1932

Abstract

A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061516-045158
2017-06-12
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/anchem/10/1/annurev-anchem-061516-045158.html?itemId=/content/journals/10.1146/annurev-anchem-061516-045158&mimeType=html&fmt=ahah

Literature Cited

  1. Hafeman DG, Parce JW, McConnell HM. 1.  1988. Light-addressable potentiometric sensor for biochemical systems. Science 240:1182–85LAPS was introduced and proposed as a platform for various assays. [Google Scholar]
  2. McConnell HM, Owicki JC, Parce JW, Miller DL, Baxter GT. 2.  et al. 1992. The cytosensor microphysiometer: biological applications of silicon technology. Science 257:1906–12 [Google Scholar]
  3. Owicki JC, Bousse LJ, Hafeman DG, Kirk GL, Olson JD. 3.  et al. 1994. The light-addressable potentiometric sensor: principles and biological applications. Annu. Rev. Biophys. Biomol. Struct. 23:87–114 [Google Scholar]
  4. Katsube T. 4.  1999. Light addressable potentiometric chemical sensing system. Sensors Update 6 H Baltes, H, W Göpel, J Hesse 19–40 Weinheim, Ger.: Wiley-VCH Verlag [Google Scholar]
  5. Wagner T, Schöning MJ. 5.  2007. Light-addressable potentiometric sensors (LAPS): recent trends and applications. Electrochemical Sensor Analysis S Alegret, A Merkoçi 87–128 Amsterdam: ElsevierAn extensive review of LAPS literature as of 2007. [Google Scholar]
  6. Schöning MJ, Poghossian A, Yoshinobu T, Lüth H. 6.  2001. Semiconductor-based field-effect structures for chemical sensing. Proc. SPIE 4205:188–98 [Google Scholar]
  7. Poghossian A, Yoshinobu T, Simonis A, Ecken H, Lüth H, Schöning MJ. 7.  2001. Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS?. Sens. Actuators B 78:237–42 [Google Scholar]
  8. Vlasov YG, Tarantov YA, Bobrov PV. 8.  2003. Analytical characteristics and sensitivity mechanisms of electrolyte-insulator-semiconductor system-based chemical sensors—a critical review. Anal. Bioanal. Chem. 376:788–96 [Google Scholar]
  9. Schöning MJ, Poghossian A. 9.  2006. Bio FEDs (field-effect devices): state-of-the-art and new directions. Electroanalysis 18:1893–900 [Google Scholar]
  10. Bratov A, Abramova N, Ipatov A. 10.  2010. Recent trends in potentiometric sensor arrays—a review. Anal. Chim. Acta 678:149–59 [Google Scholar]
  11. Bergveld P. 11.  1970. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng 17:70–71 [Google Scholar]
  12. Esashi M, Matsuo T. 12.  1974. An integrated field-effect electrode for biopotential recording. IEEE Trans. Biomed. Eng 21:485–87 [Google Scholar]
  13. Moss SD, Johnson CC, Janata J. 13.  1978. Hydrogen, calcium, and potassium ion-sensitive FET transducers: a preliminary report. IEEE Trans. Biomed. Eng 25:49–54 [Google Scholar]
  14. Schöning MJ, Poghossian A. 14.  2002. Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 127:1137–51 [Google Scholar]
  15. Siu WM, Cobbold RSC. 15.  1979. Basic properties of the electrolyte-SiO2–Si system: physical and theoretical aspects. IEEE Trans. Electron Devices 26:1805–15 [Google Scholar]
  16. de Rooij NF, Bergveld P. 16.  1980. The influence of the pH on the electrolyte-SiO2-Si system studied by ion-sensitive FET measurements and quasi-static C-V measurements. Thin Solid Films 71:327–31 [Google Scholar]
  17. Grattarola M, Cambiaso A, Cenderelli S, Tedesco M. 17.  1989. Capacitive measurements in electrolyte-insulator-semiconductor (EIS) systems modified by biological materials. Sens. Actuators 17:451–59 [Google Scholar]
  18. Klein M. 18.  1990. Characterization of ion-sensitive layer systems with a C(V) measurement method operating at constant capacitance. Sens. Actuators B 1:354–56 [Google Scholar]
