1932

Abstract

Advances in our understanding of prokaryotic antiphage defense mechanisms in the past few years have revealed a multitude of new cyclic nucleotide signaling molecules that play a crucial role in switching infected cells into an antiviral state. Defense pathways including type III CRISPR (clustered regularly interspaced palindromic repeats), CBASS (cyclic nucleotide-based antiphage signaling system), PYCSAR (pyrimidine cyclase system for antiphage resistance), and Thoeris all use cyclic nucleotides as second messengers to activate a diverse range of effector proteins. These effectors typically degrade or disrupt key cellular components such as nucleic acids, membranes, or metabolites, slowing down viral replication kinetics at great cost to the infected cell. Mechanisms to manipulate the levels of cyclic nucleotides are employed by cells to regulate defense pathways and by viruses to subvert them. Here we review the discovery and mechanism of the key pathways, signaling molecules and effectors, parallels and differences between the systems, open questions, and prospects for future research in this area.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100120-010228
2022-09-29
2024-06-02
Loading full text...

Full text loading...

/deliver/fulltext/virology/9/1/annurev-virology-100120-010228.html?itemId=/content/journals/10.1146/annurev-virology-100120-010228&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA et al. 2015. An updated evolutionary classification of CRISPR–Cas systems. Nat. Rev. Microbiol. 13:722–36
    [Crossref] [Google Scholar]
  2. 2.
    Haft DH, Selengut J, Mongodin EF, Nelson KE. 2005. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Comput. Biol. 1:e60
    [Crossref] [Google Scholar]
  3. 3.
    Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E et al. 2011. Evolution and classification of the CRISPR–Cas systems. Nat. Rev. Microbiol. 9:467–77
    [Crossref] [Google Scholar]
  4. 4.
    Makarova KS, Aravind L, Wolf YI, Koonin EV. 2011. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol. Direct 6:38
    [Crossref] [Google Scholar]
  5. 5.
    Jackson RN, Wiedenheft B. 2015. A conserved structural chassis for mounting versatile CRISPR RNA-guided immune responses. Mol. Cell 58:722–28
    [Crossref] [Google Scholar]
  6. 6.
    Jiang F, Doudna JA. 2015. The structural biology of CRISPR-Cas systems. Curr. Opin. Struct. Biol. 30:100–11
    [Crossref] [Google Scholar]
  7. 7.
    Tamulaitis G, Venclovas C, Siksnys V. 2017. Type III CRISPR-Cas immunity: major differences brushed aside. Trends Microbiol 25:49–61
    [Crossref] [Google Scholar]
  8. 8.
    Lin J, Fuglsang A, Kjeldsen AL, Sun K, Bhoobalan-Chitty Y, Peng X. 2020. DNA targeting by subtype I-D CRISPR–Cas shows type I and type III features. Nucleic Acids Res 48:10470–78
    [Crossref] [Google Scholar]
  9. 9.
    Manav MC, Van LB, Lin J, Fuglsang A, Peng X, Brodersen DE. 2020. Structural basis for inhibition of an archaeal CRISPR–Cas type I-D large subunit by an anti-CRISPR protein. Nat. Commun. 11:5993
    [Crossref] [Google Scholar]
  10. 10.
    Hale CR, Zhao P, Olson S, Duff MO, Graveley BR et al. 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945–56
    [Crossref] [Google Scholar]
  11. 11.
    Hale CR, Cocozaki A, Li H, Terns RM, Terns MP. 2014. Target RNA capture and cleavage by the Cmr type III-B CRISPR–Cas effector complex. Genes Dev 28:2432–43
    [Crossref] [Google Scholar]
  12. 12.
    Staals RH, Zhu Y, Taylor DW, Kornfeld JE, Sharma K et al. 2014. RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol. Cell 56:518–30
    [Crossref] [Google Scholar]
  13. 13.
    Tamulaitis G, Kazlauskiene M, Manakova E, Venclovas C, Nwokeoji AO et al. 2014. Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus. Mol. Cell 56:506–17
    [Crossref] [Google Scholar]
  14. 14.
