1932

Abstract

To understand the processes behind seeing light, we need to integrate knowledge about the incoming optical structure, its perception, and how light interacts with material, shape, and space—objectively and subjectively. To that end, we need a novel approach to the science of light, namely, a transdisciplinary science of appearance, integrating optical, perceptual, and design knowledge and methods. In this article, I review existing literature as a basis for such a synthesis, which should discuss light in its full complexity, including its spatial properties and interactions with materials, shape, and space. I propose to investigate this by representing the endless variety of light, materials, shapes, and space as canonical modes and their combinations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091718-014934
2019-09-15
2024-06-04
Loading full text...

Full text loading...

/deliver/fulltext/vision/5/1/annurev-vision-091718-014934.html?itemId=/content/journals/10.1146/annurev-vision-091718-014934&mimeType=html&fmt=ahah

Literature Cited

  1. Adams A 1981.The Negative: The Ansel Adams Photography Series 2. Boston: Little Brown
  2. Adams WJ, Elder JH, Graf EW, Leyland J, Lugtigheid AJ, Muryy A 2016. The Southampton-York Natural Scenes (SYNS) dataset: statistics of surface attitude. Sci. Rep. 6:35805
    [Google Scholar]
  3. Adelson EH 2001. On seeing stuff: the perception of materials by humans and machines. Proceedings of the SPIE 4299, Human Vision and Electronic Imaging VI EB Rogowitz, TN Pappas1–12 Bellingham, WA: SPIE
    [Google Scholar]
  4. Adelson EH, Bergen JR 1991.The plenoptic function and the elements of early vision. In Computational Models of Visual Processing M Landy, JA Movshon3–20 Cambridge, MA: MIT Press
  5. Adelson EH, Pentland AP 1996. The perception of shading and reflectance. Perception as Bayesian Inference D Knill, W Richards409–23 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  6. Anderson BL 2011. Visual perception of materials and surfaces. Curr. Biol. 21:24R978–83
    [Google Scholar]
  7. Anrys F, Dutré P, Willems YD 2004. Image-based lighting design. Proceedings of the 4th IASTED International Conference on Visualization, Imaging, and Image Processing, pp. 1–15 Calgary, Can.: IASTED
    [Google Scholar]
  8. Arend LE, Goldstein R 1987. Simultaneous constancy, lightness, and brightness. J. Opt. Soc. Am. A 4:2281–85
    [Google Scholar]
  9. Barati B, Karana E, Sekulovski D, Pont SC 2017. Retail lighting and textiles: designing a lighting probe set. Lighting Res. & Technol. 49:2173–94
    [Google Scholar]
  10. Baxandall M 1995.Shadows and Enlightenment. New Haven, CT: Yale Univ. Press
  11. Belhumeur PN, Kriegman D, Yuille A 1999. The bas-relief ambiguity. Int. J. Comput. Vis. 35(1):33–44
    [Google Scholar]
  12. Bloj MG, Kersten D, Hurlbert AC 1999. Perception of three-dimensional shape influences colour perception through mutual illumination. Nature 402:877–79
    [Google Scholar]
  13. Bousseau A, Chapoulie E, Ramamoorthi R, Agrawalla M 2011. Optimizing environment maps for material depiction. Eurogr. Symp. Rendering 30:4
    [Google Scholar]
  14. Boyaci H, Doerschner K, Maloney LT 2006. Cues to an equivalent lighting model. J. Vis. 6:2106–18
    [Google Scholar]
  15. Boyce P 2013. Lighting quality for all. Proceedings of SLL and CIBSE Ireland International Lighting Conference, pp. 1–5 Dublin, Ireland: SLL/CIBSE
    [Google Scholar]
  16. Boyce PR 2014. Human Factors in Lighting Boca Raton, FL: CRC Press
  17. Brainard DH, Maloney LT 2004. Perception of color and material properties in complex scenes. J. Vis. 4:ii–iii
    [Google Scholar]
  18. Cavanagh P 2005. The artist as neuroscientist. Nature 434:301–7
    [Google Scholar]
  19. Cuttle C 1973. The sharpness and the flow of light. Architectural Psychology: Proceedings of the Conference Held at Lund University R Küller12–22 Lund, Swed.: Lund Univ.
