1932

Abstract

During sexual reproduction of flowering plants, pollen tube guidance by pistil tissue is critical for the delivery of nonmotile sperm cells to female gametes. Multistep controls of pollen tube guidance can be divided into two phases: preovular guidance and ovular guidance. During preovular guidance, various female molecules, including stimulants for pollen germination and pollen tube growth, are provided to support tube growth toward the ovary, where the ovules are located. After entering the ovary, pollen tubes receive directional cues from their respective target ovules, including attractant peptides for precise, species-preferential attraction. Successful pollen tube guidance in the pistil requires not only nutritional and directional controls but also competency controls to make pollen tubes responsive to guidance cues, regulation to terminate growth once a pollen tube arrives at the target, and strategies to stop ovular attraction depending on the fertilization of female gametes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-043014-115635
2015-04-29
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/arplant/66/1/annurev-arplant-043014-115635.html?itemId=/content/journals/10.1146/annurev-arplant-043014-115635&mimeType=html&fmt=ahah

Literature Cited

  1. Agudelo CG, Sanati Nezhad A, Ghanbari M, Naghavi M, Packirisamy M, Geitmann A. 1.  2013. TipChip: a modular, MEMS-based platform for experimentation and phenotyping of tip-growing cells. Plant J. 73:1057–68 [Google Scholar]
  2. Amien S, Kliwer I, Márton ML, Debener T, Geiger D. 2.  et al. 2010. Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. PLOS Biol. 8:e1000388 [Google Scholar]
  3. 3. Arabidopsis Genome Initiat 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815 [Google Scholar]
  4. Arata H, Higashiyama T. 4.  2014. Poly(dimethylsiloxane)-based microdevices for studying plant reproduction. Biochem. Soc. Trans. 42:320–24 [Google Scholar]
  5. Beale KM, Leydon AR, Johnson MA. 5.  2012. Gamete fusion is required to block multiple pollen tubes from entering an Arabidopsis ovule. Curr. Biol. 22:1090–94 [Google Scholar]
  6. Boisson-Dernier A, Lituiev DS, Nestorova A, Franck CM, Thirugnanarajah S, Grossniklaus U. 6.  2013. ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases. PLOS Biol. 11:e1001719 [Google Scholar]
  7. Boisson-Dernier A, Roy S, Kritsas K, Grobei MA, Jaciubek M. 7.  et al. 2009. Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development 136:3279–88 [Google Scholar]
  8. Capron A, Gourgues M, Neiva LS, Faure JE, Berger F. 8.  et al. 2008. Maternal control of male-gamete delivery in Arabidopsis involves a putative GPI-anchored protein encoded by the LORELEI gene. Plant Cell 20:3038–49 [Google Scholar]
  9. Chapman LA, Goring DR. 9.  2010. Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. J. Exp. Bot. 61:1987–99 [Google Scholar]
  10. Chen YH, Li HJ, Shi DQ, Yuan L, Liu J. 10.  et al. 2007. The central cell plays a critical role in pollen tube guidance in Arabidopsis. Plant Cell 19:3563–77 [Google Scholar]
  11. Cheung AY, Boavida LC, Aggarwal M, Wu HM, Feijó JA. 11.  2010. The pollen tube journey in the pistil and imaging the in vivo process by two-photon microscopy. J. Exp. Bot. 61:1907–15 [Google Scholar]
  12. Cheung AY, Wang H, Wu HM. 12.  1995. A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–93 [Google Scholar]
  13. Cheung AY, Wu HM. 13.  2008. Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu. Rev. Plant Biol. 59:547–72 [Google Scholar]
  14. Cheung AY, Wu HM. 14.  2011. THESEUS 1, FERONIA and relatives: a family of cell wall-sensing receptor kinases?. Curr. Opin. Plant Biol. 14:632–41 [Google Scholar]