    Zebec Z, Manica A, Zhang J, White MF, Schleper C. 2014. CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus. Nucleic Acids Res 42:5280–88
    [Crossref] [Google Scholar]
  15. 15.
    Samai P, Pyenson N, Jiang W, Goldberg GW, Hatoum-Aslan A, Marraffini LA. 2015. Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. Cell 161:1164–74
    [Crossref] [Google Scholar]
  16. 16.
    Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV. 2002. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 30:482–96
    [Crossref] [Google Scholar]
  17. 17.
    Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. 2006. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1:7
    [Crossref] [Google Scholar]
  18. 18.
    Estrella MA, Kuo FT, Bailey S. 2016. RNA-activated DNA cleavage by the type III-B CRISPR-Cas effector complex. Genes Dev 30:460–70
    [Crossref] [Google Scholar]
  19. 19.
    Elmore JR, Sheppard NF, Ramia N, Deighan T, Li H et al. 2016. Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR–Cas system. Genes Dev 30:447–59
    [Crossref] [Google Scholar]
  20. 20.
    Kazlauskiene M, Tamulaitis G, Kostiuk G, Venclovas C, Siksnys V. 2016. Spatiotemporal control of type III-A CRISPR-Cas immunity: coupling DNA degradation with the target RNA recognition. Mol. Cell 62:295–306
    [Crossref] [Google Scholar]
  21. 21.
    Han W, Li Y, Deng L, Feng M, Peng W et al. 2017. A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction. Nucleic Acids Res 45:1983–93
    [Google Scholar]
  22. 22.
    Liu TY, Iavarone AT, Doudna JA. 2017. RNA and DNA targeting by a reconstituted Thermus thermophilus type III-A CRISPR-Cas system. PLOS ONE 12:e0170552
    [Crossref] [Google Scholar]
  23. 23.
    Deng L, Garrett RA, Shah SA, Peng X, She Q. 2013. A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus. Mol. Microbiol. 87:1088–99
    [Crossref] [Google Scholar]
  24. 24.
    Goldberg GW, Jiang WY, Bikard D, Marraffini LA. 2014. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature 514:633–37
    [Crossref] [Google Scholar]
  25. 25.
    Liu TY, Liu JJ, Aditham AJ, Nogales E, Doudna JA. 2019. Target preference of type III-A CRISPR-Cas complexes at the transcription bubble. Nat. Commun. 10:3001
    [Crossref] [Google Scholar]
  26. 26.
    Niewoehner O, Garcia-Doval C, Rostol JT, Berk C, Schwede F et al. 2017. Type III CRISPR–Cas systems produce cyclic oligoadenylate second messengers. Nature 548:543–48
    [Crossref] [Google Scholar]
  27. 27.
    Kazlauskiene M, Kostiuk G, Venclovas C, Tamulaitis G, Siksnys V. 2017. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 357:605–9
    [Crossref] [Google Scholar]
  28. 28.
    Jiang W, Samai P, Marraffini LA. 2016. Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR-Cas immunity. Cell 164:710–21
    [Crossref] [Google Scholar]
  29. 29.
    Foster K, Kalter J, Woodside W, Terns RM, Terns MP. 2019. The ribonuclease activity of Csm6 is required for anti-plasmid immunity by Type III-A CRISPR-Cas systems. RNA Biol 16:449–60
    [Crossref] [Google Scholar]
  30. 30.
    Hatoum-Aslan A, Maniv I, Samai P, Marraffini LA. 2014. Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system. J. Bacteriol. 196:310–17
    [Crossref] [Google Scholar]
  31. 31.
    Chen JS, Ma E, Harrington LB, Da Costa M, Tian X et al. 2018. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360:436–39
    [Crossref] [Google Scholar]
  32. 32.
    Li SY, Cheng QX, Liu JK, Nie XQ, Zhao GP, Wang J. 2018. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res 28:491–93
    [Crossref] [Google Scholar]
  33. 33.
    East-Seletsky A, O'Connell MR, Knight SC, Burstein D, Cate JH et al. 2016. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538:270–73
    [Crossref] [Google Scholar]
  34. 34.
