1932

Abstract

It has been some 40 years since repeating subunits in eukaryotic chromatin, initially termed “nu bodies,” were described. Four decades of study have characterized the structural organization of the nucleosome, from multiple crystal structures of individual nucleosomes to genome-wide maps of nucleosome positions in scores of organisms. Nucleosome positioning can impact essentially all DNA-templated processes, making an appreciation of the forces shaping the nucleosomal landscape in eukaryotes key to fully understanding genomic regulation. Here, we review the factors impacting nucleosome positioning and the ways that nucleosomes can control the output of the genome.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-051013-023114
2014-05-06
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/biophys/43/1/annurev-biophys-051013-023114.html?itemId=/content/journals/10.1146/annurev-biophys-051013-023114&mimeType=html&fmt=ahah

Literature Cited

  1. Almer A, Horz W. 1.  1986. Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast. EMBO J. 5:2681–87 [Google Scholar]
  2. Almer A, Rudolph H, Hinnen A, Horz W. 2.  1986. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5:2689–96 [Google Scholar]
  3. Anderson JD, Widom J. 3.  2000. Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 296:979–87 [Google Scholar]
  4. Anderson JD, Widom J. 4.  2001. Poly(dA-dT) promoter elements increase the equilibrium accessibility of nucleosomal DNA target sites. Mol. Cell. Biol. 21:3830–39 [Google Scholar]
  5. Badis G, Chan ET, van Bakel H, Pena-Castillo L, Tillo D. 5.  et al. 2008. A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol. Cell 32:878–87 [Google Scholar]
  6. Bai L, Charvin G, Siggia ED, Cross FR. 6.  2010. Nucleosome-depleted regions in cell-cycle-regulated promoters ensure reliable gene expression in every cell cycle. Dev. Cell 18:544–55 [Google Scholar]
  7. Bai L, Ondracka A, Cross FR. 7.  2011. Multiple sequence-specific factors generate the nucleosome-depleted region on CLN2 promoter. Mol. Cell 42:465–76 [Google Scholar]
  8. Basehoar AD, Zanton SJ, Pugh BF. 8.  2004. Identification and distinct regulation of yeast TATA box-containing genes. Cell 116:699–709 [Google Scholar]
  9. Bell O, Schwaiger M, Oakeley EJ, Lienert F, Beisel C. 9.  et al. 2010. Accessibility of the Drosophila genome discriminates PcG repression, H4K16 acetylation and replication timing. Nat. Struct. Mol. Biol. 17:894–900 [Google Scholar]
  10. Bernstein BE, Liu CL, Humphrey EL, Perlstein EO, Schreiber SL. 10.  2004. Global nucleosome occupancy in yeast. Genome Biol. 5:R62 [Google Scholar]
  11. Bintu L, Kopaczynska M, Hodges C, Lubkowska L, Kashlev M, Bustamante C. 11.  2011. The elongation rate of RNA polymerase determines the fate of transcribed nucleosomes. Nat. Struct. Mol. Biol. 18:1394–99 [Google Scholar]
  12. Boeger H, Griesenbeck J, Kornberg RD. 12.  2008. Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell 133:716–26 [Google Scholar]
  13. Bondarenko VA, Steele LM, Újvári A, Gaykalova DA, Kulaeva OI. 13.  et al. 2006. Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II. Mol. Cell 24:469–79 [Google Scholar]
  14. Bouazoune K, Miranda TB, Jones PA, Kingston RE. 14.  2009. Analysis of individual remodeled nucleosomes reveals decreased histone-DNA contacts created by hSWI/SNF. Nucleic Acids Res. 37:5279–94 [Google Scholar]
  15. Brogaard K, Xi L, Wang J-P, Widom J. 15.  2012. A map of nucleosome positions in yeast at base-pair resolution. Nature 486:496–501 [Google Scholar]
  16. Clapier CR, Cairns BR. 16.  2009. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78:273–304 [Google Scholar]