  19. Beyer M, Menzel C, Quack R, Scheper T, Schügerl K. 19.  et al. 1994. Development and application of a new enzyme sensor type based on the EIS-capacitance structure for bioprocess control. Biosens. Bioelectron. 9:17–21 [Google Scholar]
  20. Abouzar MH, Poghossian A, Cherstvy AG, Pedraza AM, Ingebrandt S, Schöning MJ. 20.  2012. Label-free electrical detection of DNA by means of field-effect nanoplate capacitors: experiments and modeling. Phys. Status Solidi A 209:925–34 [Google Scholar]
  21. Baxter GT, Bousse LJ, Dawes TD, Libby JM, Modlin DN. 21.  et al. 1994. Microfabrication in silicon microphysiometry. Clin. Chem. 40:1800–4 [Google Scholar]
  22. Schöning MJ, Wagner T, Wang C, Otto R, Yoshinobu T. 22.  2005. Development of a handheld 16 channel pen-type LAPS for electrochemical sensing. Sens. Actuators B 108:808–14 [Google Scholar]
  23. Wagner T, Yoshinobu T, Rao C, Otto R, Schöning MJ. 23.  2006. “All-in-one” solid-state device based on a light-addressable potentiometric sensor platform. Sens. Actuators B 117:472–79 [Google Scholar]
  24. Wagner T, Rao C, Kloock JP, Yoshinobu T, Otto R, Schöning MJ. 24.  2006. “LAPS Card”—a novel chip card-based light-addressable potentiometric sensor (LAPS). Sens. Actuators B 118:33–40 [Google Scholar]
  25. Kanai Y, Shimizu M, Uchida H, Nakahara H, Zhou CG, Maekawa H, Katsube T. 25.  1994. Integrated taste sensor using surface photovoltage technique. Sens. Actuators B 20:175–79 [Google Scholar]
  26. Shimizu M, Kanai Y, Uchida H, Katsube T. 26.  1994. Integrated biosensor employing a surface photovoltage technique. Sens. Actuators B 20:187–92 [Google Scholar]
  27. Wu Y, Wang P, Ye X, Zhang Q, Li R. 27.  et al. 2001. A novel microphysiometer based on MLAPS for drugs screening. Biosens. Bioelectron. 16:277–86 [Google Scholar]
  28. Ermolenko Y, Yoshinobu T, Mourzina Y, Furuichi K, Levichev S. 28.  et al. 2003. The double K+/Ca2+ sensor based on laser scanned silicon transducer (LSST) for multi-component analysis. Talanta 59:785–95 [Google Scholar]
  29. Ermolenko YE, Yoshinobu T, Mourzina YG, Vlasov YG, Schöning MJ, Iwasaki H. 29.  2004. Laser-scanned silicon transducer (LSST) as a multisensor system. Sens. Actuators B 103:457–62 [Google Scholar]
  30. Yoshinobu T, Iwasaki H, Ui Y, Furuichi K, Ermolenko Y. 30.  et al. 2005. The light-addressable potentiometric sensor for multi-ion sensing and imaging. Methods 37:94–102 [Google Scholar]
  31. Yoshinobu T, Miyamoto K, Wagner T, Schöning MJ. 31.  2015. Recent developments of chemical imaging sensor systems based on the principle of the light-addressable potentiometric sensor. Sens. Actuators B 207:926–32 [Google Scholar]
  32. Nakao M, Yoshinobu T, Iwasaki H. 32.  1994. Scanning-laser-beam semiconductor pH-imaging sensor. Sens. Actuators B 20:119–23A scanning system was proposed for LAPS-based pH imaging. [Google Scholar]
  33. Nakao M, Yoshinobu T, Iwasaki H. 33.  1994. Improvement of spatial-resolution of a laser-scanning pH-imaging sensor. Jpn. J. Appl. Phys. 33:L394–97 [Google Scholar]
  34. Nakao M, Inoue S, Yoshinobu T, Iwasaki H. 34.  1996. High-resolution pH imaging sensor for microscopic observation of microorganisms. Sens. Actuators B 34:234–39 [Google Scholar]
  35. Inoue S, Nakao M, Yoshinobu T, Iwasaki H. 35.  1996. Chemical-imaging sensor using enzyme. Sens. Actuators B 32:23–26 [Google Scholar]
  36. Horobin RW, Kernan JA. 36.  2002. Conn's Biological Stains: A Handbook of Dyes, Stains and Fluorochromes for Use in Biology and Medicine Oxford, UK: BIOS Sci, 10th ed..
