances in RNA structure analysis by chemical probing. Curr. Opin. Struct. Biol. 20:3295–304
    [Google Scholar]
  49. 49. 
    Kenyon J, Prestwood L, Lever A 2014. Current perspectives on RNA secondary structure probing. Biochem. Soc. Trans. 42:41251–55
    [Google Scholar]
  50. 50. 
    Karabiber F, McGinnis JL, Favorov OV, Weeks KM 2013. QuShape: rapid, accurate, and best-practices quantification of nucleic acid probing information, resolved by capillary electrophoresis. RNA 19:163–73
    [Google Scholar]
  51. 51. 
    Kwok CK, Tang Y, Assmann SM, Bevilacqua PC 2015. The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem. Sci. 40:4221–32
    [Google Scholar]
  52. 52. 
    Nicholson BL, White KA. 2015. Exploring the architecture of viral RNA genomes. Curr. Opin. Virol. 12:66–74
    [Google Scholar]
  53. 53. 
    Rausch JW, Sztuba-Solinska J, Le Grice SFJ 2018. Probing the structures of viral RNA regulatory elements with SHAPE and related methodologies. Front. Microbiol. 8:2634
    [Google Scholar]
  54. 54. 
    Strobel EJ, Yu AM, Lucks JB 2018. High-throughput determination of RNA structures. Nat. Rev. Genet. 19:10615–34
    [Google Scholar]
  55. 55. 
    Hector RD, Burlacu E, Aitken S, Bihan TL, Tuijtel M et al. 2014. Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution. Nucleic Acids Res 42:1912138–54
    [Google Scholar]
  56. 56. 
    Seetin MG, Kladwang W, Bida JP, Das R 2014. Massively parallel RNA chemical mapping with a reduced bias MAP-seq protocol. Methods Mol. Biol. 1086:95–117
    [Google Scholar]
  57. 57. 
    Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B et al. 2015. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519:7544486–90
    [Google Scholar]
  58. 58. 
    Dethoff EA, Boerneke MA, Gokhale NS, Muhire BM, Martin DP et al. 2018. Pervasive tertiary structure in the dengue virus RNA genome. PNAS 115:4511513–18
    [Google Scholar]
  59. 59. 
    Deigan KE, Li TW, Mathews DH, Weeks KM 2009. Accurate SHAPE-directed RNA structure determination. PNAS 106:197–102
    [Google Scholar]
  60. 60. 
    Hajdin CE, Bellaousov S, Huggins W, Leonard CW, Mathews DH, Weeks KM 2013. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots. PNAS 110:145498–503
    [Google Scholar]
  61. 61. 
    Smola MJ, Christy TW, Inoue K, Nicholson CO, Friedersdorf M et al. 2016. SHAPE reveals transcript-wide interactions, complex structural domains, and protein interactions across the Xist lncRNA in living cells. PNAS 113:3710322–27
    [Google Scholar]
  62. 62. 
    Athavale SS, Gossett JJ, Bowman JC, Hud NV, Williams LD, Harvey SC 2013. In vitro secondary structure of the genomic RNA of satellite tobacco mosaic virus. PLOS ONE 8:1e54384
    [Google Scholar]
  63. 63. 
    Wu B, Grigull J, Ore MO, Morin S, White KA 2013. Global organization of a positive-strand RNA virus genome. PLOS Pathog 9:5e1003363
    [Google Scholar]
  64. 64. 
    Dadonaite B, Barilaite E, Fodor E, Laederach A, Bauer DL 2017. The structure of the influenza A virus genome. bioRxiv 236620. https://doi.org/10.1101/236620
    [Crossref]
  65. 65. 
    Mauger DM, Golden M, Yamane D, Williford S, Lemon SM et al. 2015. Functionally conserved architecture of hepatitis C virus RNA genomes. PNAS 112:123692–97
    [Google Scholar]
  66. 66. 
    Murawski AM, Nieves JL, Chattopadhyay M, Young MY, Szarko C et al. 2015. Rapid evolution of in vivo-selected sequences and structures replacing 20% of a subviral RNA. Virology 483:149–62
    [Google Scholar]
  67. 67. 