    [Google Scholar]
  20. Cuttle C 1997. Cubic illumination. Lighting Res. Technol. 29:1–14
    [Google Scholar]
  21. Cuttle C 2003. Lighting by Design Abingdon, UK: Routledge
  22. Cuttle C 2010. Towards the third stage of the lighting profession. Lighting Res. Technol. 42:79–93
    [Google Scholar]
  23. Cuttle C 2014. Research note: a practical approach to cubic illuminance measurement. Lighting Res. Technol. 46:31–34
    [Google Scholar]
  24. Dror RO, Willsky AS, Adelson EH 2004. Statistical characterization of real-world illumination. J. Vis. 4:821–37
    [Google Scholar]
  25. D’Zmura M 1991. Shading ambiguity: reflectance and illumination. Computational Models of Visual Processing JA Movshon, MS Landy187–207 Cambridge, MA: MIT Press
    [Google Scholar]
  26. Fleming RW 2017. Material perception. Annu. Rev. Vis. Sci. 3:365–88
    [Google Scholar]
  27. Fleming RW, Dror RO, Adelson EH 2003. Real-world illumination and the perception of surface reflectance properties. J. Vis. 3347–68
    [Google Scholar]
  28. Frandsen S 1989. The scale of light: a new concept and its applications. Proceedings of the 2nd European Conference on Architecture, Paris, Dec. 4–8 TC Steemens, W Polz4–8 Berlin: Springer
    [Google Scholar]
  29. Ganslandt R, Hofmann H 1992. Handbook of Lighting Design Ludenscheid, Ger.: ERCO
  30. Gerhard HE, Maloney LT 2010. Estimating changes in lighting direction in binocularly viewed three-dimensional scenes. J. Vis. 10:914
    [Google Scholar]
  31. Gershun A 1939. The light field. J. Math. Phys. 1851–151 Transl. P Moon, G Timoshenko
    [Google Scholar]
  32. Gilchrist A 2006. Seeing Black and White Oxford, UK: Oxford Univ. Press
  33. Griffin L 1999. Partitive mixing of images: a tool for investigating pictorial perception. J. Opt. Soc. Am. A 16:2825–35
    [Google Scholar]
  34. Hecht H 2001. Optics Boston: Addison-Wesley
  35. Heynderickx I, de Ridder H 2013. From image quality to atmosphere experience: how evolutions in technology impact experience assessment. Proceedings of the SPIE 8651: Human Vision and Electronic Imaging XVIII BE Rogowitz, TN Pappas, H de Ridder Bellingham, WA: SPIE
    [Google Scholar]
  36. Ho Y-X, Landy MS, Maloney LT 2006. How direction of illumination affects visually perceived surface roughness. J. Vis. 6:8
    [Google Scholar]
  37. Ho Y-X, Landy MS, Maloney LT 2008. Conjoint measurement of gloss and surface texture. Psychol. Sci. 19:2196–204
    [Google Scholar]
  38. Hockney D, Gayford M 2016. A History of Pictures London: Thames & Hudson
  39. Hoffman D 2000. Visual Intelligence: How We Create What We See New York: W.W. Norton
  40. Hogarth B 1981.Dynamic Light and Shape. New York: Watson-Guptill
  41. Hunter F, Fuqua P 1990.Light, Science and Magic: An Introduction to Photographic Lighting. Boston: Focal Press
  42. Hunter RS, Harold RW 1987. The Measurement of Appearance Hoboken, NJ: Wiley
  43. Jacobs TS 1988.Light for the Artist. New York: Watson-Guptill
  44. Kartashova T, de Ridder H, te Pas SF, Pont SC 2018. Visual light zones. I-Perception 9:3 https://doi.org/10.1177/2041669518781381
    [Crossref] [Google Scholar]
  45. Kartashova T, de Ridder H, te Pas SF, Pont SC 2019. Light shapes: perception-based visualizations of the global light transport. ACM Trans. Appl. Percept. 16:14