  37. Bard AJ, Fan FRF, Kwak J, Lev O. 37.  1989. Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 61:132–38 [Google Scholar]
  38. Meyer H, Drewer H, Gruendig B, Cammann K, Kakerow R. 38.  et al. 1995. Two-dimensional imaging of O2, H2O2, and glucose distributions by an array of 400 individually addressable microelectrodes. Anal. Chem. 67:1164–70 [Google Scholar]
  39. Feeney R, Kounaves SP. 39.  2000. Microfabricated ultramicroelectrode arrays: developments, advances, and applications in environmental analysis. Electroanalysis 12:677–84 [Google Scholar]
  40. Zoski CG, Simjee N, Guenat O, Koudelka-Hep M. 40.  2004. Addressable microelectrode arrays: characterization by imaging with scanning electrochemical microscopy. Anal. Chem. 76:62–72 [Google Scholar]
  41. Lin Z, Takahashi Y, Kitagawa Y, Umemura T, Shiku H, Matsue T. 41.  2008. An addressable microelectrode array for electrochemical detection. Anal. Chem. 80:6830–33 [Google Scholar]
  42. Bove M, Cambiaso A, Grattarola M, Martinoia S, Verreschi G. 42.  1995. An array of H+ FETs for space-resolved electrochemical measurements in microenvironments. Sens. Actuators B 24:218–21 [Google Scholar]
  43. Goh CZD, Georgiou P, Constandinou TG, Prodromakis T, Toumazou C. 43.  2011. A CMOS-based ISFET chemical imager with auto-calibration capability. IEEE Sens. J. 11:3253–60 [Google Scholar]
  44. Nemeth B, Piechocinski MS, Cumming DRS. 44.  2012. High-resolution real-time ion-camera system using a CMOS-based chemical sensor array for proton imaging. Sens. Actuators B 171–2:747–52 [Google Scholar]
  45. Shields P, Nemeth B, Green RB, Riehle MO, Cumming DRS. 45.  2012. High-speed imaging of 2-D ionic diffusion using a 16×16 pixel CMOS ISFET array on the microfluidic scale. IEEE Sens. J. 12:2744–49 [Google Scholar]
  46. Sawada K, Mimura S, Tomita K, Nakanishi T, Tanabe H. 46.  et al. 1999. Novel CCD-based pH imaging sensor. IEEE Trans. Electron Devices 46:1846–49 [Google Scholar]
  47. Hattori T, Masaki Y, Atsumi K, Kato R, Sawada K. 47.  2010. Real-time two-dimensional imaging of potassium ion distribution using an ion semiconductor sensor with charged coupled device technology. Anal. Sci. 26:1039–45 [Google Scholar]
  48. Takenaga S, Tamai Y, Okumura K, Ishida M, Sawada K. 48.  2012. Label-free acetylcholine image sensor based on charge transfer technology for biological phenomenon tracking. Jpn. J. Appl. Phys. 51:027001 [Google Scholar]
  49. Futagawa M, Suzuki D, Otake R, Dasai F, Ishida M, Sawada K. 49.  2013. Fabrication of a 128×128 pixels charge transfer type hydrogen ion image sensor. IEEE Trans. Electron Devices 60:2634–39 [Google Scholar]
  50. Edo Y, Tamai Y, Yamazaki S, Inoue Y, Kanazawa Y. 50.  et al. 2015. 1.3 mega pixels CCD pH imaging sensor with 3.75 μm spatial resolution. IEEE Int. Electron Devices Meet. 2105:29.3.1–3.4 [Google Scholar]
  51. Parak WJ, George M, Gaub HE, Böhm S, Lorke A. 51.  1999. The field-effect-addressable potentiometric sensor/stimulator (FAPS)—a new concept for a surface potential sensor and stimulator with spatial resolution. Sens. Actuators B 58:467–504 [Google Scholar]
  52. Moritz W, Yoshinobu T, Finger F, Krause S, Martin-Fernandez M, Schöning MJ. 52.  2004. High resolution LAPS using amorphous silicon as the semiconductor material. Sens. Actuators B 103:436–41Submicron resolution was obtained with amorphous Si LAPS. [Google Scholar]
  53. Zhang Q. 53.  2005. Theoretical analysis and design of submicron-LAPS. Sens. Actuators B 105:304–11 [Google Scholar]
  54. Chen L, Zhou YL, Jian SH, Kunze J, Schmuki P, Krause S. 54.  2010. High resolution LAPS and SPIM. Electrochem. Commun. 12:758–60Submicron resolution was obtained using the two-photon effect. [Google Scholar]
  55. Yates DE, Levine S, Healy TW. 55.  1974. Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc. Faraday Trans. 1 70:1807–18 [Google Scholar]
  56. Fung CD, Cheung PW, Ko WH. 56.  1986. A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor. IEEE Trans. Electron Devices 33:8–18 [Google Scholar]