    Rouillon C, Athukoralage JS, Graham S, Gruschow S, White MF. 2018. Control of cyclic oligoadenylate synthesis in a type III CRISPR system. eLife 7:e36734
    [Crossref] [Google Scholar]
  35. 35.
    Athukoralage JS, Graham S, Rouillon C, Grüschow S, Czekster CM, White MF. 2020. The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling. eLife 9:e55852
    [Crossref] [Google Scholar]
  36. 36.
    Niewoehner O, Jinek M. 2016. Structural basis for the endoribonuclease activity of the type III-A CRISPR-associated protein Csm6. RNA 22:318–29
    [Crossref] [Google Scholar]
  37. 37.
    Anantharaman V, Makarova KS, Burroughs AM, Koonin EV, Aravind L. 2013. Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biol. Direct 8:15
    [Crossref] [Google Scholar]
  38. 38.
    Cooper DA, Banerjee S, Chakrabarti A, Garcia-Sastre A, Hesselberth JR et al. 2015. RNase L targets distinct sites in influenza A virus RNAs. J. Virol. 89:2764–76
    [Crossref] [Google Scholar]
  39. 39.
    Lintner NG, Frankel KA, Tsutakawa SE, Alsbury DL, Copie V et al. 2011. The structure of the CRISPR-associated protein Csa3 provides insight into the regulation of the CRISPR/Cas system. J. Mol. Biol. 405:939–55
    [Crossref] [Google Scholar]
  40. 40.
    Kim YK, Kim YG, Oh BH. 2013. Crystal structure and nucleic acid-binding activity of the CRISPR-associated protein Csx1 of Pyrococcus furiosus. Proteins 81:261–70
    [Crossref] [Google Scholar]
  41. 41.
    Rostol JT, Marraffini LA. 2019. Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR–Cas immunity. Nat. Microbiol. 4:656–62
    [Crossref] [Google Scholar]
  42. 42.
    Grüschow S, Athukoralage JS, Graham S, Hoogeboom T, White MF. 2019. Cyclic oligoadenylate signalling mediates Mycobacterium tuberculosis CRISPR defence. Nucleic Acids Res. 47:9259–70
    [Crossref] [Google Scholar]
  43. 43.
    Makarova KS, Anantharaman V, Grishin NV, Koonin EV, Aravind L. 2014. CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems. Front. Genet. 5:102
    [Crossref] [Google Scholar]
  44. 44.
    McMahon SA, Zhu W, Graham S, Rambo R, White MF, Gloster TM. 2020. Structure and mechanism of a Type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate. Nat. Commun. 11:500
    [Crossref] [Google Scholar]
  45. 45.
    Zhu W, McQuarrie S, Gruschow S, McMahon SA, Graham S et al. 2021. The CRISPR ancillary effector Can2 is a dual-specificity nuclease potentiating type III CRISPR defence. Nucleic Acids Res 49:2777–89
    [Crossref] [Google Scholar]
  46. 46.
    Rostol JT, Xie W, Kuryavyi V, Maguin P, Kao K et al. 2021. The Card1 nuclease provides defence during type III CRISPR immunity. Nature 590:614–29
    [Crossref] [Google Scholar]
  47. 47.
    Lau RK, Ye Q, Birkholz EA, Berg KR, Patel L et al. 2020. Structure and mechanism of a cyclic trinucleotide-activated bacterial endonuclease mediating bacteriophage immunity. Mol. Cell 77:723–33
    [Crossref] [Google Scholar]
  48. 48.
    Ye Q, Lau RK, Mathews IT, Birkholz EA, Watrous JD et al. 2020. HORMA domain proteins and a Trip13-like ATPase regulate bacterial cGAS-like enzymes to mediate bacteriophage immunity. Mol. Cell 77:709–22.e7
    [Crossref] [Google Scholar]
  49. 49.