    [Google Scholar]
  46. Kartashova T, Sekulovski D, de Ridder H, te Pas S, Pont S 2016. Global structure of the visual light field and its relation to the physical light field. J. Vis. 16:109
    [Google Scholar]
  47. Kelly R 1952. Lighting as an integral part of architecture. Coll. Art J. 12:24–30
    [Google Scholar]
  48. Khan EA, Reinhard E, Fleming RW, Bülthoff HH 2006. Image-based material editing. Proceedings of the ACM SIGGRAPH Conference 2006, pp. 654–63 New York: ACM
    [Google Scholar]
  49. Kingdom FA 2011. Lightness, brightness and transparency: a quarter century of new ideas, captivating demonstrations and unrelenting controversy. Vis. Res. 51:7652–73
    [Google Scholar]
  50. Koenderink J 2014. The all seeing eye. ? Perception 43(1):1–6
    [Google Scholar]
  51. Koenderink JJ 2011. Vision as a user interface. Proceedings of the SPIE 7865: Human Vision and Electronic Imaging XVI BE Rogowitz, TN Pappas Bellingham, WA: SPIE
    [Google Scholar]
  52. Koenderink JJ, Pont SC, van Doorn AJ, Kappers AML, Todd JT 2007a. The visual light field. Perception 36:1595–610
    [Google Scholar]
  53. Koenderink JJ, van Doorn AJ 1983. Geometrical modes as a general method to treat diffuse interreflections in radiometry. J. Opt. Soc. Am. A 73:843–50
    [Google Scholar]
  54. Koenderink JJ, van Doorn AJ, Christou C, Lappin JS 1996. Perturbation study of shading in pictures. Perception 25:1009–26
    [Google Scholar]
  55. Koenderink JJ, van Doorn AJ, Kappers AML, te Pas SF, Pont SC 2003. Illumination direction from texture shading. J. Opt. Soc. Am. A 206987–95
    [Google Scholar]
  56. Koenderink JJ, van Doorn AJ, Pont SC 2004. Light direction from shaded random Gaussian surfaces. Perception 33:121405–20
    [Google Scholar]
  57. Koenderink JJ, van Doorn AJ, Pont SC 2007b. Perception of illuminance flow in the case of anisotropic rough surfaces. Percept. Psychophys. 69:6895–903
    [Google Scholar]
  58. Kunsberg B, Zucker SW 2013.Characterizing ambiguity in light source invariant shape from shading. arXiv:1306.5480 [cs.CV]
  59. Lambert JH 1760.Photometria, Sive de Mensura et Gradibus Luminis, Colorum et Umbræ. Augsburg, Ger.: Eberhard Klett
  60. Langer MS 2001. A model of how interreflections can affect color appearance. Color Res. Appl. 26:S218–21
    [Google Scholar]
  61. Langer MS, Bulthoff H 2001.Human perception of local shape from shading under variable lighting. In Proceedings of the 2001 IEEE Computer Society Workshop on Identifying Objects across Variations in Lighting: Psychophysics & Computation. Piscataway, NJ: IEEE
  62. Lee REJ, Smithson HE 2016. Low levels of specularity support operational color constancy, particularly when surface and illumination geometry can be inferred. J. Opt. Soc. Am. A 33:A306–18
    [Google Scholar]
  63. Liedtke C, Voelker S, Knoop M 2013. The light direction and directional light: towards a new quantification of an essential lighting quality criterion. Proceedings of the CIE Centenary Conference, pp. 542–51 Vienna: CIE
    [Google Scholar]
  64. Madsen M 2007. Light-zone(s): as concept and tool. ARCC J. 4:150–59
    [Google Scholar]