  57. Bousse L, Meindl JD. 57.  1986. Surface potential-pH characteristics in the theory of the oxide-electrolyte interface. ACS Symp. Ser 323 JA Davis, KF Hayes 79–98 Washington, DC: Am. Chem. Soc. [Google Scholar]
  58. van Hal REG, Eijkel JCT, Bergveld P. 58.  1996. A general model to describe the electrostatic potential at electrolyte oxide interface. Adv. Colloid Interface Sci. 69:31–62 [Google Scholar]
  59. Seki A, Motoya K, Watanabe S, Kubo I. 59.  1999. Novel sensors for potassium, calcium and magnesium ions based on a silicon transducer as a light-addressable potentiometric sensor. Anal. Chim. Acta 382:131–36 [Google Scholar]
  60. Ismail ABM, Harada T, Yoshinobu T, Iwasaki H, Schöning MJ, Lüth H. 60.  2000. Investigation of pulsed laser-deposited Al2O3 as a high pH-sensitive layer for LAPS-based biosensing applications. Sens. Actuators B 71:169–72 [Google Scholar]
  61. Yoshinobu T, Ecken H, Poghossian A, Lüth H, Iwasaki H, Schöning MJ. 61.  2001. Alternative sensor materials for light-addressable potentiometric sensors. Sens. Actuators B 76:388–92 [Google Scholar]
  62. Lue CE, Lai CS, Chen HY, Yang CM. 62.  2010. Light addressable potentiometric sensor with fluorine-terminated hafnium oxide layer for sodium detection. Jpn. J. Appl. Phys. 49:04DL05 [Google Scholar]
  63. Yang JH, Lu TF Wang JC, Yang CM, Pijanowska DG, Chin CH. 63.  et al. 2013. LAPS with nanoscaled and highly polarized HfO2 by CF4 plasma for NH4+ detection. Sens. Actuators B 180:71–76 [Google Scholar]
  64. Yang CM, Chiang TW, Yeh YT, Das A, Lin YT, Chen TC. 64.  2015. Sensing and pH-imaging properties of niobium oxide prepared by rapid thermal annealing for electrolyte-insulator-semiconductor structure and light-addressable potentiometric sensor. Sens. Actuators B 207:858–64 [Google Scholar]
  65. Wang J, Zhou Y, Watkinson M, Gautrot J, Krause S. 65.  2015. High-sensitivity light-addressable potentiometric sensors using silicon on sapphire functionalized with self-assembled organic monolayers. Sens. Actuators B 209:230–36 [Google Scholar]
  66. Sartore M, Adami M, Nicolini C, Bousse L, Mostarshed S, Hafeman D. 66.  1992. Minority-carrier diffusion length effects on light-addressable potentiometric sensor (LAPS) devices. Sens. Actuators A 32:431–36Provides a clear picture of the physical processes in LAPS. [Google Scholar]
  67. Werner CF, Wagner T, Yoshinobu T, Keusgen M, Schöning MJ. 67.  2013. Frequency behaviour of light-addressable potentiometric sensors. Phys. Status Solidi A 210:884–91 [Google Scholar]
  68. Guo Y, Miyamoto K, Wagner T, Schöning MJ, Yoshinobu T. 68.  2014. Theoretical study and simulation of light-addressable potentiometric sensors. Phys. Status Solidi A 211:1467–72A numerical simulation of LAPS operation by a device simulator. [Google Scholar]
  69. George M, Parak WJ, Gerhardt I, Moritz W, Kaesen F. 69.  et al. 2000. Investigation of the spatial resolution of the light-addressable potentiometric sensor. Sens. Actuators A 86:187–96 [Google Scholar]
  70. Itabashi A, Kosaka N, Miyamoto K, Wagner T, Schöning MJ, Yoshinobu T. 70.  2013. High-speed chemical imaging system based on front-side-illuminated LAPS. Sens. Actuators B 182:315–21 [Google Scholar]
  71. Parak WJ, George M, Domke J, Radmacher M, Behrends JC. 71.  et al. 2000. Can the light-addressable potentiometric sensor (LAPS) detect extracellular potentials of cardiac myocytes?. IEEE Trans. Biomed. Eng 47:1106–13 [Google Scholar]
  72. Uchida H, Zhang WY, Katsube T. 72.  1996. High-speed chemical image sensor with digital LAPS system. Sens. Actuators B 34:446–49 [Google Scholar]
  73. Das A, Chen TC, Yang CM, Lai CS. 73.  2014. A high-speed, flexible-scanning chemical imaging system using a light-addressable potentiometric sensor integrated with an analog micromirror. Sens. Actuators B 198:225–32 [Google Scholar]
  74. Miyamoto K, Itabashi A, Wagner T, Schöning MJ, Yoshinobu T. 74.  2014. High-speed chemical imaging inside a microfluidic channel. Sens. Actuators B 194:521–27Describes a movie recording at 100 frames per second in a microfluidic device. [Google Scholar]
  75. Wagner T, Werner C, Miyamoto K, Schöning MJ, Yoshinobu T. 75.  2011. A high-density multi-point LAPS set-up using a VCSEL array and FPGA control. Sens. Actuators B 154:124–28 [Google Scholar]
  76. Miyamoto K, Kaneko K, Matsuo A, Wagner T, Kanoh S. 76.  et al. 2012. Miniaturized chemical imaging sensor system using an OLED display panel. Sens. Actuators B 170:82–87 [Google Scholar]
  77. Wagner T, Werner CF, Miyamoto K, Schöning MJ, Yoshinobu T. 77.  2012. Development and characterisation of a compact light-addressable potentiometric sensor (LAPS) based on the digital light processing (DLP) technology for flexible chemical imaging. Sens. Actuators B 170:34–39 [Google Scholar]
  78. Das A, Lin YH, Lai CS. 78.  2014. Miniaturized amorphous-silicon based chemical imaging sensor system using a mini-projector as a simplified light-addressable scanning source. Sens. Actuators B 190:664–72 [Google Scholar]
  79. Werner CF, Schusser S, Spelthahn H, Wagner T, Yoshinobu T, Schöning MJ. 79.  2011. Field-programmable gate array based controller for multi spot light-addressable potentiometric sensors with integrated signal correction mode. Electrochim. Acta 56:9656–60 [Google Scholar]
  80. Bousse L, Mostarshed S, Hafeman D, Sartore M, Adami M, Nicolini C. 80.  1994. Investigation of carrier transport through silicon wafers by photocurrent measurements. J. Appl. Phys. 75:4000–8 [Google Scholar]
  81. Massobrio G, Martinoia S, Grattarola M. 81.  1992. Light-addressable chemical sensors: modelling and computer simulations. Sens. Actuators B 7:484–87 [Google Scholar]
  82. Sartore M, Adami M, Nicolini C. 82.  1992. Computer simulation and optimization of a light addressable potentiometric sensor. Biosens. Bioelectron. 7:57–64 [Google Scholar]
  83. Parak WJ, Hofmann UG, Gaub HE, Owicki JC. 83.  1997. Lateral resolution of light-addressable potentiometric sensors: an experimental and theoretical investigation. Sens. Actuators A 63:47–57 [Google Scholar]
  84. Guo Y, Miyamoto K, Wagner T, Schöning MJ, Yoshinobu T. 84.  2014. Device simulation of the light-addressable potentiometric sensor for the investigation of the spatial resolution. Sens. Actuators B 204:659–65 [Google Scholar]
  85. Poghossian A, Werner CF, Buniatyan VV, Wagner T, Miyamoto K, Yoshinobu T, Schöning MJ. 85.  2017. Towards addressability of light-addressable potentiometric sensors: shunting effect of non-illuminated region and cross-talk. Sens. Actuators B 244:1071–79 [Google Scholar]
  86. Colalongo L, Verzellesi G, Passeri D, Lui A, Ciampolini P, Rudan MV. 86.  1997. Modeling of light-addressable potentiometric sensors. IEEE Trans. Electron Devices 44:2083–90 [Google Scholar]
  87. Bandiziol A, Palestri P, Pittino F, Esseni D, Selmi L. 87.  2015. A TCAD-based methodology to model the site-binding charge at ISFET/electrolyte interfaces. IEEE Trans. Electron Devices 62:3379–86 [Google Scholar]
  88. Bousse LJ, Parce JW, Owicki JC, Kercso KM. 88.  1990. Silicon micromachining in the fabrication of biosensors using living cells. IEEE 4th Tech. Dig. Solid-State Sens. Actuator Workshop 1990:173–76 [Google Scholar]
  89. Miyamoto K, Sakakita S, Yoshinobu T. 89.  2016. A novel data acquisition method for visualization of large pH changes by chemical imaging sensor. ISIJ Int 56:492–94 [Google Scholar]
  90. Yoshinobu T, Ecken H, Poghossian A, Simonis A, Iwasaki H. 90.  et al. 2001. Constant-current-mode LAPS (CLAPS) for the detection of penicillin. Electroanalysis 13:733–36 [Google Scholar]
  91. Miyamoto K, Wagner T, Yoshinobu T, Kanoh S, Schöning MJ. 91.  2011. Phase-mode LAPS and its application to chemical imaging. Sens. Actuators B 154:28–32 [Google Scholar]
  92. Kinameri K, Munakata C, Mayama K. 92.  1988. A scanning photon microscope for non-destructive observations of crystal defect and interface trap distributions in silicon wafers. J. Phys. E 21:91–97 [Google Scholar]
  93. Ermolenko Y, Yoshinobu T, Mourzina Y, Levichev S, Furuichi K. 93.  et al. 2002. Photocurable membranes for ion-selective light-addressable potentiometric sensor. Sens. Actuators B 85:79–85 [Google Scholar]
  94. Hu W, Cai H, Fu J, Wang P, Yang G. 94.  2008. Line-scanning LAPS array for measurement of heavy metal ions with micro-lens array based on MEMS. Sens. Actuators B 129:397–403 [Google Scholar]
  95. Kloock JP, Moreno L, Bratov A, Huachupoma S, Xu J. 95.  et al. 2006. PLD-prepared cadmium sensors based on chalcogenide glasses—ISFET, LAPS and ISE semiconductor structures. Sens. Actuators B 118:149–55 [Google Scholar]
  96. Mourzina Y, Yoshinobu T, Schubert J, Lüth H, Iwasaki H, Schöning MJ. 96.  2001. Ion-selective light-addressable potentiometric sensor (LAPS) with chalcogenide thin film prepared by pulsed laser deposition. Sens. Actuators B 80:136–40 [Google Scholar]
  97. Ismail ABM, Furuichi K, Yoshinobu T, Iwasaki H. 97.  2002. Light-addressable potentiometric fluoride (F) sensor. Sens. Actuators B 86:94–97 [Google Scholar]
  98. Mourzina YG, Ermolenko YE, Yoshinobu T, Vlasov Y, Iwasaki H, Schöning MJ. 98.  2003. Anion-selective light-addressable potentiometric sensors (LAPS) for the determination of nitrate and sulphate ions. Sens. Actuators B 91:32–38 [Google Scholar]
  99. Wang JC, Ye YR, Lin YH. 99.  2015. Light-addressable potentiometric sensor with nitrogen-incorporated ceramic Sm2O3 membrane for chloride ions detection. J. Am. Ceram. Soc. 98:443–47 [Google Scholar]
  100. Adami M, Piras L, Lanzi M, Fanigliulo A, Vakula S, Nicolini C. 100.  1994. Monitoring of enzymatic activity and quantitative measurements of substrates by means of a newly designed silicon-based potentiometric sensor. Sens. Actuators B 18:178–82 [Google Scholar]
  101. Seki A, Ikeda S, Kubo I, Karube I. 101.  1998. Biosensors based on light-addressable potentiometric sensors for urea, penicillin and glucose. Anal. Chim. Acta 373:9–13 [Google Scholar]
  102. Mourzina IG, Yoshinobu T, Ermolenko YE, Vlasov YG, Schöning MJ, Iwasaki H. 102.  2004. Immobilization of urease and cholinesterase on the surface of semiconductor transducer for the development of light-addressable potentiometric sensors. Microchim. Acta 144:41–50 [Google Scholar]
  103. Miyamoto K, Yoshida M, Sakai T, Matsuzaka A, Wagner T. 103.  et al. 2011. Differential setup of light-addressable potentiometric sensor with an enzyme reactor in a flow channel. Jpn. J. Appl. Phys. 50:04DL08 [Google Scholar]
  104. Siqueira JR, Maki RM, Paulovich FV, Werner CF, Poghossian A. 104.  et al. 2010. Use of information visualization methods eliminating cross talk in multiple sensing units investigated for a light-addressable potentiometric sensor. Anal. Chem. 82:61–65 [Google Scholar]
  105. Fedosseeva OV, Uchida H, Katsube T, Ishimaru Y, Iida T. 105.  2000. Novel type cholinesterase sensor based on SPV measurement technique. Sens. Actuators B 65:55–57 [Google Scholar]
  106. Werner CF, Takenaga S, Taki H, Sawada K, Schöning MJ. 106.  2013. Comparison of label-free ACh-imaging sensors based on CCD and LAPS. Sens. Actuators B 177:745–52 [Google Scholar]
  107. Lee WE, Thompson HG, Hall JG, Bader DE. 107.  2000. Rapid detection and identification of biological and chemical agents by immunoassay, gene probe assay and enzyme inhibition using a silicon-based biosensor. Biosens. Bioelectron. 14:765–804 [Google Scholar]
  108. Wu C, Du L, Zou L, Zhao L, Wang P. 108.  2012. An ATP sensitive light addressable biosensor for extracellular monitoring of single taste receptor cell. Biomed. Microdevices 14:1047–53 [Google Scholar]
  109. Jia Y, Yin XB, Zhang J, Zhou S, Song M, Xing KL. 109.  2012. Graphene oxide modified light addressable potentiometric sensor and its application for ssDNA monitoring. Analyst 137:5866–73 [Google Scholar]
  110. Wu C, Bronder T, Poghossian A, Werner CF, Bäcker M, Schöning MJ. 110.  2014. Label-free electrical detection of DNA with a multi-spot LAPS: first step towards light-addressable DNA chip. Phys. Status Solidi A 211:1423–28 [Google Scholar]
  111. Wu C, Bronder T, Poghossian A, Werner CF, Schöning MJ. 111.  2015. Label-free detection of DNA using a light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer. Nanoscale 7:6143–50 [Google Scholar]