  15. Coimbra S, Almeida J, Junqueira V, Costa ML, Pereira LG. 15.  2007. Arabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction. J. Exp. Bot. 58:4027–35 [Google Scholar]
  16. Costa LM, Marshall E, Tesfaye M, Silverstein KA, Mori M. 16.  et al. 2014. Central cell-derived peptides regulate early embryo patterning in flowering plants. Science 344:168–72 [Google Scholar]
  17. Crawford BC, Ditta G, Yanofsky MF. 17.  2007. The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana. Curr. Biol. 17:1101–8 [Google Scholar]
  18. Dai XR, Gao XQ, Chen GH, Tang LL, Wang H, Zhang XS. 18.  2014. ABNORMAL POLLEN TUBE GUIDANCE1, an endoplasmic reticulum-localized mannosyltransferase homolog of GLYCOSYLPHOSPHATIDYLINOSITOL10 in yeast and PHOSPHATIDYLINOSITOL GLYCAN ANCHOR BIOSYNTHESIS B in human, is required for Arabidopsis pollen tube micropylar guidance and embryo development. Plant Physiol. 165:1544–56 [Google Scholar]
  19. Delmas F, Séveno M, Northey JG, Hernould M, Lerouge P. 19.  et al. 2008. The synthesis of the rhamnogalacturonan II component 3-deoxy-d-manno-2-octulosonic acid (Kdo) is required for pollen tube growth and elongation. J. Exp. Bot. 59:2639–47 [Google Scholar]
  20. Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T. 20.  et al. 2014. Male-female communication triggers calcium signatures during fertilization in Arabidopsis. Nat. Commun. 5:4645 [Google Scholar]
  21. Dresselhaus T, Franklin-Tong N. 21.  2013. Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol. Plant 6:1018–36 [Google Scholar]
  22. Dresselhaus T, Lausser A, Márton ML. 22.  2011. Using maize as a model to study pollen tube growth and guidance, cross-incompatibility and sperm delivery in grasses. Ann. Bot. 108:727–37 [Google Scholar]
  23. Duan Q, Kita D, Johnson EA, Aggarwal M, Gates L. 23.  et al. 2014. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat. Commun. 5:3129 [Google Scholar]
  24. Duan Q, Kita D, Li C, Cheung AY, Wu HM. 24.  2010. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. PNAS 107:17821–26 [Google Scholar]
  25. Eberle CA, Anderson NO, Clasen BM, Hegeman AD, Smith AG. 25.  2013. PELPIII: the class III pistil-specific extensin-like Nicotiana tabacum proteins are essential for interspecific incompatibility. Plant J. 74:805–14 [Google Scholar]
  26. Endo S, Shinohara H, Matsubayashi Y, Fukuda H. 26.  2013. A novel pollen-pistil interaction conferring high-temperature tolerance during reproduction via CLE45 signaling. Curr. Biol. 23:1670–76 [Google Scholar]
  27. Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J. 27.  et al. 2007. The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317:656–60 [Google Scholar]
  28. Fíla J, Čapková V, Honys D. 28.  2014. Phosphoproteomic studies in Arabidopsis and tobacco male gametophytes. Biochem. Soc. Trans. 42:383–87 [Google Scholar]
  29. Friedman WE. 29.  2006. Embryological evidence for developmental lability during early angiosperm evolution. Nature 441:337–40 [Google Scholar]
  30. Grobei MA, Qeli E, Brunner E, Rehrauer H, Zhang R. 30.  et al. 2009. Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res. 19:1786–800 [Google Scholar]
  31. Guan Y, Guo J, Li H, Yang Z. 31.  2013. Signaling in pollen tube growth: crosstalk, feedback, and missing links. Mol. Plant 6:1053–64 [Google Scholar]
  32. Guan Y, Lu J, Xu J, McClure B, Zhang S. 32.  2014. Two mitogen-activated protein kinases, MPK3 and MPK6, are required for funicular guidance of pollen tubes in Arabidopsis. Plant Physiol. 165:528–33 [Google Scholar]
  33. Hafidh S, Potěšil D, Fíla J, Feciková J, Čapková V. 33.  et al. 2014. In search of ligands and receptors of the pollen tube: the missing link in pollen tube perception. Biochem. Soc. Trans. 42:388–94 [Google Scholar]
  34. Hamamura Y, Nagahara S, Higashiyama T. 34.  2012. Double fertilization on the move. Curr. Opin. Plant Biol. 15:70–77 [Google Scholar]
  35. Hamamura Y, Nishimaki M, Takeuchi H, Geitmann A, Kurihara D, Higashiyama T. 35.  2014. Live imaging of calcium spikes during double fertilization in Arabidopsis. Nat. Commun. 5:4722 [Google Scholar]
  36. Hamamura Y, Saito C, Awai C, Kurihara D, Miyawaki A. 36.  et al. 2011. Live-cell imaging reveals the dynamics of two sperm cells during double fertilization in Arabidopsis thaliana. Curr. Biol. 21:497–502 [Google Scholar]
  37. Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR. 37.  2014. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408–11 [Google Scholar]
  38. Higashiyama T. 38.  2002. The synergid cell: attractor and acceptor of the pollen tube for double fertilization. J. Plant Res. 115:149–60 [Google Scholar]
  39. Higashiyama T. 39.  2010. Peptide signaling in pollen-pistil interactions. Plant Cell Physiol. 51:177–89 [Google Scholar]
  40. Higashiyama T, Hamamura Y. 40.  2008. Gametophytic pollen tube guidance. Sex. Plant Reprod. 21:17–26 [Google Scholar]
  41. Higashiyama T, Inatsugi R. 41.  2006. Comparative analysis of biological models used in the study of pollen tube growth. Plant Cell Monogr. 3:265–86 [Google Scholar]
  42. Higashiyama T, Inatsugi R, Sakamoto S, Sasaki N, Mori T. 42.  et al. 2006. Species preferentiality of the pollen tube attractant derived from the synergid cell of Torenia fournieri. Plant Physiol. 142:481–91 [Google Scholar]
  43. Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T. 43.  1998. Guidance in vitro of the pollen tube to the naked embryo sac of Torenia fournieri. Plant Cell 10:2019–32 [Google Scholar]
  44. Higashiyama T, Kuroiwa H, Kuroiwa T. 44.  2003. Pollen-tube guidance: beacons from the female gametophyte. Curr. Opin. Plant Biol. 6:36–41 [Google Scholar]
  45. Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S. 45.  et al. 2001. Pollen tube attraction by the synergid cell. Science 293:1480–83 [Google Scholar]
  46. Horade M, Kanaoka MM, Kuzuya M, Higashiyama T, Kaji N. 46.  2013. A microfluidic device for quantitative analysis of chemoattraction in plants. RSC Adv. 3:22301–7 [Google Scholar]
  47. Huang WJ, Liu HK, McCormick S, Tang WH. 47.  2014. Tomato pistil factor STIG1 promotes in vivo pollen tube growth by binding to phosphatidylinositol 3-phosphate and the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell 26:2505–23 [Google Scholar]
  48. Huck N, Moore JM, Federer M, Grossniklaus U. 48.  2003. The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130:2149–59 [Google Scholar]
  49. Hulskamp M, Schneitz K, Pruitt RE. 49.  1995. Genetic evidence for a long-range activity that directs pollen tube guidance in Arabidopsis. Plant Cell 7:57–64 [Google Scholar]
  50. Ickowicz D, Finkelstein M, Breitbart H. 50.  2012. Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases. Asian J. Androl. 14:816–21 [Google Scholar]
  51. Iwai H, Hokura A, Oishi M, Chida H, Ishii T. 51.  et al. 2006. The gene responsible for borate cross-linking of pectin Rhamnogalacturonan-II is required for plant reproductive tissue development and fertilization. PNAS 103:16592–97 [Google Scholar]
  52. Iwano M, Entani T, Shiba H, Kakita M, Nagai T. 52.  et al. 2009. Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth. Plant Physiol. 150:1322–34 [Google Scholar]
  53. Iwano M, Igarashi M, Tarutani Y, Kaothien-Nakayama P, Nakayama H. 53.  et al. 2014. A pollen coat-inducible autoinhibited Ca2+-ATPase expressed in stigmatic papilla cells is required for compatible pollination in the Brassicaceae. Plant Cell 26:636–49 [Google Scholar]
  54. Iwano M, Ngo QA, Entani T, Shiba H, Nagai T. 54.  et al. 2012. Cytoplasmic Ca2+ changes dynamically during the interaction of the pollen tube with synergid cells. Development 139:4202–9 [Google Scholar]
  55. Jones-Rhoades MW, Borevitz JO, Preuss D. 55.  2007. Genome-wide expression profiling of the Arabidopsis female gametophyte identifies families of small, secreted proteins. PLOS Genet. 3:1848–61 [Google Scholar]
  56. Kanaoka MM, Kawano N, Matsubara Y, Susaki D, Okuda S. 56.  et al. 2011. Identification and characterization of TcCRP1, a pollen tube attractant from Torenia concolor. Ann. Bot. 108:739–47 [Google Scholar]
  57. Kasahara RD, Maruyama D, Hamamura Y, Sakakibara T, Twell D, Higashiyama T. 57.  2012. Fertilization recovery after defective sperm cell release in Arabidopsis. Curr. Biol. 22:1084–89 [Google Scholar]
  58. Kasahara RD, Maruyama D, Higashiyama T. 58.  2013. Fertilization recovery system is dependent on the number of pollen grains for efficient reproduction in plants. Plant Signal. Behav. 8:e23690 [Google Scholar]
  59. Kasahara RD, Portereiko MF, Sandaklie-Nikolova L, Rabiger DS, Drews GN. 59.  2005. MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17:2981–92 [Google Scholar]
  60. Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S. 60.  et al. 2014. Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26:1069–80 [Google Scholar]
  61. Kessler SA, Grossniklaus U. 61.  2011. She's the boss: signaling in pollen tube reception. Curr. Opin. Plant Biol. 14:622–27 [Google Scholar]
  62. Kikuchi S, Kino H, Tanaka H, Tsujimoto H. 62.  2007. Pollen tube growth in cross combinations between Torenia fournieri and fourteen related species. Breed. Sci. 57:117–22 [Google Scholar]
  63. Kim S, Mollet JC, Dong J, Zhang K, Park SY, Lord EM. 63.  2003. Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism. PNAS 100:16125–30 [Google Scholar]
  64. Krohn NG, Lausser A, Juranić M, Dresselhaus T. 64.  2012. Egg cell signaling by the secreted peptide ZmEAL1 controls antipodal cell fate. Dev. Cell 23:219–25 [Google Scholar]
  65. Lalanne E, Honys D, Johnson A, Borner GH, Lilley KS. 65.  et al. 2004. SETH1 and SETH2, two components of the glycosylphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in Arabidopsis. Plant Cell 16:229–40 [Google Scholar]
  66. Lamport DTA, Varnai P, Seal CE. 66.  2014. Back to the future with the AGP–Ca2+ flux capacitor. Ann. Bot. 114:1069–85 [Google Scholar]
  67. Lassig R, Gutermuth T, Bey TD, Konrad KR, Romeis T. 67.  2014. Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J. 78:94–106 [Google Scholar]
  68. Lee JS, Kuroha T, Hnilova M, Khatayevich D, Kanaoka MM. 68.  et al. 2012. Direct interaction of ligand-receptor pairs specifying stomatal patterning. Genes Dev. 26:126–36 [Google Scholar]
  69. Leshem Y, Johnson C, Sundaresan V. 69.  2013. Pollen tube entry into the synergid cell of Arabidopsis is observed at a site distinct from the filiform apparatus. Plant Reprod 26:93–99 [Google Scholar]
  70. Leydon AR, Beale KM, Woroniecka K, Castner E, Chen J. 70.  et al. 2013. Three MYB transcription factors control pollen tube differentiation required for sperm release. Curr. Biol. 23:1209–14 [Google Scholar]
  71. Leydon AR, Chaibang A, Johnson MA. 71.  2014. Interactions between pollen tube and pistil control pollen tube identity and sperm release in the Arabidopsis female gametophyte. Biochem. Soc. Trans. 42:340–45 [Google Scholar]
  72. Li HJ, Xue Y, Jia DJ, Wang T, Hi DQ. 72.  et al. 2011. POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. Plant Cell 23:3288–302 [Google Scholar]
  73. Li S, Ge FR, Xu M, Zhao XY, Huang GQ. 73.  et al. 2013. Arabidopsis COBRA-LIKE 10, a GPI-anchored protein, mediates directional growth of pollen tubes. Plant J. 74:486–97 [Google Scholar]
  74. Liang Y, Tan ZM, Zhu L, Niu QK, Zhou JJ. 74.  et al. 2013. MYB97, MYB101 and MYB120 function as male factors that control pollen tube-synergid interaction in Arabidopsis thaliana fertilization. PLOS Genet. 9:e1003933 [Google Scholar]
  75. Lin SY, Chen PW, Chuang MH, Juntawong P, Bailey-Serres J, Jauh GY. 75.  2014. Profiling of translatomes of in vivo-grown pollen tubes reveals genes with roles in micropylar guidance during pollination in Arabidopsis. Plant Cell 26:602–18 [Google Scholar]
  76. Lindner H, Müller LM, Boisson-Dernier A, Grossniklaus U. 76.  2012. CrRLK1L receptor-like kinases: not just another brick in the wall. Curr. Opin. Plant Biol. 15:659–69 [Google Scholar]
  77. Ling Y, Chen T, Jing Y, Fan L, Wan Y, Lin J. 77.  2013. γ-Aminobutyric acid (GABA) homeostasis regulates pollen germination and polarized growth in Picea wilsonii. Planta 238:831–43 [Google Scholar]
  78. Liu J, Zhong S, Guo X, Hao L, Wei X. 78.  et al. 2013. Membrane-bound RLCKs LIP1 and LIP2 are essential male factors controlling male-female attraction in Arabidopsis. Curr. Biol. 23:993–98 [Google Scholar]
  79. Lu Y, Chanroj S, Zulkifli L, Johnson MA, Uozumi N. 79.  et al. 2011. Pollen tubes lacking a pair of K+ transporters fail to target ovules in Arabidopsis. Plant Cell 23:81–93 [Google Scholar]
  80. Márton ML, Cordts S, Broadhvest J, Dresselhaus T. 80.  2005. Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307:573–76 [Google Scholar]
  81. Márton ML, Fastner A, Uebler S, Dresselhaus T. 81.  2012. Overcoming hybridization barriers by the secretion of the maize pollen tube attractant ZmEA1 from Arabidopsis ovules. Curr. Biol. 22:1194–98 [Google Scholar]
  82. Maruyama D, Hamamura Y, Takeuchi H, Susaki D, Nishimaki M. 82.  et al. 2013. Independent control by each female gamete prevents the attraction of multiple pollen tubes. Dev. Cell 25:317–23 [Google Scholar]
  83. Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T. 83.  et al. 2009. ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr. Biol. 19:1327–31 [Google Scholar]
  84. Mollet JC, Park SY, Nothnagel EA, Lord EM. 84.  2000. A lily stylar pectin is necessary for pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:1737–50 [Google Scholar]
  85. Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T. 85.  2006. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat. Cell Biol. 8:64–71 [Google Scholar]
  86. Ngo QA, Vogler H, Lituiev DS, Nestorova A, Grossniklaus U. 86.  2014. A calcium dialog mediated by the FERONIA signal transduction pathway controls plant sperm delivery. Dev. Cell 29:491–500 [Google Scholar]
  87. Okuda S, Suzuki T, Kanaoka MM, Mori H, Sasaki N, Higashiyama T. 87.  2013. Acquisition of LURE-binding activity at the pollen tube tip of Torenia fournieri. Mol. Plant 6:1074–90 [Google Scholar]
  88. Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H. 88.  et al. 2009. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–61 [Google Scholar]
  89. Palanivelu R, Brass L, Edlund AF, Preuss D. 89.  2003. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59 [Google Scholar]
  90. Palanivelu R, Preuss D. 90.  2006. Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol. 6:7 [Google Scholar]
