1932

Abstract

The Sun's magnetic field is the engine and energy source driving all phenomena collectively defining solar activity, which in turn structures the whole heliosphere and significantly impacts Earth's atmosphere down at least to the stratosphere. The solar magnetic field is believed to originate through the action of a hydromagnetic dynamo process operating in the Sun's interior, where the strongly turbulent environment of the convection zone leads to flow-field interactions taking place on an extremely wide range of spatial and temporal scales. Following a necessarily brief observational overview of the solar magnetic field and its cycle, this review on solar dynamo theory is structured around three areas in which significant advances have been made in recent years: () global magnetohydrodynamical simulations of convection and magnetic cycles, () the turbulent electromotive force and the dynamo saturation problem, and () flux transport dynamos, and their application to model cycle fluctuations and grand minima and to carry out cycle prediction.

Associated Article

There are media items related to this article:
Solar Dynamo Theory: Video 1
Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-081913-040012
2014-08-18
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/astro/52/1/annurev-astro-081913-040012.html?itemId=/content/journals/10.1146/annurev-astro-081913-040012&mimeType=html&fmt=ahah

Literature Cited

  1. Babcock HW. 1961. Ap. J. 133:572–87
  2. Balbus SA, Bonart J, Latter HN, Weiss NO. 2009. MNRAS 400:176–82
  3. Barnes G, MacGregor KB, Charbonneau P. 1998. Ap. J. Lett. 498:L169–72
  4. Baumann I, Schmitt D, Schüssler M, Solanki SK. 2004. Astron. Astrophys. 426:1075–91
  5. Beaudoin P, Charbonneau P, Racine É, Smolarkiewicz PK. 2013. Solar Phys. 282:335–60
  6. Beer J. 2000. Space Sci. Rev. 94:53–66
  7. Beer J, Tobias SM, Weiss NO. 1998. Solar Phys. 181:237–49
  8. Benevolenskaya EE. 1995. Solar Phys. 161:1–8
  9. Benevolenskaya EE. 1998. Ap. J. Lett. 509:49–52
  10. Berger MA, Field GB. 1984. J. Fluid. Mech. 147:133–48
  11. Berger MA, Ruzmaikin A. 2000. J. Geophys. Res. 105:A510481–90
  12. Blackman EG, Brandenburg A. 2002. Ap. J. 579:359–73
  13. Braithwaite J, Nordlund Å. 2006. Astron. Astrophys. 450:1077–95
  14. Brandenburg A. 2001. Ap. J. 550:824–40
  15. Brandenburg A. 2005. Ap. J. 625:539–47
  16. Brandenburg A, Dobler W. 2001. Astron. Astrophys. 369:329–38
  17. Brandenburg A, Subramanian K. 2005. Phys. Rep. 417:1–209
  18. Brandenburg A, Tuominen I, Nordlund Å, Pulkkinen P, Stein RF. 1990. Astron. Astrophys. 232:277–91
  19. Braun DC, Fan Y. 1998. Ap. J. Lett. 508:L105–8
  20. Brooke JM, Moss D, Phillips A. 2002. Astron. Astrophys. 395:1013–22
  21. Brown BP, Browning MK, Brun AS, Miesch MS, Toomre J. 2010. Ap. J. 711:424–38
  22. Brown BP, Miesch MS, Browning MK, Brun AS, Toomre J. 2011. Ap. J. 731:69
  23. Browning MK, Miesch MS, Brun AS, Toomre J. 2006. Ap. J. Lett. 648:L157–60
  24. Brummell NH, Hurlburt NE, Toomre J. 1996. Ap. J. 473:494–513
  25. Brun AS, Miesch MS, Toomre J. 2004. Ap. J. 614:1073–98
  26. Brun AS, Miesch MS, Toomre J. 2011. Ap. J. 742:79
  27. Bushby PJ. 2006. MNRAS 371:772–80
  28. Bushby PJ, Tobias SM. 2007. Ap. J. 661:1289–96
  29. Busse FH. 2002. Phys. Fluids 14:1301–14
  30. Caligari P, Moreno-Insertis F, Schüssler M. 1995. Ap. J. 441:886–902
  31. Cally PS, Dikpati M, Gilman PA. 2003. Ap. J. 582:1190–205
  32. Cameron R, Schüssler M. 2007. Ap. J. 659:801–11
  33. Cattaneo F. 1999. Ap. J. Lett. 515:L39–42
  34. Cattaneo F, Emonet T, Weiss NO. 2003. Ap. J. 515:1183–98
  35. Cattaneo F, Hughes DW. 1996. Phys. Rev. E 54:4532–35
  36. Cattaneo F, Hughes DW. 2006. J. Fluid Mech. 553:401–18
  37. Charbonneau P. 2001. Solar Phys. 199:385–404
  38. Charbonneau P. 2010. Living Rev. Solar Phys.lrsp–2010-3
  39. Charbonneau P. 2013. Solar and Stellar Dynamos Berlin: Springer.
  40. Charbonneau P, Beaubien G, St-Jean C. 2007. Ap. J. 658:657–62