  17. Deal RB, Henikoff S. 17.  2010. Capturing the dynamic epigenome. Genome Biol. 11:218 [Google Scholar]
  18. Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando OJ. 18.  2007. Dynamics of replication-independent histone turnover in budding yeast. Science 315:1405–8 [Google Scholar]
  19. Drew HR, Travers AA. 19.  1985. DNA bending and its relation to nucleosome positioning. J. Mol. Biol. 186:773–90 [Google Scholar]
  20. Field Y, Fondufe-Mittendorf Y, Moore IK, Mieczkowski P, Kaplan N. 20.  et al. 2009. Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization. Nat. Genet. 41:438–45 [Google Scholar]
  21. Field Y, Kaplan N, Fondufe-Mittendorf Y, Moore IK, Sharon E. 21.  et al. 2008. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput. Biol. 4:e1000216 [Google Scholar]
  22. Fu Y, Sinha M, Peterson CL, Weng Z. 22.  2008. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet. 4:e1000138 [Google Scholar]
  23. Gaffney DJ, McVicker G, Pai AA, Fondufe-Mittendorf YN, Lewellen N. 23.  et al. 2012. Controls of nucleosome positioning in the human genome. PLoS Genet. 8:e1003036 [Google Scholar]
  24. Gilchrist DA, Dos Santos G, Fargo DC, Xie B, Gao Y. 24.  et al. 2010. Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation. Cell 143:540–51 [Google Scholar]
  25. Gkikopoulos T, Schofield P, Singh V, Pinskaya M, Mellor J. 25.  et al. 2011. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333:1758–60 [Google Scholar]
  26. Gossett AJ, Lieb JD. 26.  2012. In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae. PLoS Genet. 8:e1002771 [Google Scholar]
  27. Han M, Grunstein M. 27.  1988. Nucleosome loss activates yeast downstream promoters in vivo. Cell 55:1137–45 [Google Scholar]
  28. Hao N, O'Shea EK. 28.  2012. Signal-dependent dynamics of transcription factor translocation controls gene expression. Nat. Struct. Mol. Biol. 19:31–39 [Google Scholar]
  29. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW. 29.  et al. 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39:311–18 [Google Scholar]
  30. Henikoff S, Furuyama T. 30.  2012. The unconventional structure of centromeric nucleosomes. Chromosoma 121:341–52 [Google Scholar]
  31. Hesselberth JR, Chen X, Zhang Z, Sabo PJ, Sandstrom R. 31.  et al. 2009. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat. Methods 6:283–89 [Google Scholar]
  32. Hodges C, Bintu L, Lubkowska L, Kashlev M, Bustamante C. 32.  2009. Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science 325:626–28 [Google Scholar]
  33. Hornung G, Oren M, Barkai N. 33.  2012. Nucleosome organization affects the sensitivity of gene expression to promoter mutations. Mol. Cell 46:362–68 [Google Scholar]
  34. Horz W, Altenburger W. 34.  1981. Sequence specific cleavage of DNA by micrococcal nuclease. Nucleic Acids Res. 9:2643–58 [Google Scholar]
  35. Hughes AL, Jin Y, Rando OJ, Struhl K. 35.  2012. A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genome-wide pattern. Mol. Cell 48:5–15 [Google Scholar]
  36. Huisinga KL, Pugh BF. 36.  2004. A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol. Cell 13:573–85 [Google Scholar]
  37. Ihmels J, Bergmann S, Gerami-Nejad M, Yanai I, McClellan M. 37.  et al. 2005. Rewiring of the yeast transcriptional network through the evolution of motif usage. Science 309:938–40 [Google Scholar]
  38. Ioshikhes I, Bolshoy A, Derenshteyn K, Borodovsky M, Trifonov EN. 38.  1996. Nucleosome DNA sequence pattern revealed by multiple alignment of experimentally mapped sequences. J. Mol. Biol. 262:129–39 [Google Scholar]
  39. Ioshikhes IP, Albert I, