1932

Abstract

Inactivation of the transcription factor p53, through either direct mutation or aberrations in one of its many regulatory pathways, is a hallmark of virtually every tumor. In recent years, screening for p53 activators and a better understanding of the molecular mechanisms of oncogenic perturbations of p53 function have opened up a host of novel avenues for therapeutic intervention in cancer: from the structure-guided design of chemical chaperones to restore the function of conformationally unstable p53 cancer mutants, to the development of potent antagonists of the negative regulators MDM2 and MDMX and other modulators of the p53 pathway for the treatment of cancers with wild-type p53. Some of these compounds have now moved from proof-of-concept studies into clinical trials, with prospects for further, personalized anticancer medicines. We trace the structural evolution of the p53 pathway, from germ-line surveillance in simple multicellular organisms to its pluripotential role in humans.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060815-014710
2016-06-02
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/85/1/annurev-biochem-060815-014710.html?itemId=/content/journals/10.1146/annurev-biochem-060815-014710&mimeType=html&fmt=ahah

Literature Cited

  1. Lane D, Levine A. 1.  2010. p53 research: the past thirty years and the next thirty years. Cold Spring Harb. Perspect. Biol. 2:a000893 [Google Scholar]
  2. Vousden KH, Prives C. 2.  2009. Blinded by the light: the growing complexity of p53. Cell 137:413–31 [Google Scholar]
  3. Bieging KT, Mello SS, Attardi LD. 3.  2014. Unravelling mechanisms of p53-mediated tumour suppression. Nat. Rev. Cancer 14:359–70 [Google Scholar]
  4. Wade M, Li YC, Wahl GM. 4.  2013. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer 13:83–96 [Google Scholar]
  5. Linke K, Mace PD, Smith CA, Vaux DL, Silke J, Day CL. 5.  2008. Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ. 15:841–48 [Google Scholar]
  6. Popowicz GM, Czarna A, Holak TA. 6.  2008. Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain. Cell Cycle 7:2441–43 [Google Scholar]
  7. Joerger AC, Fersht AR. 7.  2008. Structural biology of the tumor suppressor p53. Annu. Rev. Biochem. 77:557–82 [Google Scholar]
  8. Uversky VN, Dave V, Iakoucheva LM, Malaney P, Metallo SJ. 8.  et al. 2014. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem. Rev. 114:6844–79 [Google Scholar]
  9. Dötsch V, Bernassola F, Coutandin D, Candi E, Melino G. 9.  2010. p63 and p73, the ancestors of p53. Cold Spring Harb. Perspect. Biol. 2:a004887 [Google Scholar]
  10. Khoury MP, Bourdon JC. 10.  2011. p53 isoforms: an intracellular microprocessor?. Genes Cancer 2:453–65 [Google Scholar]
  11. Jeffrey PD, Gorina S, Pavletich NP. 11.  1995. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267:1498–502 [Google Scholar]
  12. Rajagopalan S, Huang F, Fersht AR. 12.  2011. Single-molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53. Nucleic Acids Res. 39:2294–303 [Google Scholar]
  13. Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM. 13.  1999. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18:1660–72 [Google Scholar]
  14. Gaglia G, Guan Y, Shah JV, Lahav G. 14.  2013. Activation and control of p53 tetramerization in individual living cells. PNAS 110:15497–501 [Google Scholar]
  15. Deutsch GB, Zielonka EM, Coutandin D, Weber TA, Schäfer B. 15.  et al. 2011. DNA damage in oocytes induces a switch of the quality control factor TAp63α from dimer to tetramer. Cell 144:566–76 [Google Scholar]
  16. el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B. 16.  1992. Definition of a consensus binding site for p53. Nat. Genet. 1:45–49 [Google Scholar]
  17. Wei CL, Wu Q, Vega VB, Chiu KP, Ng P. 17.  et al. 2006. A global map of p53 transcription-factor binding sites in the human genome. Cell 124:207–19 [Google Scholar]
  18. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. 18.  1994. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–55 [Google Scholar]
  19. Weinberg RL, Veprintsev DB, Fersht AR. 19.  2004. Cooperative binding of tetrameric p53 to DNA. J. Mol. Biol. 341:1145–59 [Google Scholar]
  20. Chen Y, Dey R, Chen L. 20.  2010. Crystal structure of the p53 core domain bound to a full consensus site as a self-assembled tetramer. Structure 18:246–56 [Google Scholar]
  21. Kitayner M, Rozenberg H, Rohs R, Suad O, Rabinovich D. 21.  et al. 2010. Diversity in DNA recognition by p53 revealed by crystal structures with Hoogsteen base pairs. Nat. Struct. Mol. Biol. 17:423–29 [Google Scholar]