    Ashton P, Wu B, D'Angelo J, Grigull J, White KA 2015. Biologically-supported structural model for a viral satellite RNA. Nucleic Acids Res 43:209965–77
    [Google Scholar]
  68. 68. 
    Lenartowicz E, Kesy J, Ruszkowska A, Soszynska-Jozwiak M, Michalak P et al. 2016. Self-folding of naked segment 8 genomic RNA of influenza A virus. PLOS ONE 11:2e0148281
    [Google Scholar]
  69. 69. 
    Pirakitikulr N, Kohlway A, Lindenbach BD, Pyle AM 2016. The coding region of the HCV genome contains a network of regulatory RNA structures. Mol. Cell 62:1111–20
    [Google Scholar]
  70. 70. 
    Ruszkowska A, Lenartowicz E, Moss WN, Kierzek R, Kierzek E 2016. Secondary structure model of the naked segment 7 influenza A virus genomic RNA. Biochem. J. 473:234327–48
    [Google Scholar]
  71. 71. 
    Soszynska-Jozwiak M, Michalak P, Moss WN, Kierzek R, Kesy J, Kierzek E 2017. Influenza virus segment 5 (+)RNA—secondary structure and new targets for antiviral strategies. Sci. Rep. 7:115041
    [Google Scholar]
  72. 72. 
    Li P, Wei Y, Mei M, Tang L, Sun L et al. 2018. Integrative analysis of Zika virus genome RNA structure reveals critical determinants of viral infectivity. Cell Host Microbe 24:6875–86.e5
    [Google Scholar]
  73. 73. 
    Kutchko KM, Madden EA, Morrison C, Plante KS, Sanders W et al. 2018. Structural divergence creates new functional features in alphavirus genomes. Nucleic Acids Res 46:73657–70
    [Google Scholar]
  74. 74. 
    Huber RG, Lim XN, Ng WC, Sim AYL, Poh HX et al. 2019. Structure mapping of dengue and Zika viruses reveals functional long-range interactions. Nat. Commun. 10:11408
    [Google Scholar]
  75. 75. 
    Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW et al. 2009. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460:7256711–16
    [Google Scholar]
  76. 76. 
    Pollom E, Dang KK, Potter EL, Gorelick RJ, Burch CL et al. 2013. Comparison of SIV and HIV-1 genomic RNA structures reveals impact of sequence evolution on conserved and non-conserved structural motifs. PLOS Pathog 9:4e1003294
    [Google Scholar]
  77. 77. 
    Archer EJ, Simpson MA, Watts NJ, O'Kane R, Wang B et al. 2013. Long-range architecture in a viral RNA genome. Biochemistry 52:183182–90
    [Google Scholar]
  78. 78. 
    Burrill CP, Westesson O, Schulte MB, Strings VR, Segal M, Andino R 2013. Global RNA structure analysis of poliovirus identifies a conserved RNA structure involved in viral replication and infectivity. J. Virol. 87:2111670–83
    [Google Scholar]
  79. 79. 
    Lavender CA, Gorelick RJ, Weeks KM 2015. Structure-based alignment and consensus secondary structures for three HIV-related RNA genomes. PLOS Comput. Biol. 11:5e1004230
    [Google Scholar]
  80. 80. 
    Larman BC, Dethoff EA, Weeks KM 2017. Packaged and free satellite tobacco mosaic virus (STMV) RNA genomes adopt distinct conformational states. Biochemistry 56:162175–83
    [Google Scholar]
  81. 81. 
    Watters KE, Choudhary K, Aviran S, Lucks JB, Perry KL, Thompson JR 2018. Probing of RNA structures in a positive sense RNA virus reveals selection pressures for structural elements. Nucleic Acids Res 46:52573–84
    [Google Scholar]
  82. 82. 
    Sztuba-Solinska J, Rausch JW, Smith R, Miller JT, Whitby D et al. 2017. Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA: a structural scaffold for nuclear, cytoplasmic and viral proteins. Nucleic Acids Res 45:116805–21
    [Google Scholar]
  83. 83. 
    Filbin ME, Kieft JS. 2011. HCV IRES domain IIb affects the configuration of coding RNA in the 40S subunit's decoding groove. RNA 17:71258–73
    [Google Scholar]
  84. 84. 