  65. Madsen M, Donn M 2006. Experiments with a digital light-flow-meter in daylight art museum e-buildingsPaper presented at the 5th International Radiance Scientific Workshop, Leicester, UK, Sept. 13–14
  66. Maertens M, Wichmann FA, Shapley R 2015. Context affects lightness at the level of surfaces. J. Vis. 15:115
    [Google Scholar]
  67. Maloney LT, Brainard DH 2010. Color and material perception: achievements and challenges. J. Vis. 10:919
    [Google Scholar]
  68. Maloney LT, Gerhard HE, Boyaci H, Doerschner K 2006. Surface color perception and light field estimation in 3D scenes. Vis. Neurosci. 23:3–4311–21
    [Google Scholar]
  69. Mamassian P 2008. Ambiguities and conventions in the perception of visual art. Vis. Res. 48:202143–53
    [Google Scholar]
  70. Marlow PJ, Kim J, Anderson BL 2012. The perception and misperception of specular surface reflectance. Curr. Biol. 22:1909–13
    [Google Scholar]
  71. Matusiak B 2004a. The impact of lighting/daylighting and reflectances on the size impression of the room: full scale studies. Archit. Sci. Rev. 49:1115–19
    [Google Scholar]
  72. Matusiak B 2004b. The impact of window form on the size impression of the room: full scale studies. Archit. Sci. Rev. 47:243–51
    [Google Scholar]
  73. Matusik W, Pfister H, Brand M, McMillan L 2003. A data driven reflectance model. ACM Trans. Graph. 22:3759–69
    [Google Scholar]
  74. Moon P, Spencer DE 1981.The Photic Field. Cambridge, MA: MIT Press
  75. Morgenstern Y, Geisler WS, Murray RF 2014. Human vision is attuned to the diffuseness of natural light. J. Vis. 14:915
    [Google Scholar]
  76. Motoyoshi I, Matoba H 2012. Variability in constancy of the perceived surface reflectance across different illumination statistics. Vis. Res. 53(1):30–39
    [Google Scholar]
  77. Mury AA, Pont SC, Koenderink JJ 2007. Light field constancy within natural scenes. Appl. Opt. 46:7308–16
    [Google Scholar]
  78. Mury AA, Pont SC, Koenderink JJ 2009a. Representing the light field in finite three-dimensional spaces from sparse discrete samples. Appl. Opt. 48:450–57
    [Google Scholar]
  79. Mury AA, Pont SC, Koenderink JJ 2009b. The structure of light fields in natural scenes. Appl. Opt. 48:5386–95
    [Google Scholar]
  80. Nascimento SMC, Amano K, Foster DH 2016. Spatial distributions of local illumination color in natural scenes. Vis. Res. 120:39–44
    [Google Scholar]
  81. Nayar SK, Krishnan G, Grossberg MD, Raskar R 2006. Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph. 25:3935–44
    [Google Scholar]
  82. Nicodemus FE, Richmond JC, Hsia JJ, Ginsberg IW, Limperis T 1977.Geometric Considerations and Nomenclature for Reflectance. Washington, DC: US Dep. Commer.
  83. Oliva A, Torralba A 2001. Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42:3145–75
    [Google Scholar]
  84. O’Shea JP, Agrawala M, Banks MS 2010. The influence of shape cues on the perception of lighting direction. J. Vis. 10:1221
    [Google Scholar]
  85. Pont SC 2013. Spatial and form-giving qualities of light. Handbook of Experimental Phenomenology: Visual Perception of Shape, Space and Appearance L Albertazzi205–22 Hoboken, NJ: Wiley
    [Google Scholar]
  86. Pont SC 2019. Lighting perceptual intelligence. Human Vision and Electronic Imaging 2018, pp. 1–11 Springfield, VA: Soc. Imaging Sci. Technol.