  22. Petty TJ, Emamzadah S, Costantino L, Petkova I, Stavridi ES. 22.  et al. 2011. An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity. EMBO J. 30:2167–76 [Google Scholar]
  23. Kitayner M, Rozenberg H, Kessler N, Rabinovich D, Shaulov L. 23.  et al. 2006. Structural basis of DNA recognition by p53 tetramers. Mol. Cell 22:741–53 [Google Scholar]
  24. Arbely E, Natan E, Brandt T, Allen MD, Veprintsev DB. 24.  et al. 2011. Acetylation of lysine 120 of p53 endows DNA-binding specificity at effective physiological salt concentration. PNAS 108:8251–56 [Google Scholar]
  25. Tang Y, Luo J, Zhang W, Gu W. 25.  2006. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell 24:827–39 [Google Scholar]
  26. Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R. 26.  et al. 2006. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol. Cell 24:841–51 [Google Scholar]
  27. Wells M, Tidow H, Rutherford TJ, Markwick P, Jensen MR. 27.  et al. 2008. Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. PNAS 105:5762–67 [Google Scholar]
  28. Venot C, Maratrat M, Sierra V, Conseiller E, Debussche L. 28.  1999. Definition of a p53 transactivation function-deficient mutant and characterization of two independent p53 transactivation subdomains. Oncogene 18:2405–10 [Google Scholar]
  29. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J. 29.  et al. 1996. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–53 [Google Scholar]
  30. Feng H, Jenkins LM, Durell SR, Hayashi R, Mazur SJ. 30.  et al. 2009. Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure 17:202–10 [Google Scholar]
  31. Bochkareva E, Kaustov L, Ayed A, Yi GS, Lu Y. 31.  et al. 2005. Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. PNAS 102:15412–17 [Google Scholar]
  32. Di Lello P, Jenkins LM, Jones TN, Nguyen BD, Hara T. 32.  et al. 2006. Structure of the Tfb1/p53 complex: insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol. Cell 22:731–40 [Google Scholar]
  33. Miller Jenkins LM, Feng H, Durell SR, Tagad HD, Mazur SJ. 33.  et al. 2015. Characterization of the p300 Taz2-p53 TAD2 complex and comparison with the p300 Taz2-p53 TAD1 complex. Biochemistry 54:2001–10 [Google Scholar]
  34. Lee CW, Martinez-Yamout MA, Dyson HJ, Wright PE. 34.  2010. Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry 49:9964–71 [Google Scholar]
  35. Schon O, Friedler A, Bycroft M, Freund SM, Fersht AR. 35.  2002. Molecular mechanism of the interaction between MDM2 and p53. J. Mol. Biol. 323:491–501 [Google Scholar]
  36. Chen X, Gohain N, Zhan C, Lu WY, Pazgier M, Lu W. 36.  2015. Structural basis of how stress-induced MDMX phosphorylation activates p53. Oncogene 351919–25
  37. Teufel DP, Bycroft M, Fersht AR. 37.  2009. Regulation by phosphorylation of the relative affinities of the N-terminal transactivation domains of p53 for p300 domains and Mdm2. Oncogene 28:2112–18 [Google Scholar]
  38. Lee CW, Ferreon JC, Ferreon AC, Arai M, Wright PE. 38.  2010. Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. PNAS 107:19290–95 [Google Scholar]
  39. Tafvizi A, Huang F, Fersht AR, Mirny LA, van Oijen AM. 39.  2011. A single-molecule characterization of p53 search on DNA. PNAS 108:563–68 [Google Scholar]
  40. Meek DW, Anderson CW. 40.  2009. Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb. Perspect. Biol. 1:a000950 [Google Scholar]
  41. Rustandi RR, Baldisseri DM, Weber DJ. 41.  2000. Structure of the negative regulatory domain of p53 bound to S100B(ββ). Nat. Struct. Biol. 7:570–74 [Google Scholar]
  42. Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C. 42.  2002. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol. Cell 10:523–35 [Google Scholar]
  43. Lowe ED, Tews I, Cheng KY, Brown NR, Gul S. 43.  et al. 2002. Specificity determinants of recruitment peptides bound to phospho-CDK2/cyclin A. Biochemistry 41:15625–34 [Google Scholar]
  44. Tong Q, Mazur SJ, Rincon-Arano H, Rothbart SB, Kuznetsov DM. 44.  et al. 2015. An acetyl-methyl switch drives a conformational change in p53. Structure 23:322–31 [Google Scholar]
  45. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME. 45.  et al. 2010. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–26 [Google Scholar]
  46. Pankow S, Bamberger C. 46.  2007. The p53 tumor suppressor-like protein nvp63 mediates selective germ cell death in the sea anemone Nematostella vectensis. PLOS ONE 2:e782 [Google Scholar]