    Romero-López C, Barroso-delJesus A, García-Sacristán A, Briones C, Berzal-Herranz A 2012. The folding of the hepatitis C virus internal ribosome entry site depends on the 3′-end of the viral genome. Nucleic Acids Res 40:2211697–713
    [Google Scholar]
  85. 85. 
    Diaz-Toledano R, Lozano G, Martinez-Salas E 2016. In-cell SHAPE uncovers dynamic interactions between the untranslated regions of the foot-and-mouth disease virus RNA. Nucleic Acids Res 45:31416–32
    [Google Scholar]
  86. 86. 
    Sztuba-Solinska J, Shenoy SR, Gareiss P, Krumpe LRH, Le Grice SFJ et al. 2014. Identification of biologically active, HIV TAR RNA-binding small molecules using small molecule microarrays. J. Am. Chem. Soc. 136:238402–10
    [Google Scholar]
  87. 87. 
    Abulwerdi FA, Shortridge MD, Sztuba-Solinska J, Wilson R, Le Grice SFJ et al. 2016. Development of small molecules with a noncanonical binding mode to HIV-1 trans activation response (TAR) RNA. J. Med. Chem. 59:2411148–60
    [Google Scholar]
  88. 88. 
    Low JT, Garcia-Miranda P, Mouzakis KD, Gorelick RJ, Butcher SE, Weeks KM 2014. Structure and dynamics of the HIV-1 frameshift element RNA. Biochemistry 53:264282–91
    [Google Scholar]
  89. 89. 
    Tang Y, Assmann SM, Bevilacqua PC 2016. Protein structure is related to RNA structural reactivity in vivo. J. Mol. Biol 428:5758–66
    [Google Scholar]
  90. 90. 
    Liu Y, Chen J, Nikolaitchik OA, Desimmie BA, Busan S et al. 2018. The roles of five conserved lentiviral RNA structures in HIV-1 replication. Virology 514:1–8
    [Google Scholar]
  91. 91. 
    Tellez AB, Wang J, Tanner EJ, Spagnolo JF, Kirkegaard K, Bullitt E 2011. Interstitial contacts in an RNA-dependent RNA polymerase lattice. J. Mol. Biol. 412:4737–50
    [Google Scholar]
  92. 92. 
    Han J-Q, Barton DJ. 2002. Activation and evasion of the antiviral 2′–5′ oligoadenylate synthetase/ribonuclease L pathway by hepatitis C virus mRNA. RNA 8:4512–25
    [Google Scholar]
  93. 93. 
    Zheng X, Bevilacqua PC. 2004. Activation of the protein kinase PKR by short double-stranded RNAs with single-stranded tails. RNA 10:121934–45
    [Google Scholar]
  94. 94. 
    Floyd-Smith G, Slattery E, Lengyel P 1981. Interferon action: RNA cleavage pattern of a (2′-5′)oligoadenylate–dependent endonuclease. Science 212:44981030–32
    [Google Scholar]
  95. 95. 
    Han J-Q, Wroblewski G, Xu Z, Silverman RH, Barton DJ 2004. Sensitivity of hepatitis C virus RNA to the antiviral enzyme ribonuclease L is determined by a subset of efficient cleavage sites. J. Interf. Cytokine Res. 24:11664–76
    [Google Scholar]
  96. 96. 
    Fayzulin R, Frolov I. 2004. Changes of the secondary structure of the 5′ end of the sindbis virus genome inhibit virus growth in mosquito cells and lead to accumulation of adaptive mutations. J. Virol. 78:104953–64
    [Google Scholar]
  97. 97. 
    Kim DY, Firth AE, Atasheva S, Frolova EI, Frolov I 2011. Conservation of a packaging signal and the viral genome RNA packaging mechanism in alphavirus evolution. J. Virol. 85:168022–36
    [Google Scholar]
  98. 98. 
    Alvarez DE, Lodeiro MF, Ludueña SJ, Lía I, Gamarnik AV et al. 2005. Long-range RNA-RNA interactions circularize the dengue virus genome. J. Virol. 79:116631–43
    [Google Scholar]
  99. 99. 