    [Google Scholar]
  87. Pont SC, Koenderink JJ 2005a. Bidirectional texture contrast function. Int. J. Comput. Vis. 62:1–217–34
    [Google Scholar]
  88. Pont SC, Koenderink JJ 2005b. Reflectance from locally glossy thoroughly pitted surfaces. Comput. Vis. Image Underst. 98:2211–22
    [Google Scholar]
  89. Pont SC, Koenderink JJ 2007. Matching illumination of solid objects. Percept. Psychophys. 69:459–68
    [Google Scholar]
  90. Pont SC, Koenderink JJ, van Doorn AJ, Wijntjes MWA, te Pas SF 2012. Mixing material modes. Proceedings of SPIE 8291: Human Vision and Electronic Imaging XVII BE Rogowitz, TN Pappas, H de Ridder Bellingham, WA: SPIE
    [Google Scholar]
  91. Pont SC, te Pas SF 2006. Material illumination ambiguities and the perception of solid objects. Perception 35:101331–50
    [Google Scholar]
  92. Pont SC, van Doorn AJ, Koenderink JJ 2017. Estimating the illumination direction from three-dimensional texture of Brownian surfaces. i-Perception 8:22041669517701947
    [Google Scholar]
  93. Pont SC, van Doorn AJ, Wijntjes MWA, Koenderink JJ 2015. Texture, illumination, and material perception. Proceedings of SPIE 9394: Human Vision and Electronic Imaging XX BE Rogowitz, TN Pappas, H de Ridder Bellingham, WA: SPIE
    [Google Scholar]
  94. Radonjić A, Gilchrist AL 2014. Lightness perception in simple images: testing the anchoring rules. J. Vis. 14:1325
    [Google Scholar]
  95. Ramamoorthi R, Hanrahan P 2001. On the relationship between radiance and irradiance: determining the illumination from images of a convex Lambertian object. J. Opt. Soc. Am. A 18:2448–59
    [Google Scholar]
  96. Schirillo JA 2013. We infer light in space. Psychon. Bull. Rev. 20:905–15
    [Google Scholar]
  97. Schmidt T-W, Pellacini F, Nowrouzezahrai D, Jarosz W, Dachsbacher C 2014. State of the art in artistic editing of appearance, lighting and material. . In Eurographics 2014. Geneva: Eurographics Assoc.
    [Google Scholar]
  98. Schoemaker M, van Leeuwen H, Pont S 2016. Jan Schoonhoven, Delft Delft, Neth.: Sticht. Licht Schoonhoven
  99. Schoeneman C, Dorsey J, Smits B, Arvo J, Greenberg D 1993. Painting with light. SIGGRAPH ‘93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 143–46 New York: ACM
    [Google Scholar]
  100. Schofield A, Rock PB, Georgeson MA 2011. Sun and sky: Does human vision assume a mixture of point and diffuse illumination when interpreting shape-from-shading. Vis. Res. 51(21–22):2317–30
    [Google Scholar]
  101. Te Pas SF, Pont SC 2005. A comparison of material and illumination discrimination performance for real rough, real smooth and computer generated smooth spheres. Proceedings of the 2nd Symposium on Applied Perception in Graphics and Visualization, Aug. 26–28, pp. 75–81 New York: ACM
    [Google Scholar]
  102. Thompson W, Fleming R, Creem-Regehr S, Stefanucci JK 2011. Visual Perception from a Computer Graphics Perspective New York: CRC Press
  103. Todd J, Norman F 2017. The interaction between surface roughness and the illumination field on the perception of metallic materials. J. Vis. 17227
    [Google Scholar]
  104. Toscani M, Gegenfurtner KR, Doerschner K 2017. Differences in illumination estimation in #thedress. J. Vis. 17:140
    [Google Scholar]
  105. Toscani M, Zdravkovic S, Gegenfurtner KR 2016. Lightness perception for surfaces moving through different illumination levels. J. Vis. 16:1521
    [Google Scholar]
  106. van Assen JJ, Wijntjes MWA, Pont SC 2016. Highlight shapes and perception of gloss for real and photographed objects. J. Vis. 16:66
    [Google Scholar]
  107. van Doorn AJ, Koenderink JJ, Todd JT, Wagemans J 2012. Awareness of the light field: the case of deformation. i-Perception 3:467–80