  112. Wu C, Poghossian A, Bronder TS, Schöning MJ. 112.  2016. Sensing of double-stranded DNA molecules by their intrinsic molecular charge using the light-addressable potentiometric sensor. Sens. Actuators B 229:506–12 [Google Scholar]
  113. Miyamoto K, Sugawara Y, Kanoh S, Yoshinobu T, Wagner T, Schöning MJ. 113.  2010. Image correction method for the chemical imaging sensor. Sens. Actuators B 144:344–48Presents the calibration of an image to correct for the nonuniformity of current and potential. [Google Scholar]
  114. Nakao M. 114.  2000. Visualization of defects in Si wafer using scanning laser-beam chemical microscope. Oyo Butsuri 69:1108–9 [Google Scholar]
  115. Ito Y. 115.  1998. High-spatial resolution LAPS. Sens. Actuators B 52:107–11 [Google Scholar]
  116. Moritz W, Gerhardt I, Roden D, Xu M, Krause S. 116.  2000. Photocurrent measurements for laterally resolved interface characterization. Fresenius J. Anal. Chem. 367:329–33 [Google Scholar]
  117. Das A, Das A, Chang LB, Lai CS, Lin RM. 117.  et al. 2013. GaN thin film based light addressable potentiometric sensor for pH sensing application. Appl. Phys. Express 6:036601 [Google Scholar]
  118. Xu C, Denk W. 118.  1999. Comparison of one- and two-photon optical beam-induced current imaging. J. Appl. Phys. 85:2226–31 [Google Scholar]
  119. Guo Y, Seki K, Miyamoto K, Wagner T, Schöning MJ, Yoshinobu T. 119.  2014. Novel photoexcitation method for light-addressable potentiometric sensor with higher spatial resolution. Appl. Phys. Express 7:067301 [Google Scholar]
  120. Miyamoto K, Seki K, Guo Y, Wagner T, Schöning MJ, Yoshinobu T. 120.  2014. Enhancement of the spatial resolution of the chemical imaging sensor by a hybrid fiber-optic illumination. Proc. Eng. 87:612–15 [Google Scholar]
  121. Werner CF, Miyamoto K, Wagner T, Schöning MJ, Yoshinobu T. 121.  2017. Lateral resolution enhancement of pulse-driven light-addressable potentiometric sensor. Sens. Actuators B 248:961–65 [Google Scholar]
  122. Nakao M, Inoue S, Oishi R, Yoshinobu T, Iwasaki H. 122.  1995. Observation of microorganism colonies using a scanning-laser-beam pH-sensing microscope. J. Ferment. Bioeng. 79:163–66 [Google Scholar]
  123. Miyamoto K, Yu B, Isoda H, Wagner T, Schöning MJ, Yoshinobu T. 123.  2016. Visualization of the recovery process of defects in a cultured cell layer by chemical imaging sensor. Sens. Actuators B 236:965–69 [Google Scholar]
  124. Miyamoto K, Sakakita S, Wagner T, Schöning MJ, Yoshinobu T. 124.  2015. Application of chemical imaging sensor to in-situ pH imaging in the vicinity of a corroding metal surface. Electrochim. Acta 183:137–42 [Google Scholar]
  125. Zhang Q, Wang P, Parak WJ, George M, Zhang G. 125.  2001. A novel design of multi-light LAPS based on digital compensation of frequency domain. Sens. Actuators B 73:152–56A multilight LAPS was proposed for parallel readout from a plurality of pixels. [Google Scholar]
  126. Wagner T, Molina R, Yoshinobu T, Kloock JP, Biselli M. 126.  et al. 2007. Handheld multi-channel LAPS device as a transducer platform for possible biological and chemical multi-sensor applications. Electrochim. Acta 53:305–11 [Google Scholar]
  127. Miyamoto K, Kuwabara Y, Kanoh S, Yoshinobu T, Wagner T, Schöning MJ. 127.  2009. Chemical image scanner based on FDM-LAPS. Sens. Actuators B 137:533–38 [Google Scholar]
  128. Fanigliulo A, Accossato P, Adami M, Lanzi M, Martinoia S. 128.  et al. 1996. Comparison between a LAPS and an FET-based sensor for cell-metabolism detection. Sens. Actuators B 32:41–48 [Google Scholar]
  129. Hafner F. 129.  2000. Cytosensor® microphysiometer: technology and recent applications. Biosens. Bioelectron. 15:149–58 [Google Scholar]
  130. Stein B, George M, Gaub HE, Behrends JC, Parak WJ. 130.  2003. Spatially resolved monitoring of cellular metabolic activity with a semiconductor-based biosensor. Biosens. Bioelectron. 18:31–41 [Google Scholar]
  131. Yotter RA, Wilson DM. 131.  2004. Sensor technologies for monitoring metabolic activity in single cells—part II: nonoptical methods and applications. IEEE Sens. J. 4:412–29 [Google Scholar]