  41. Charbonneau P, Blais-Laurier G, St-Jean C. 2004. Ap. J. Lett. 616:L183–86
  42. Charbonneau P, MacGregor KB. 1996. Ap. J. Lett. 473:L59–62
  43. Charbonneau P, MacGregor KB. 2001. Ap. J. 559:1094–107
  44. Charbonneau P, St-Jean C, Zacharias P. 2005. Ap. J. 619:613–22
  45. Chatterjee P, Guerrero G, Brandenburg A. 2011. Astron. Astrophys. 525:A5
  46. Chatterjee P, Nandy D, Choudhuri AR. 2004. Astron. Astrophys. 427:1019–30
  47. Choudhuri AR. 1990. Ap. J. 355:733–44
  48. Choudhuri AR, Chatterjee P, Jiang J. 2007. Phys. Rev. Lett. 98:131103
  49. Choudhuri AR, Karak BB. 2012. Phys. Rev. Lett. 109:171103
  50. Choudhuri AR, Schüssler M, Dikpati M. 1995. Astron. Astrophys. 303:L29–32
  51. Clune TL, Elliot JR, Glatzmaier GA, Miesch MS, Toomre J. 1999. Parallel Comput. 25:361
  52. Cossette JF, Charbonneau P, Smolarkiewicz PK. 2013. Ap. J. Lett. 777:L29
  53. Courvoisier A, Hughes DW, Tobias SM. 2006. Phys. Rev. Lett. 96:3034503
  54. Courvoisier A, Hughes DW, Tobias SM. 2009. J. Fluid Mech. 627:403–21
  55. Davidson PA. 2001. An Introduction to Magnetohydrodynamics Cambridge: Cambridge Univ. Press431
  56. de Wijn AG, Stenflo JO, Solanki SK, Tsuneta S. 2009. Space Sci. Rev. 144:275–315
  57. Démoulin P, Berger MA. 2003. Solar Phys. 215:203–15
  58. Dikpati M, Anderson JL. 2012. Ap. J. 756:20
  59. Dikpati M, Cally PS, Gilman PA. 2004. Ap. J. 610:597–615
  60. Dikpati M, Charbonneau P. 1999. Ap. J. 518:508–20
  61. Dikpati M, de Toma G, Gilman PA. 2006. Geophys. Res. Lett. 33:L05102
  62. Dikpati M, Gilman PA. 2001. Ap. J. 610:597–615
  63. Dikpati M, Gilman PA. 2006. Ap. J. 649:498–514
  64. Dikpati M, Gilman PA, de Toma G, Ulrich RK. 2010. Geophys. Res. Lett. 37:L14107
  65. Dikpati M, Gilman PA, Rempel M. 2003. Ap. J. 596:680–97
  66. D'Silva S, Choudhuri AR. 1993. Astron. Astrophys. 272:621–33
  67. Dubé C, Charbonneau P. 2013. Ap. J. 775:69
  68. Durney BR. 1995. Solar Phys. 160:213–35
  69. Eddy JA. 1976. Science 192:42451189–202
  70. Fan Y. 2009. Living Rev. Solar Phys. 6:lrsp–2009-4
  71. Fan Y, Fisher GH, DeLuca EE. 1993. Ap. J. 405:390–401
  72. Ferriz-Mas A, Schmitt D, Schüssler M. 1994. Astron. Astrophys. 289:949–56
  73. Fletcher ST, Broomhall A-M, Salabert D, Basu S, Chaplin WJ. et al. 2010. Ap. J. Lett. 718:L19–22
  74. Foukal PF, Fröhlich C, Spruit H, Wigley TML. 2006. Nature 443:710961–166
  75. Fröhlich C. 2009. Astron. Astrophys. 501:L27–30
  76. Fröhlich C, Lean J. 2004. Astron. Astrophys. Rev. 12:273–320
  77. Ghizaru M, Charbonneau P, Smolarkiewicz PK. 2010. Ap. J. Lett. 715:L133–37
  78. Gilman PA. 1983. Ap. J. Suppl. 53:243–68
  79. Gilman PA, Dikpati M, Miesch MS. 2007. Ap. J. Suppl. 170:203–27
  80. Gilman PA, Fox PA. 1997. Ap. J. 484:439–54
  81. Glatzmaier GA. 1984. J. Comput. Phys. 55:461–84
  82. Glatzmaier GA. 1985. Ap. J. 291:300–307
  83. Grinstein FF, Margolin LG, Rider WJ. 2007. Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics Cambridge: Cambridge Univ. Press546
/content/journals/10.1146/annurev-astro-081913-040012
Loading
/content/journals/10.1146/annurev-astro-081913-040012
Loading

Data & Media loading...

Supplemental Material

    Magnetic cycles in a global EULAG-MHD anelastic simulation, essentially identical to those by Ghizaru et al. (2010) and Racine et al. (2011). This simulation includes a convectively stable fluid layer underlying the convecting layers. () A snapshot in Mollweide projection of the toroidal (zonal) magnetic component at depth /R=0.718; () a snapshot of the zonally averaged toroidal field in a meridional plane taken at the same time as panel . () Time-latitude and () radius-latitude diagrams of the zonally averaged toroidal field, the former at depth /R=0.718 and the latter at latitude +25°. The dashed lines in panels and indicate the bottom of the convectively unstable layers. This is a moderate-resolution simulation, rotating at the solar rate but subluminous with respect to the Sun.

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error