    Grüschow S, Adamson CS, White MF. 2021. Specificity and sensitivity of an RNA targeting type III CRISPR complex coupled with a NucC endonuclease effector. Nucleic Acids Res. 49:2213122–34
    [Crossref] [Google Scholar]
  50. 50.
    Millman A, Melamed S, Amitai G, Sorek R. 2020. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nat. Microbiol. 5:1608–15
    [Crossref] [Google Scholar]
  51. 51.
    McDonald ND, Regmi A, Morreale DP, Borowski JD, Boyd EF. 2019. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. BMC Genom. 20:105
    [Crossref] [Google Scholar]
  52. 52.
    Athukoralage JS, Rouillon C, Graham S, Grüschow S, White MF. 2018. Ring nucleases deactivate Type III CRISPR ribonucleases by degrading cyclic oligoadenylate. Nature 562:277–80
    [Crossref] [Google Scholar]
  53. 53.
    Molina R, Jensen ALG, Marchena-Hurtado J, López-Méndez B, Stella S, Montoya G 2021. Structural basis of cyclic oligoadenylate degradation by ancillary Type III CRISPR-Cas ring nucleases. Nucleic Acids Res. 49:12577–90
    [Crossref] [Google Scholar]
  54. 54.
    Athukoralage JS, McMahon SA, Zhang C, Gruschow S, Graham S et al. 2020. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature 577:572–75
    [Crossref] [Google Scholar]
  55. 55.
    Samolygo A, Athukoralage JS, Graham S, White MF 2020. Fuse to defuse: a self-limiting ribonuclease-ring nuclease fusion for type III CRISPR defence. Nucleic Acids Res. 48:6149–56
    [Crossref] [Google Scholar]
  56. 56.
    Yan X, Guo W, Yuan YA. 2015. Crystal structures of CRISPR-associated Csx3 reveal a manganese-dependent deadenylation exoribonuclease. RNA Biol 12:749–60
    [Crossref] [Google Scholar]
  57. 57.
    Athukoralage JS, McQuarrie S, Gruschow S, Graham S, Gloster TM, White MF. 2020. Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage. eLife 9:e57627
    [Crossref] [Google Scholar]
  58. 58.
    Makarova KS, Timinskas A, Wolf YI, Gussow AB, Siksnys V et al. 2020. Evolutionary and functional classification of the CARF domain superfamily, key sensors in prokaryotic antivirus defense. Nucleic Acids Res 48:8828–47
    [Crossref] [Google Scholar]
  59. 59.
    Athukoralage JS, Graham S, Gruschow S, Rouillon C, White MF. 2019. A type III CRISPR ancillary ribonuclease degrades its cyclic oligoadenylate activator. J. Mol. Biol. 431:2894–99
    [Crossref] [Google Scholar]
  60. 60.
    Jia N, Jones R, Yang G, Ouerfelli O, Patel DJ. 2019. CRISPR-Cas III-A Csm6 CARF domain is a ring nuclease triggering stepwise cA4 cleavage with ApA>p formation terminating RNase activity. Mol. Cell 75:944–56.e6
    [Crossref] [Google Scholar]
  61. 61.
    Smalakyte D, Kazlauskiene M, Havelund JF, Ruksenaite A, Rimaite A et al. 2020. Type III-A CRISPR-associated protein Csm6 degrades cyclic hexa-adenylate activator using both CARF and HEPN domains. Nucleic Acids Res 48:9204–17
    [Crossref] [Google Scholar]
  62. 62.
    Garcia-Doval C, Schwede F, Berk C, Rostol JT, Niewoehner O et al. 2020. Activation and self-inactivation mechanisms of the cyclic oligoadenylate-dependent CRISPR ribonuclease Csm6. Nat. Commun. 11:1596
    [Crossref] [Google Scholar]
  63. 63.
    Athukoralage JS, White MF. 2021. Cyclic oligoadenylate signalling and regulation by ring nucleases during type III CRISPR defence. RNA 27:855–67
    [Crossref] [Google Scholar]
  64. 64.
    Oke M, Carter LG, Johnson KA, Liu H, McMahon SA et al. 2010. The Scottish Structural Proteomics Facility: targets, methods and outputs. J. Struct. Funct. Genom. 11:167–80
    [Crossref] [Google Scholar]
  65. 65.
    Wirth JF, Snyder JC, Hochstein RA, Ortmann AC, Willits DA et al. 2011. Development of a genetic system for the archaeal virus Sulfolobus turreted icosahedral virus (STIV). Virology 415:6–11
    [Crossref] [Google Scholar]
  66. 66.
    Auchtung JM, Aleksanyan N, Bulku A, Berkmen MB. 2016. Biology of ICEBs1, an integrative and conjugative element in Bacillus subtilis. Plasmid 86:14–25
    [Crossref] [Google Scholar]
  67. 67.
    Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA et al. 2013. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep 3:1355–61
    [Crossref] [Google Scholar]
  68. 68.
    Sun L, Wu J, Du F, Chen X, Chen ZJ 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–91
    [Crossref] [Google Scholar]
  69. 69.
    Cai X, Chiu YH, Chen ZJ. 2014. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54:289–96
    [Crossref] [Google Scholar]
  70. 70.
    Whiteley AT, Eaglesham JB, de Oliveira Mann CC, Morehouse BR, Lowey B et al. 2019. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 567:194–99
    [Crossref] [Google Scholar]
  71. 71.
    Cohen D, Melamed S, Millman A, Shulman G, Oppenheimer-Shaanan Y et al. 2019. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature 574:691–95
    [Crossref] [Google Scholar]
  72. 72.
    Davies BW, Bogard RW, Young TS, Mekalanos JJ. 2012. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149:358–70
    [Crossref] [Google Scholar]
  73. 73.
    Burroughs AM, Zhang D, Schaffer DE, Iyer LM, Aravind L. 2015. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res 43:10633–54
    [Crossref] [Google Scholar]
  74. 74.
    Severin GB, Ramliden MS, Hawver LA, Wang K, Pell ME et al. 2018. Direct activation of a phospholipase by cyclic GMP-AMP in El Tor Vibrio cholerae. PNAS 115:E6048–55
    [Crossref] [Google Scholar]
  75. 75.
    Lowey B, Whiteley AT, Keszei AFA, Morehouse BR, Mathews IT et al. 2020. CBASS immunity uses CARF-related effectors to sense 3′–5′- and 2′–5′-linked cyclic oligonucleotide signals and protect bacteria from phage infection. Cell 182:38–49.e17
    [Crossref] [Google Scholar]
  76. 76.
    Duncan-Lowey B, McNamara-Bordewick NK, Tal N, Sorek R, Kranzusch PJ. 2021. Effector-mediated membrane disruption controls cell death in CBASS antiphage defense. Mol. Cell 81:245039–51.e5
    [Crossref] [Google Scholar]
  77. 77.
    Morehouse BR, Govande AA, Millman A, Keszei AFA, Lowey B et al. 2020. STING cyclic dinucleotide sensing originated in bacteria. Nature 586:429–33
    [Crossref] [Google Scholar]
  78. 78.
    Govande AA, Duncan-Lowey B, Eaglesham JB, Whiteley AT, Kranzusch PJ. 2021. Molecular basis of CD-NTase nucleotide selection in CBASS anti-phage defense. Cell Rep 35:109206
    [Crossref] [Google Scholar]
  79. 79.
    Burroughs AM, Aravind L. 2020. Identification of uncharacterized components of prokaryotic immune systems and their diverse eukaryotic reformulations. J. Bacteriol. 202:e00365–20
    [Crossref] [Google Scholar]
  80. 80.
    Lopatina A, Tal N, Sorek R. 2020. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu. Rev. Virol. 7:371–84
    [Crossref] [Google Scholar]
  81. 81.
    Tal N, Morehouse BR, Millman A, Stokar-Avihail A, Avraham C et al. 2021. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell 184:5728–39.e16
    [Crossref] [Google Scholar]
  82. 82.