  47. Lane DP, Cheok CF, Brown C, Madhumalar A, Ghadessy FJ, Verma C. 47.  2010. Mdm2 and p53 are highly conserved from placozoans to man. Cell Cycle 9:540–47 [Google Scholar]
  48. King N, Westbrook MJ, Young SL, Kuo A, Abedin M. 48.  et al. 2008. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–88 [Google Scholar]
  49. Belyi VA, Ak P, Markert E, Wang H, Hu W. 49.  et al. 2010. The origins and evolution of the p53 family of genes. Cold Spring Harb. Perspect. Biol. 2:a001198 [Google Scholar]
  50. Lu WJ, Amatruda JF, Abrams JM. 50.  2009. p53 ancestry: gazing through an evolutionary lens. Nat. Rev. Cancer 9:758–62 [Google Scholar]
  51. Lane DP, Madhumalar A, Lee AP, Tay BH, Verma C. 51.  et al. 2011. Conservation of all three p53 family members and Mdm2 and Mdm4 in the cartilaginous fish. Cell Cycle 10:4272–79 [Google Scholar]
  52. Coffill CR, Lee AP, Siau JW, Chee SM, Joseph TL. 52.  et al. 2016. The p53-Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans. Genes Dev. 30:281–92 [Google Scholar]
  53. Nedelcu AM, Tan C. 53.  2007. Early diversification and complex evolutionary history of the p53 tumor suppressor gene family. Dev. Genes Evol. 217:801–6 [Google Scholar]
  54. Rutkowski R, Hofmann K, Gartner A. 54.  2010. Phylogeny and function of the invertebrate p53 superfamily. Cold Spring Harb. Perspect. Biol. 2:a001131 [Google Scholar]
  55. Fernandes AD, Atchley WR. 55.  2008. Biochemical and functional evidence of p53 homology is inconsistent with molecular phylogenetics for distant sequences. J. Mol. Evol. 67:51–67 [Google Scholar]
  56. Ou HD, Löhr F, Vogel V, Mantele W, Dötsch V. 56.  2007. Structural evolution of C-terminal domains in the p53 family. EMBO J.3463–73
  57. Xue B, Brown CJ, Dunker AK, Uversky VN. 57.  2013. Intrinsically disordered regions of p53 family are highly diversified in evolution. Biochim. Biophys. Acta 1834:725–38 [Google Scholar]
  58. Brandt T, Petrovich M, Joerger AC, Veprintsev DB. 58.  2009. Conservation of DNA-binding specificity and oligomerisation properties within the p53 family. BMC Genomics 10:628 [Google Scholar]
  59. Khoo KH, Andreeva A, Fersht AR. 59.  2009. Adaptive evolution of p53 thermodynamic stability. J. Mol. Biol. 393:161–75 [Google Scholar]
  60. Brandt T, Kaar JL, Fersht AR, Veprintsev DB. 60.  2012. Stability of p53 homologs. PLOS ONE 7e47889
  61. Joerger AC, Rajagopalan S, Natan E, Veprintsev DB, Robinson CV, Fersht AR. 61.  2009. Structural evolution of p53, p63, and p73: implication for heterotetramer formation. PNAS 106:17705–10 [Google Scholar]
  62. Coutandin D, Löhr F, Niesen FH, Ikeya T, Weber TA. 62.  et al. 2009. Conformational stability and activity of p73 require a second helix in the tetramerization domain. Cell Death Differ. 16:1582–89 [Google Scholar]
  63. Natan E, Joerger AC. 63.  2012. Structure and kinetic stability of the p63 tetramerization domain. J. Mol. Biol. 415:503–13 [Google Scholar]
  64. Joerger AC, Wilcken R, Andreeva A. 64.  2014. Tracing the evolution of the p53 tetramerization domain. Structure 22:1301–10 [Google Scholar]
  65. Heering J, Jonker HR, Löhr F, Schwalbe H, Dötsch V. 65.  2016. Structural investigations of the p53/p73 homologs from the tunicate species Ciona intestinalis reveal the sequence requirements for the formation of a tetramerization domain. Protein Sci 25:410–22 [Google Scholar]
  66. Lu WJ, Abrams JM. 66.  2006. Lessons from p53 in non-mammalian models. Cell Death Differ. 13:909–12 [Google Scholar]
  67. Momand J, Villegas A, Belyi VA. 67.  2011. The evolution of MDM2 family genes. Gene 486:23–30 [Google Scholar]
  68. Lane DP, Cheok CF, Brown CJ, Madhumalar A, Ghadessy FJ, Verma C. 68.  2010. The Mdm2 and p53 genes are conserved in the Arachnids. Cell Cycle 9:748–54 [Google Scholar]
  69. Muttray AF, O'Toole TF, Morrill W, Van Beneden RJ, Baldwin SA. 69.  2010. An invertebrate mdm homolog interacts with p53 and is differentially expressed together with p53 and ras in neoplastic Mytilus trossulus haemocytes. Comp. Biochem. Physiol. B 156:298–308 [Google Scholar]
  70. Lane DP, Verma C. 70.  2012. Mdm2 in evolution. Genes Cancer 3:320–24 [Google Scholar]
  71. von der Chevallerie K, Rolfes S, Schierwater B. 71.  2014. Inhibitors of the p53–Mdm2 interaction increase programmed cell death and produce abnormal phenotypes in the placozoon Trichoplax adhaerens (FE Schulze). Dev. Genes Evol. 224:79–85 [Google Scholar]
  72. Tai E, Benchimol S. 72.  2009. TRIMming p53 for ubiquitination. PNAS 106:11431–32 [Google Scholar]
  73. Allton K, Jain AK, Herz HM, Tsai WW, Jung SY. 73.  et al. 2009. Trim24 targets endogenous p53 for degradation. PNAS 106:11612–16 [Google Scholar]