  91. Palanivelu R, Tsukamoto T. 91.  2012. Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization. Wiley Interdiscip. Rev. Dev. Biol. 1:96–113 [Google Scholar]
  92. Park SY, Jauh GY, Mollet JC, Eckard KJ, Nothnagel EA. 92.  et al. 2000. A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:151–64 [Google Scholar]
  93. Punwani JA, Rabiger DS, Drews GN. 93.  2007. MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus localized proteins. Plant Cell 19:2557–68 [Google Scholar]
  94. Punwani JA, Rabiger DS, Lloyd A, Drews GN. 94.  2008. The MYB98 subcircuit of the synergid gene regulatory network includes genes directly and indirectly regulated by MYB98. Plant J. 55:406–14 [Google Scholar]
  95. Qin T, Liu X, Li J, Sun J, Song L, Mao T. 95.  2014. Arabidopsis microtubule-destabilizing protein 25 functions in pollen tube growth by severing actin filaments. Plant Cell 26:325–39 [Google Scholar]
  96. Qin Y, Leydon AR, Manziello A, Pandey R, Mount D. 96.  et al. 2009. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLOS Genet. 5:e1000621 [Google Scholar]
  97. Qin Y, Wysocki RJ, Somogyi A, Feinstein Y, Franco JY. 97.  et al. 2011. Sulfinylated azadecalins act as functional mimics of a pollen germination stimulant in Arabidopsis pistils. Plant J. 68:800–15 [Google Scholar]
  98. Ray SM, Park SS, Ray A. 98.  1997. Pollen tube guidance by the female gametophyte. Development 124:2489–98 [Google Scholar]
  99. Rejón JD, Delalande F, Schaeffer-Reiss C, Carapito C, Zienkiewicz K. 99.  et al. 2013. Proteomics profiling reveals novel proteins and functions of the plant stigma exudate. J. Exp. Bot. 64:5695–705 [Google Scholar]
  100. Rotman N, Rozier F, Boavida L, Dumas C, Berger F, Faure JE. 100.  2003. Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr. Biol. 13:432–36 [Google Scholar]
  101. Safavian D, Goring DR. 101.  2013. Secretory activity is rapidly induced in stigmatic papillae by compatible pollen, but inhibited for self-incompatible pollen in the Brassicaceae. PLOS ONE 8:e84286 [Google Scholar]
  102. Sanati Nezhad A, Packirisamy M, Geitmann A. 102.  2014. Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. Plant J. 80:185–95 [Google Scholar]
  103. Shih HW, Miller ND, Dai C, Spalding EP, Monshausen GB. 103.  2014. The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr. Biol. 24:1887–92 [Google Scholar]
  104. Shimizu KK, Okada K. 104.  2000. Attractive and repulsive interactions between female and male gametophytes in Arabidopsis pollen tube guidance. Development 127:4511–18 [Google Scholar]
  105. Silverstein KA, Moskal WA Jr, Wu HC, Underwood BA, Graham MA. 105.  et al. 2007. Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J. 51:262–80 [Google Scholar]
  106. Smith AG, Eberle CA, Moss NG, Anderson NO, Clasen BM, Hegeman AD. 106.  2013. The transmitting tissue of Nicotiana tabacum is not essential to pollen tube growth, and its ablation can reverse prezygotic interspecific barriers. Plant Reprod. 26:339–50 [Google Scholar]
  107. Sprunck S, Rademacher S, Vogler F, Gheyselinck J, Grossniklaus U. 107.  et al. 2012. Egg cell-secreted EC1 triggers sperm cell activation during double fertilization. Science 338:1093–97 [Google Scholar]
  108. Suárez C, Zienkiewicz A, Castro AJ, Zienkiewicz K, Majewska-Sawka A, Rodríguez-García MI. 108.  2013. Cellular localization and levels of pectins and arabinogalactan proteins in olive (Olea europaea L.) pistil tissues during development: implications for pollen-pistil interaction. Planta 237:305–19 [Google Scholar]
  109. Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A. 109.  et al. 2010. Stomagen positively regulates stomatal density in Arabidopsis. Nature 463:241–44 [Google Scholar]