    Seifert R. 2017. cCMP and cUMP across the tree of life: from cCMP and cUMP generators to cCMP- and cUMP-regulated cell functions. Handb. Exp. Pharmacol. 238:3–23
    [Crossref] [Google Scholar]
  83. 83.
    Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A et al. 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359:eaar4120
    [Crossref] [Google Scholar]
  84. 84.
    Ofir G, Herbst E, Baroz M, Cohen D, Millman A et al. 2021. Antiviral activity of bacterial TIR domains via immune signalling molecules. Nature 600:116–20
    [Crossref] [Google Scholar]
  85. 85.
    Ka D, Oh H, Park E, Kim JH, Bae E. 2020. Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD+ degradation. Nat. Commun. 11:2816
    [Crossref] [Google Scholar]
  86. 86.
    Fatma S, Chakravarti A, Zeng X, Huang RH. 2021. Molecular mechanisms of the CdnG-Cap5 antiphage defense system employing 3′,2′-cGAMP as the second messenger. Nat. Commun. 12:6381
    [Crossref] [Google Scholar]
  87. 87.
    Lahaye X, Satoh T, Gentili M, Cerboni S, Conrad C et al. 2013. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity 39:1132–42
    [Crossref] [Google Scholar]
  88. 88.
    Aguirre S, Luthra P, Sanchez-Aparicio MT, Maestre AM, Patel J et al. 2017. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat. Microbiol. 2:17037
    [Crossref] [Google Scholar]
  89. 89.
    Wu JJ, Li W, Shao Y, Avey D, Fu B et al. 2015. Inhibition of cGAS DNA sensing by a herpesvirus virion protein. Cell Host Microbe 18:333–44
    [Crossref] [Google Scholar]
  90. 90.
    Huang ZF, Zou HM, Liao BW, Zhang HY, Yang Y et al. 2018. Human cytomegalovirus protein UL31 inhibits DNA sensing of cGAS to mediate immune evasion. Cell Host Microbe 24:69–80.e4
    [Crossref] [Google Scholar]
  91. 91.
    Biolatti M, Dell'Oste V, Pautasso S, Gugliesi F, von Einem J et al. 2018. Human cytomegalovirus tegument protein pp65 (pUL83) dampens type I interferon production by inactivating the DNA sensor cGAS without affecting STING. J. Virol. 92:e01774–17
    [Crossref] [Google Scholar]
  92. 92.
    Aguirre S, Maestre AM, Pagni S, Patel JR, Savage T et al. 2012. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLOS Pathog 8:e1002934
    [Crossref] [Google Scholar]
  93. 93.
    Eaglesham JB, Pan YD, Kupper TS, Kranzusch PJ. 2019. Viral and metazoan poxins are cGAMP-specific nucleases that restrict cGAS-STING signalling. Nature 566:259–63
    [Crossref] [Google Scholar]
  94. 94.
    Bondy-Denomy J, Davidson AR, Doudna JA, Fineran PC, Maxwell KL et al. 2018. A unified resource for tracking anti-CRISPR names. CRISPR J 1:304–5
    [Crossref] [Google Scholar]
  95. 95.
    Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T et al. 2013. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503:530–34
    [Crossref] [Google Scholar]
  96. 96.
    Woodward JJ, Iavarone AT, Portnoy DA. 2010. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328:1703–5
    [Crossref] [Google Scholar]
  97. 97.
    Bridgeman A, Maelfait J, Davenne T, Partridge T, Peng Y et al. 2015. Viruses transfer the antiviral second messenger cGAMP between cells. Science 349:1228–32
    [Crossref] [Google Scholar]
  98. 98.
    Gentili M, Kowal J, Tkach M, Satoh T, Lahaye X et al. 2015. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science 349:1232–36
    [Crossref] [Google Scholar]
  99. 99.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–89
    [Crossref] [Google Scholar]
  100. 100.
    Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2021. ColabFold—making protein folding accessible to all. bioRxiv 2021.08.15.456425. https://doi.org/10.1101/2021.08.15.456425
    [Crossref]
/content/journals/10.1146/annurev-virology-100120-010228
Loading
/content/journals/10.1146/annurev-virology-100120-010228
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error