  132. Eklund SE, Snider RM, Wikswo J, Baudenbacher F, Prokop A, Cliffel DE. 132.  2006. Multianalyte microphysiometry as a tool in metabolomics and systems biology. J. Electroanal. Chem. 587:333–39 [Google Scholar]
  133. Werner CF, Krumbe C, Schumacher K, Groebel S, Spelthahn H. 133.  et al. 2011. Determination of the extracellular acidification of Escherichia coli by a light-addressable potentiometric sensor. Phys. Status Solidi A 208:1340–44 [Google Scholar]
  134. Yu H, Liu Q, Wang P. 134.  2010. Light addressable potentiometric sensor (LAPS) as cell-based biosensors. Cell-Based Biosensors: Principles and Applications P Wang, Q Liu 119–49 Norwood, MA: Artech House [Google Scholar]
  135. Tanaka H, Yoshinobu T, Iwasaki H. 135.  1999. Application of the chemical imaging sensor to electrophysiological measurement of a neural cell. Sens. Actuators B 59:21–25 [Google Scholar]
  136. Ismail ABM, Yoshinobu T, Iwasaki H, Sugihara H, Yukimasa T. 136.  et al. 2003. Investigation on light-addressable potentiometric sensor as a possible cell-semiconductor hybrid. Biosens. Bioelectron. 18:1509–14 [Google Scholar]
  137. Stein B, George M, Gaub HE, Parak WJ. 137.  2004. Extracellular measurements of averaged ionic currents with the light-addressable potentiometric sensor (LAPS). Sens. Actuators B 98:299–304 [Google Scholar]
  138. Guo Y. 138.  2017. Development of thermally drawn multifunctional fibers and integration with field-effect sensors for biointerfaces PhD Thesis Tohoku Univ. Sendai, Jpn.:
  139. Kohno Y, Matsuki R, Nomura S, Mitsunari K, Nakao M. 139.  2001. Neutralization of acid droplets on plant leaf surfaces. Water Air Soil Pollut 130:977–82 [Google Scholar]
  140. Nikaido T, Moriya K, Hiraishi N, Ikeda M, Kitasako Y. 140.  et al. 2004. Surface analysis of dentinal caries in primary teeth using a pH-imaging microscope. Dent. Mater. J. 23:628–32 [Google Scholar]
  141. Miyamoto K, Ichimura H, Wagner T, Schöning MJ, Yoshinobu T. 141.  2013. Chemical imaging of the concentration profile of ion diffusion in a microfluidic channel. Sens. Actuators B 189:240–45 [Google Scholar]
  142. Engström O, Carlsson A. 142.  1983. Scanned light-pulse technique for the investigation of insulator-semiconductor interfaces. J. Appl. Phys. 54:5245–51 [Google Scholar]
  143. Lundström I, Erlandsson R, Frykman U, Hedborg E, Spetz A. 143.  et al. 1993. Artificial ‘olfactory’ images from a chemical sensor using a light-pulse technique. Nature 352:47–50 [Google Scholar]
  144. Pecora A, Fortunato G, Carluccio R, Sacco S. 144.  1993. Hydrogenated amorphous silicon based light-addressable potentiometric sensor (LAPS) for hydrogen detection. J. Non-Cryst. Solids 164–66:793–96 [Google Scholar]
  145. Sato T, Shimizu M, Uchida H, Katsube T. 145.  1994. Light-addressable suspended-gate gas sensor. Sens. Actuators B 20:213–16 [Google Scholar]
  146. Zhang Q, Wang P, Li J, Gao X. 146.  2000. Diagnosis of diabetes by image detection of breath using gas-sensitive LAPS. Biosens. Bioelectron. 15:249–56 [Google Scholar]
  147. Krause S, Talabani H, Xu M, Moritz W, Griffiths J. 147.  2002. Scanning photo-induced impedance microscopy—an impedance based imaging technique. Electrochim. Acta 47:2143–48 [Google Scholar]
  148. Wang J, Campos I, Wu F, Zhu J, Sukhorukov GB. 148.  et al. 2016. The effect of gold nanoparticles on the impedance of microcapsules visualized by scanning photo-induced impedance microscopy. Electrochim. Acta 208:39–46 [Google Scholar]
  149. Suzurikawa J, Nakao M, Kanzaki R, Takahashi H. 149.  2010. Microscale pH gradient generation by electrolysis on a light-addressable planar electrode. Sens. Actuators B 149:205–11 [Google Scholar]
  150. Choudhury MH, Ciampi S, Yang Y, Tavallaie R, Zhu Y. 150.  et al. 2015. Connecting electrodes with light: one wire, many electrodes. Chem. Sci. 6:3769–76 [Google Scholar]
/content/journals/10.1146/annurev-anchem-061516-045158
Loading
/content/journals/10.1146/annurev-anchem-061516-045158
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error