  74. Mendoza M, Mandani G, Momand J. 74.  2014. The MDM2 gene family. Biomol. Concepts 5:9–19 [Google Scholar]
  75. Jain AK, Barton MC. 75.  2009. Regulation of p53: TRIM24 enters the RING. Cell Cycle 8:3668–74 [Google Scholar]
  76. Leroy B, Anderson M, Soussi T. 76.  2014. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum. Mutat. 35:672–88 [Google Scholar]
  77. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV. 77.  et al. 2007. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum. Mutat. 28:622–29 [Google Scholar]
  78. Garritano S, Gemignani F, Palmero EI, Olivier M, Martel-Planche G. 78.  et al. 2010. Detailed haplotype analysis at the TP53 locus in p.R337H mutation carriers in the population of Southern Brazil: evidence for a founder effect. Hum. Mutat. 31:143–50 [Google Scholar]
  79. Rinne T, Brunner HG, van Bokhoven H. 79.  2007. p63-associated disorders. Cell Cycle 6:262–68 [Google Scholar]
  80. Bullock AN, Henckel J, Fersht AR. 80.  2000. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene 19:1245–56 [Google Scholar]
  81. Joerger AC, Fersht AR. 81.  2007. Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene 26:2226–42 [Google Scholar]
  82. Friedler A, Veprintsev DB, Hansson LO, Fersht AR. 82.  2003. Kinetic instability of p53 core domain mutants: implications for rescue by small molecules. J. Biol. Chem. 278:24108–12 [Google Scholar]
  83. Butler JS, Loh SN. 83.  2005. Kinetic partitioning during folding of the p53 DNA binding domain. J. Mol. Biol. 350:906–18 [Google Scholar]
  84. Dearth LR, Qian H, Wang T, Baroni TE, Zeng J. 84.  et al. 2007. Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis 28:289–98 [Google Scholar]
  85. Joerger AC, Ang HC, Veprintsev DB, Blair CM, Fersht AR. 85.  2005. Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations. J. Biol. Chem. 280:16030–37 [Google Scholar]
  86. Joerger AC, Ang HC, Fersht AR. 86.  2006. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. PNAS 103:15056–61 [Google Scholar]
  87. Eldar A, Rozenberg H, Diskin-Posner Y, Rohs R, Shakked Z. 87.  2013. Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein–DNA interactions. Nucleic Acids Res. 41:8748–59 [Google Scholar]
  88. Ang HC, Joerger AC, Mayer S, Fersht AR. 88.  2006. Effects of common cancer mutations on stability and DNA binding of full-length p53 compared with isolated core domains. J. Biol. Chem. 281:21934–41 [Google Scholar]
  89. Bullock AN, Henckel J, DeDecker BS, Johnson CM, Nikolova PV. 89.  et al. 1997. Thermodynamic stability of wild-type and mutant p53 core domain. PNAS 94:14338–42 [Google Scholar]
  90. Wallentine BD, Wang Y, Tretyachenko-Ladokhina V, Tan M, Senear DF, Luecke H. 90.  2013. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue. Acta Crystallogr. Sect. D 69:2146–56 [Google Scholar]
  91. Shiraishi K, Kato S, Han SY, Liu W, Otsuka K. 91.  et al. 2004. Isolation of temperature-sensitive p53 mutations from a comprehensive missense mutation library. J. Biol. Chem. 279:348–55 [Google Scholar]
  92. Suad O, Rozenberg H, Brosh R, Diskin-Posner Y, Kessler N. 92.  et al. 2009. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations. J. Mol. Biol. 385:249–65 [Google Scholar]
  93. Gouas D, Shi H, Hainaut P. 93.  2009. The aflatoxin-induced TP53 mutation at codon 249 (R249S): biomarker of exposure, early detection and target for therapy. Cancer Lett. 286:29–37 [Google Scholar]
  94. Palecek E, Ostatna V, Cernocka H, Joerger AC, Fersht AR. 94.  2011. Electrocatalytic monitoring of metal binding and mutation-induced conformational changes in p53 at picomole level. J. Am. Chem. Soc. 133:7190–96 [Google Scholar]
  95. Yu X, Blanden AR, Narayanan S, Jayakumar L, Lubin D. 95.  et al. 2014. Small molecule restoration of wildtype structure and function of mutant p53 using a novel zinc-metallochaperone based mechanism. Oncotarget 5:8879–92 [Google Scholar]
  96. Ryan KM, Vousden KH. 96.  1998. Characterization of structural p53 mutants which show selective defects in apoptosis but not cell cycle arrest. Mol. Cell. Biol. 18:3692–98 [Google Scholar]
  97. Kraiss S, Quaiser A, Oren M, Montenarh M. 97.  1988. Oligomerization of oncoprotein p53. J. Virol. 62:4737–44 [Google Scholar]
  98. Kraiss S, Spiess S, Reihsaus E, Montenarh M. 98.  1991. Correlation of metabolic stability and altered quaternary structure of oncoprotein p53 with cell transformation. Exp. Cell Res. 192:157–64 [Google Scholar]