  110. Takeuchi H, Higashiyama T. 110.  2011. Attraction of tip-growing pollen tubes by the female gametophyte. Curr. Opin. Plant Biol. 14:614–21 [Google Scholar]
  111. Takeuchi H, Higashiyama T. 111.  2012. A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLOS Biol. 10:e1001449 [Google Scholar]
  112. Takeuchi H, Higashiyama T. 112.  2013. Discovery of pollen tube attractant peptides LUREs in Arabidopsis thaliana. Regul. Plant Growth Dev. 48:73–78 (in Japanese) [Google Scholar]
  113. Tanaka N, Uraguchi S, Fujiwara T. 113.  2014. Exogenous boron supplementation partially rescues fertilization defect of osbor4 mutant. Plant Signal. Behav. 9:28356 [Google Scholar]
  114. Tanaka N, Uraguchi S, Saito A, Kajikawa M, Kasai K. 114.  et al. 2013. Roles of pollen-specific boron efflux transporter, OsBOR4, in the rice fertilization process. Plant Cell Physiol. 54:2011–19 [Google Scholar]
  115. Tang W, Kelley D, Ezcurra I, Cotter R, McCormick S. 115.  2004. LeSTIG1, an extracellular binding partner for the pollen receptor kinases LePRK1 and LePRK2, promotes pollen tube growth in vitro. Plant J. 39:343–53 [Google Scholar]
  116. Tsukamoto T, Qin Y, Huang Y, Dunatunga D, Palanivelu R. 116.  2010. A role for LORELEI, a putative glycosylphosphatidylinositol-anchored protein, in Arabidopsis thaliana double fertilization and early seed development. Plant J. 62:571–88 [Google Scholar]
  117. Uebler S, Dresselhaus T, Márton ML. 117.  2013. Species-specific interaction of EA1 with the maize pollen tube apex. Plant Signal. Behav. 8:e25682 [Google Scholar]
  118. Vogler F, Schmalzl C, Englhart M, Bircheneder M, Sprunck S. 118.  2014. Brassinosteroids promote Arabidopsis pollen germination and growth. Plant Reprod. 27:153–67 [Google Scholar]
  119. Völz R, Heydlauff J, Ripper D, von Lyncker L, Groß-Hardt R. 119.  2013. Ethylene signaling is required for synergid degeneration and the establishment of a pollen tube block. Dev. Cell 25:310–16 [Google Scholar]
  120. von Besser K, Frank AC, Johnson MA, Preuss D. 120.  2006. Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development 133:4761–69 [Google Scholar]
  121. Williams JH. 121.  2009. Amborella trichopoda (Amborellaceae) and the evolutionary developmental origins of the angiosperm progamic phase. Am. J. Bot. 96:144–65 [Google Scholar]
  122. Wolf S, Höfte H. 122.  2014. Growth control: a saga of cell walls, ROS, and peptide receptors. Plant Cell 26:1848–56 [Google Scholar]
  123. Woriedh M, Wolf S, Márton ML, Hinze A, Gahrtz M. 123.  et al. 2013. External application of gametophyte-specific ZmPMEI1 induces pollen tube burst in maize. Plant Reprod. 26:255–66 [Google Scholar]
  124. Wu HM, Wang H, Cheung AY. 124.  1995. A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower. Cell 82:395–403 [Google Scholar]
  125. Yu GH, Zou J, Feng J, Peng XB, Wu JY. 125.  et al. 2014. Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase. J. Exp. Bot. 65:3235–48 [Google Scholar]
  126. Zhou X, Meier I. 126.  2014. Efficient plant male fertility depends on vegetative nuclear movement mediated by two families of plant outer nuclear membrane proteins. PNAS 111:11900–5 [Google Scholar]
  127. Zhu L, Zhang Y, Kang E, Xu Q, Wang M. 127.  et al. 2013. MAP18 regulates the direction of pollen tube growth in Arabidopsis by modulating F-actin organization. Plant Cell 25:851–67 [Google Scholar]
/content/journals/10.1146/annurev-arplant-043014-115635
Loading
/content/journals/10.1146/annurev-arplant-043014-115635
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error