    [Google Scholar]
  108. van Doorn AJ, Koenderink JJ, Wagemans J 2011. Light fields and shape from shading. J. Vis. 11:321
    [Google Scholar]
  109. van Gorp P, Laurijssen J, Dutre P 2007. The influence of shape on the perception of material reflectance. ACM Trans. Graph. 26:377
    [Google Scholar]
  110. Vogels I 2008. Atmosphere metrics: a tool to quantify perceived atmosphere. Proceedings of the International Symposium on Creating Atmosphere, pp. 1–6 Berlin: Springer
    [Google Scholar]
  111. Vogels IMLC, de Vries M, van Erp T 2008. Effect of coloured light on atmosphere perception. Effects of Aging on Atmosphere Perception: Proceedings of Experiencing Light 2012: International Conference on the Effects of Light on Wellbeing, Eindhoven, Neth., Nov. 12–13 A Kuijsters, J Redi, B de Ruyter, PJH Seuntiëns, IEJ Heynderickx1–5 Eindhoven, Neth.: Univ. Technol. Eindhoven
    [Google Scholar]
  112. Vos JJ 2003. Reflections on glare. Lighting Res. Technol. 35:2163–75
    [Google Scholar]
  113. Wendt G, Faul F 2017. Increasing the complexity of the illumination may reduce gloss constancy. i-Perception 8:62041669517740369
    [Google Scholar]
  114. Whitney D, Leib AY 2017. Ensemble perception. Annu. Rev. Psychol. 69:105–29
    [Google Scholar]
  115. Wijntjes MW, Doerschner K, Kucukoglu G, Pont SC 2012. Relative flattening between velvet and matte 3D shapes: evidence for similar shape-from-shading computations. J. Vis. 12:2
    [Google Scholar]
  116. Wijntjes W, Szaniawski M, Pont S 2014. The experimental bas-relief ambiguity. J. Vis. 14:720
    [Google Scholar]
  117. Wikipedia 2019a. Fourier transform. Wikipedia. https://en.wikipedia.org/wiki/Fourier_transform
    [Google Scholar]
  118. Wikipedia 2019b. Light. Wikipedia. https://en.wikipedia.org/wiki/Light
    [Google Scholar]
  119. Wikipedia 2019c. Spherical harmonics. Wikipedia. https://en.wikipedia.org/wiki/Spherical_harmonics
    [Google Scholar]
  120. Wunscher T, Hauptmann H, Herrmann F 2002. Which way does the light go. ? Am. J. Phys. 70(6):599–606
    [Google Scholar]
  121. Xia L, Pont S, Heynderickx I 2016. Effects of scene content and layout on the perceived light direction in 3D spaces. J. Vis. 16:14
    [Google Scholar]
  122. Xia L, Pont S, Heynderickx I 2017a. Light diffuseness metric, part 1: theory. Lighting Res. Technol. 49:4411–27
    [Google Scholar]
  123. Xia L, Pont S, Heynderickx I 2017b. Light diffuseness metric, part 2: describing, measuring and visualising the light flow and diffuseness in three-dimensional spaces. Lighting Res. Technol. 49:4428–45
    [Google Scholar]
  124. Xia L, Pont SC, Heynderickx I 2014. The visual light field in real scenes. i-Perception 5:613–29
    [Google Scholar]
  125. Xia L, Zhang T, Liu X, Pont S 2017c. Human interpretation of light diffuseness. Proceedings of the 14th China International Forum on Solid State Lighting, pp. 113–16 Piscataway, NJ: IEEE
    [Google Scholar]
  126. Xiao B, Walter B, Gkioulekas I, Zickler T, Adelson E, Bala K 2014. Looking against the light: how perception of translucency depends on lighting direction. J. Vis. 14:(3):17
    [Google Scholar]
  127. Zhang F, de Ridder H, Barla P, Pont S 2019. A systematic approach to testing and predicting light-material interactions. J. Vis. 19:11
    [Google Scholar]
  128. Zhang F, de Ridder H, Pont SC 2018. Asymmetric perceptual confounds between canonical lightings and materials. J. Vis. 18:11
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091718-014934
Loading
/content/journals/10.1146/annurev-vision-091718-014934
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error