  99. Butler JS, Loh SN. 99.  2003. Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain. Biochemistry 42:2396–403 [Google Scholar]
  100. Ishimaru D, Andrade LR, Teixeira LS, Quesado PA, Maiolino LM. 100.  et al. 2003. Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry 42:9022–27 [Google Scholar]
  101. Bom AP, Rangel LP, Costa DC, de Oliveira GA, Sanches D. 101.  Ano et al. 2012. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J. Biol. Chem. 287:28152–62 [Google Scholar]
  102. Milner J, Medcalf EA. 102.  1991. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 65:765–74 [Google Scholar]
  103. Bullock AN, Fersht AR. 103.  2001. Rescuing the function of mutant p53. Nat. Rev. Cancer 1:68–76 [Google Scholar]
  104. Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R. 104.  et al. 2011. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat. Chem. Biol. 7:285–95 [Google Scholar]
  105. Wang G, Fersht AR. 105.  2015. Propagation of aggregated p53: cross-reaction and coaggregation versus seeding. PNAS 112:2443–48 [Google Scholar]
  106. Wang G, Fersht AR. 106.  2015. Mechanism of initiation of aggregation of p53 revealed by Φ-value analysis. PNAS 112:2437–42 [Google Scholar]
  107. Wilcken R, Wang G, Boeckler FM, Fersht AR. 107.  2012. Kinetic mechanism of p53 oncogenic mutant aggregation and its inhibition. PNAS 109:13584–89 [Google Scholar]
  108. Soragni A, Janzen DM, Johnson LM, Lindgren AG, Thai-Quynh Nguyen A. 108.  et al. 2016. A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas. Cancer Cell 29:90–103 [Google Scholar]
  109. Friedler A, Hansson LO, Veprintsev DB, Freund SMV, Rippin TM. 109.  et al. 2002. A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. PNAS 99:937–42 [Google Scholar]
  110. Issaeva N, Friedler A, Bozko P, Wiman KG, Fersht AR, Selivanova G. 110.  2003. Rescue of mutants of the tumor suppressor p53 in cancer cells by a designed peptide. PNAS 100:13303–7 [Google Scholar]
  111. Wassman CD, Baronio R, Demir O, Wallentine BD, Chen CK. 111.  et al. 2013. Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53. Nat. Commun. 4:1407 [Google Scholar]
  112. Brachmann RK, Yu K, Eby Y, Pavletich NP, Boeke JD. 112.  1998. Genetic selection of intragenic suppressor mutations that reverse the effect of common p53 cancer mutations. EMBO J. 17:1847–59 [Google Scholar]
  113. Ciribilli Y, Monti P, Bisio A, Nguyen HT, Ethayathulla AS. 113.  et al. 2013. Transactivation specificity is conserved among p53 family proteins and depends on a response element sequence code. Nucleic Acids Res. 41:8637–53 [Google Scholar]
  114. Merabet A, Houlleberghs H, Maclagan K, Akanho E, Bui TT. 114.  et al. 2010. Mutants of the tumour suppressor p53 L1 loop as second-site suppressors for restoring DNA binding to oncogenic p53 mutations: structural and biochemical insights. Biochem. J. 427:225–36 [Google Scholar]
  115. Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR. 115.  2008. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. PNAS 105:10360–65 [Google Scholar]
  116. Basse N, Kaar JL, Settanni G, Joerger AC, Rutherford TJ, Fersht AR. 116.  2010. Toward the rational design of p53-stabilizing drugs: probing the surface of the oncogenic Y220C mutant. Chem. Biol. 17:46–56 [Google Scholar]
  117. Wilcken R, Liu X, Zimmermann MO, Rutherford TJ, Fersht AR. 117.  et al. 2012. Halogen-enriched fragment libraries as leads for drug rescue of mutant p53. J. Am. Chem. Soc. 134:6810–18 [Google Scholar]
  118. Liu X, Wilcken R, Joerger AC, Chuckowree IS, Amin J. 118.  et al. 2013. Small molecule induced reactivation of mutant p53 in cancer cells. Nucleic Acids Res. 41:6034–44 [Google Scholar]
  119. Joerger AC, Bauer MR, Wilcken R, Baud MGJ, Harbrecht H. 119.  et al. 2015. Exploiting transient protein states for the design of small-molecule stabilizers of mutant p53. Structure 23:2246–55 [Google Scholar]
  120. Butler JS, Loh SN. 120.  2007. Zn2+-dependent misfolding of the p53 DNA binding domain. Biochemistry 46:2630–39 [Google Scholar]
  121. Yu X, Vazquez A, Levine AJ, Carpizo DR. 121.  2012. Allele-specific p53 mutant reactivation. Cancer Cell 21:614–25 [Google Scholar]
  122. Blanden AR, Yu X, Wolfe AJ, Gilleran JA, Augeri DJ. 122.  et al. 2015. Synthetic metallochaperone ZMC1 rescues mutant p53 conformation by transporting zinc into cells as an ionophore. Mol. Pharmacol. 87:825–31 [Google Scholar]
  123. Garufi A, Trisciuoglio D, Porru M, Leonetti C, Stoppacciaro A. 123.  et al. 2013. A fluorescent curcumin-based Zn(II)-complex reactivates mutant (R175H and R273H) p53 in cancer cells. J. Exp. Clin. Cancer Res. 32:72 [Google Scholar]