    Ziv O, Gabryelska MM, Lun ATL, Gebert LFR, Sheu-Gruttadauria J et al. 2018. COMRADES determines in vivo RNA structures and interactions. Nat. Methods 15:10785–88
    [Google Scholar]
  100. 100. 
    Kobayashi Y, Dadonaite B, van Doremalen N, Suzuki Y, Barclay WS, Pybus OG 2016. Computational and molecular analysis of conserved influenza A virus RNA secondary structures involved in infectious virion production. RNA Biol 13:9883–94
    [Google Scholar]
  101. 101. 
    Gultyaev AP, Tsyganov-Bodounov A, Spronken MIJ, Van Der Kooij S, Fouchier RAM, Olsthoorn RCL 2014. RNA structural constraints in the evolution of the influenza A virus genome NP segment. RNA Biol 11:7942–52
    [Google Scholar]
  102. 102. 
    Davis M, Sagan SM, Pezacki JP, Evans DJ, Simmonds P 2008. Bioinformatic and physical characterizations of genome-scale ordered RNA structure in mammalian RNA viruses. J. Virol. 82:2311824–36
    [Google Scholar]
  103. 103. 
    Garmann RF, Gopal A, Athavale SS, Knobler CM, Gelbart WM, Harvey SC 2015. Visualizing the global secondary structure of a viral RNA genome with cryo-electron microscopy. RNA 21:5877–86
    [Google Scholar]
  104. 104. 
    Thompson JR, Doun S, Perry KL 2006. Compensatory capsid protein mutations in cucumber mosaic virus confer systemic infectivity in squash (Cucurbita pepo). J. Virol. 80:157740–43
    [Google Scholar]
  105. 105. 
    Pedersen JS, Meyer IM, Forsberg R, Simmonds P, Hein J 2004. A comparative method for finding and folding RNA secondary structures within protein-coding regions. Nucleic Acids Res 32:164925–36
    [Google Scholar]
  106. 106. 
    Westesson O, Holmes I. 2012. Developing and applying heterogeneous phylogenetic models with XRate. PLOS ONE 7:6e36898
    [Google Scholar]
  107. 107. 
    Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH 2004. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. PNAS 101:197287–92
    [Google Scholar]
  108. 108. 
    Mathews DH. 2004. Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA 10:81178–90
    [Google Scholar]
  109. 109. 
    Mustoe AM, Busan S, Rice GM, Hajdin CE, Peterson BK et al. 2018. Pervasive regulatory functions of mRNA structure revealed by high-resolution SHAPE probing. Cell 173:1181–95
    [Google Scholar]
  110. 110. 
    Soldatov RA, Vinogradova SV, Mironov AA 2014. RNASurface: fast and accurate detection of locally optimal potentially structured RNA segments. Bioinformatics 30:4457–63
    [Google Scholar]
  111. 111. 
    Nawrocki EP, Eddy SR. 2013. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29:222933–35
    [Google Scholar]
  112. 112. 
    El Korbi A, Ouellet J, Naghdi MR, Perreault J 2014. Finding instances of riboswitches and ribozymes by homology search of structured RNA with infernal. . In Therapeutic Applications of Ribozymes and Riboswitches: Methods and Protocols D Lafontaine, A Dubé 113–26 New York: Humana Press
    [Google Scholar]
  113. 113. 
    Weinberg Z, Breaker RR. 2011. R2R—software to speed the depiction of aesthetic consensus RNA secondary structures. BMC Bioinform 12:3
    [Google Scholar]
  114. 114. 
    Gokhale NS, McIntyre ABR, McFadden MJ, Roder AE, Kennedy EM et al. 2016. N6-Methyladenosine in Flaviviridae viral RNA genomes regulates infection. Cell Host Microbe 20:5654–65
    [Google Scholar]
  115. 115. 
    Spitale RC, Crisalli P, Flynn RA, Torre EA, Kool ET, Chang HY 2013. RNA SHAPE analysis in living cells. Nat. Chem. Biol. 9:118–20
    [Google Scholar]
  116. 116. 
    Rice GM, Leonard CW, Weeks KM 2014. RNA secondary structure modeling at consistent high accuracy using differential SHAPE. RNA 20:6846–54
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092917-043315
Loading
/content/journals/10.1146/annurev-virology-092917-043315
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error