  124. Pucci D, Bellini T, Crispini A, D'Agnano I, Liguori PF. 124.  et al. 2012. DNA binding and cytotoxicity of fluorescent curcumin-based Zn(II) complexes. MedChemComm 3:462–68 [Google Scholar]
  125. Bykov VJ, Wiman KG. 125.  2014. Mutant p53 reactivation by small molecules makes its way to the clinic. FEBS Lett. 588:2622–27 [Google Scholar]
  126. Foster BA, Coffey HA, Morin MJ, Rastinejad F. 126.  1999. Pharmacological rescue of mutant p53 conformation and function. Science 286:2507–10 [Google Scholar]
  127. Rippin TM, Bykov VJN, Freund SMV, Selivanova G, Wiman KG, Fersht AR. 127.  2002. Characterization of the p53-rescue drug CP-31398 in vitro and in living cells. Oncogene 21:2119–29 [Google Scholar]
  128. Tanner S, Barberis A. 128.  2004. CP-31398, a putative p53-stabilizing molecule tested in mammalian cells and in yeast for its effects on p53 transcriptional activity. J. Negat. Results Biomed. 3:5 [Google Scholar]
  129. Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E. 129.  et al. 2002. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat. Med. 8:282–88 [Google Scholar]
  130. Lambert JM, Gorzov P, Veprintsev DB, Soderqvist M, Segerback D. 130.  et al. 2009. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15:376–88 [Google Scholar]
  131. Lehmann S, Bykov VJN, Ali D, Andren O, Cherif H. 131.  et al. 2012. Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J. Clin. Oncol. 30:3633–39 [Google Scholar]
  132. Magrini R, Russo D, Ottaggio L, Fronza G, Inga A, Menichini P. 132.  2008. PRIMA-1 synergizes with Adriamycin to induce cell death in non-small cell lung cancer cells. J. Cell. Biochem. 104:2363–73 [Google Scholar]
  133. Mohell N, Alfredsson J, Fransson A, Uustalu M, Bystrom S. 133.  et al. 2015. APR-246 overcomes resistance to cisplatin and doxorubicin in ovarian cancer cells. Cell Death Dis. 6:e1794 [Google Scholar]
  134. Shen J, van den Bogaard EH, Kouwenhoven EN, Bykov VJ, Rinne T. 134.  et al. 2013. APR-246/PRIMA-1MET rescues epidermal differentiation in skin keratinocytes derived from EEC syndrome patients with p63 mutations. PNAS 110:2157–62 [Google Scholar]
  135. Bykov VJ, Issaeva N, Zache N, Shilov A, Hultcrantz M. 135.  et al. 2005. Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. J. Biol. Chem. 280:30384–91 [Google Scholar]
  136. Zache N, Lambert JM, Rokaeus N, Shen J, Hainaut P. 136.  et al. 2008. Mutant p53 targeting by the low molecular weight compound STIMA-1. Mol. Oncol. 2:70–80 [Google Scholar]
  137. Scotcher J, Clarke DJ, Weidt SK, Mackay CL, Hupp TR. 137.  et al. 2011. Identification of two reactive cysteine residues in the tumor suppressor protein p53 using top-down FTICR mass spectrometry. J. Am. Soc. Mass Spectrom. 22:888–97 [Google Scholar]
  138. Kaar JL, Basse N, Joerger AC, Stephens E, Rutherford TJ, Fersht AR. 138.  2010. Stabilization of mutant p53 via alkylation of cysteines and effects on DNA binding. Protein Sci. 19:2267–78 [Google Scholar]
  139. Tessoulin B, Descamps G, Moreau P, Maiga S, Lode L. 139.  et al. 2014. PRIMA-1Met induces myeloma cell death independent of p53 by impairing the GSH/ROS balance. Blood 124:1626–36 [Google Scholar]
  140. Peng X, Zhang MQ, Conserva F, Hosny G, Selivanova G. 140.  et al. 2013. APR-246/PRIMA-1MET inhibits thioredoxin reductase 1 and converts the enzyme to a dedicated NADPH oxidase. Cell Death Dis. 4:e881 [Google Scholar]
  141. Sobhani M, Abdi J, Manujendra SN, Chen C, Chang H. 141.  2015. PRIMA-1Met induces apoptosis in Waldenstrom's macroglobulinemia cells independent of p53. Cancer Biol. Ther. 16:799–806 [Google Scholar]
  142. Sakaba Y, Awata H, Morisugi T, Kawakami T, Sakudo A, Tanaka Y. 142.  2014. 15-Deoxy-Δ12,14-prostaglandin J2 induces PPARγ- and p53-independent apoptosis in rabbit synovial cells. Prostaglandins Other Lipid Mediat. 109:1–13 [Google Scholar]
  143. Raj L, Ide T, Gurkar AU, Foley M, Schenone M. 143.  et al. 2011. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475:231–34 [Google Scholar]
  144. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. 144.  2005. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11:1306–13 [Google Scholar]
  145. Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z. 145.  2010. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. PNAS 107:7455–60 [Google Scholar]
  146. Keeling KM, Xue X, Gunn G, Bedwell DM. 146.  2014. Therapeutics based on stop codon readthrough. Annu. Rev. Genomics Hum. Genet. 15:371–94 [Google Scholar]
  147. Lee HLR, Dougherty JP. 147.  2012. Pharmaceutical therapies to recode nonsense mutations in inherited diseases. Pharmacol. Ther. 136:227–66 [Google Scholar]
  148. Floquet C, Deforges J, Rousset JP, Bidou L. 148.  2011. Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic Acids Res. 39:3350–62 [Google Scholar]
  149. Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ. 149.  et al. 2007. PTC124 targets genetic disorders caused by nonsense mutations. Nature 447:87–91 [Google Scholar]
  150. Martin L, Grigoryan A, Wang D, Wang J, Breda L. 150.  et al. 2014. Identification and characterization of small molecules that inhibit nonsense-mediated RNA decay and suppress nonsense p53 mutations. Cancer Res. 74:3104–13 [Google Scholar]
  151. DiGiammarino EL, Lee AS, Cadwell C, Zhang W, Bothner B. 151.  et al. 2002. A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat. Struct. Biol. 9:12–16 [Google Scholar]
  152. Gordo S, Martos V, Santos E, Menendez M, Bo C. 152.  et al. 2008. Stability and structural recovery of the tetramerization domain of p53-R337H mutant induced by a designed templating ligand. PNAS 105:16426–31 [Google Scholar]
  153. Kamada R, Yoshino W, Nomura T, Chuman Y, Imagawa T. 153.  et al. 2010. Enhancement of transcriptional activity of mutant p53 tumor suppressor protein through stabilization of tetramer formation by calix[6]arene derivatives. Bioorg. Med. Chem. Lett. 20:4412–15 [Google Scholar]
  154. Okal A, Cornillie S, Matissek SJ, Matissek KJ, Cheatham TE. Lim CS. 154.  3rd, 2014. Re-engineered p53 chimera with enhanced homo-oligomerization that maintains tumor suppressor activity. Mol. Pharmacol. 11:2442–52 [Google Scholar]
  155. Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP. 155.  2009. Awakening guardian angels: drugging the p53 pathway. Nat. Rev. Cancer 9:862–73 [Google Scholar]
  156. Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG. 156.  et al. 2004. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat. Med. 10:1321–28 [Google Scholar]
  157. Krajewski M, Ozdowy P, D'Silva L, Rothweiler U, Holak TA. 157.  2005. NMR indicates that the small molecule RITA does not block p53-MDM2 binding in vitro. Nat. Med. 11:1135–36; author reply 1136–37 [Google Scholar]
  158. Wanzel M, Vischedyk JB, Gittler MP, Gremke N, Seiz JR. 158.  et al. 2016. CRISPR-Cas9-based target validation for p53-reactivating model compounds. Nat. Chem. Biol. 12:22–28 [Google Scholar]
  159. Herman AG, Hayano M, Poyurovsky MV, Shimada K, Skouta R. 159.  et al. 2011. Discovery of Mdm2-MdmX E3 ligase inhibitors using a cell-based ubiquitination assay. Cancer Discov. 1:312–25 [Google Scholar]
  160. Yang Y, Ludwig RL, Jensen JP, Pierre SA, Medaglia MV. 160.  et al. 2005. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7:547–59 [Google Scholar]
  161. Wade M, Li YC, Matani AS, Braun SM, Milanesi F. 161.  et al. 2012. Functional analysis and consequences of Mdm2 E3 ligase inhibition in human tumor cells. Oncogene 31:4789–97 [Google Scholar]
  162. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F. 162.  et al. 2004. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–48 [Google Scholar]
  163. Vassilev LT. 163.  2004. Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle 3:419–21 [Google Scholar]
  164. Graat HC, Carette JE, Schagen FH, Vassilev LT, Gerritsen WR. 164.  et al. 2007. Enhanced tumor cell kill by combined treatment with a small-molecule antagonist of mouse double minute 2 and adenoviruses encoding p53. Mol. Cancer Ther. 6:1552–61 [Google Scholar]
  165. Zhao Y, Aguilar A, Bernard D, Wang S. 165.  2015. Small-molecule inhibitors of the MDM2-p53 protein–protein interaction (MDM2 inhibitors) in clinical trials for cancer treatment. J. Med. Chem. 58:1038–52 [Google Scholar]
  166. Khoo KH, Verma CS, Lane DP. 166.  2014. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat. Rev. Drug Discov. 13:217–36 [Google Scholar]
  167. Rew Y, Sun D, Yan X, Beck HP, Canon J. 167.  et al. 2014. Discovery of AM-7209, a potent and selective 4-amidobenzoic acid inhibitor of the MDM2–p53 interaction. J. Med. Chem. 57:10499–511 [Google Scholar]
  168. Showalter SA, Bruschweiler-Li L, Johnson E, Zhang F, Bruschweiler R. 168.  2008. Quantitative lid dynamics of MDM2 reveals differential ligand binding modes of the p53-binding cleft. J. Am. Chem. Soc. 130:6472–78 [Google Scholar]
  169. Bista M, Wolf S, Khoury K, Kowalska K, Huang Y. 169.  et al. 2013. Transient protein states in designing inhibitors of the MDM2–p53 interaction. Structure 21:2143–51 [Google Scholar]
  170. Wang S, Sun W, Zhao Y, McEachern D, Meaux I. 170.  et al. 2014. SAR405838: an optimized inhibitor of MDM2–p53 interaction that induces complete and durable tumor regression. Cancer Res. 74:5855–65 [Google Scholar]
  171. Michelsen K, Jordan JB, Lewis J, Long AM, Yang E. 171.  et al. 2012. Ordering of the N-terminus of human MDM2 by small molecule inhibitors. J. Am. Chem. Soc. 134:17059–67 [Google Scholar]
  172. Ray-Coquard I, Blay JY, Italiano A. Cesne A, Penel N. 172. , Le et al. 2012. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol. 13:1133–40 [Google Scholar]
  173. Estrada-Ortiz N, Neochoritis CG, Dömling A. 173.  2015. How to design a successful p53-MDM2/X interaction inhibitor: a thorough overview based on crystal structures. ChemMedChem 11757–72
  174. Graves B, Thompson T, Xia M, Janson C, Lukacs C. 174.  et al. 2012. Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. PNAS 109:11788–93 [Google Scholar]
  175. Brown CJ, Quah ST, Jong J, Goh AM, Chiam PC. 175.  et al. 2013. Stapled peptides with improved potency and specificity that activate p53. ACS Chem. Biol. 8:506–12 [Google Scholar]
  176. Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL. 176.  2007. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J. Am. Chem. Soc. 129:2456–57 [Google Scholar]
  177. Chang YS, Graves B, Guerlavais V, Tovar C, Packman K. 177.  et al. 2013. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. PNAS 110:E3445–54 [Google Scholar]
  178. Bernal F, Wade M, Godes M, Davis TN, Whitehead DG. 178.  et al. 2010. A stapled p53 helix overcomes HDMX-mediated suppression of p53. Cancer Cell 18:411–22 [Google Scholar]
  179. Baek S, Kutchukian PS, Verdine GL, Huber R, Holak TA. 179.  et al. 2012. Structure of the stapled p53 peptide bound to Mdm2. J. Am. Chem. Soc. 134:103–6 [Google Scholar]
  180. Bista M, Petrovich M, Fersht AR. 180.  2013. MDMX contains an autoinhibitory sequence element. PNAS 110:17814–19 [Google Scholar]
  181. Chen L, Borcherds W, Wu S, Becker A, Schonbrunn E. 181.  et al. 2015. Autoinhibition of MDMX by intramolecular p53 mimicry. PNAS 112:4624–29 [Google Scholar]
  182. Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M. 182.  et al. 2008. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13:454–63 [Google Scholar]
  183. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA. 183.  et al. 2001. hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell 107:149–59 [Google Scholar]
  184. Li L, Wang L, Li L, Wang Z, Ho Y. 184.  et al. 2012. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell 21:266–81 [Google Scholar]
  185. Sullivan A, Lu X. 185.  2007. ASPP: a new family of oncogenes and tumour suppressor genes. Br. J. Cancer 96:196–200 [Google Scholar]
  186. Robinson RA, Lu X, Jones EY, Siebold C. 186.  2008. Biochemical and structural studies of ASPP proteins reveal differential binding to p53, p63, and p73. Structure 16:259–68 [Google Scholar]
  187. Ahn J, Byeon IJ, Byeon CH, Gronenborn AM. 187.  2009. Insight into the structural basis of pro- and antiapoptotic p53 modulation by ASPP proteins. J. Biol. Chem. 284:13812–22 [Google Scholar]
  188. Qiu S, Cai Y, Gao X, Gu SZ, Liu ZJ. 188.  2015. A small peptide derived from p53 linker region can resume the apoptotic activity of p53 by sequestering iASPP with p53. Cancer Lett. 356:910–17 [Google Scholar]
  189. Bell HS, Dufes C, O'Prey J, Crighton D, Bergamaschi D. 189.  et al. 2007. A p53-derived apoptotic peptide derepresses p73 to cause tumor regression in vivo. J. Clin. Investig. 117:1008–18 [Google Scholar]
  190. Lu X, Ma O, Nguyen TA, Jones SN, Oren M, Donehower LA. 190.  2007. The Wip1 phosphatase acts as a gatekeeper in the p53–Mdm2 autoregulatory loop. Cancer Cell 12:342–54 [Google Scholar]
  191. Gilmartin AG, Faitg TH, Richter M, Groy A, Seefeld MA. 191.  et al. 2014. Allosteric Wip1 phosphatase inhibition through flap–subdomain interaction. Nat. Chem. Biol. 10:181–87 [Google Scholar]
  192. Junttila MR, Evan GI. 192.  2009. p53–a Jack of all trades but master of none. Nat. Rev. Cancer 9:821–29 [Google Scholar]
  193. Natan E, Baloglu C, Pagel K, Freund SM, Morgner N. 193.  et al. 2011. Interaction of the p53 DNA-binding domain with its N-terminal extension modulates the stability of the p53 tetramer. J. Mol. Biol. 409:358–68 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060815-014710
Loading
/content/journals/10.1146/annurev-biochem-060815-014710
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error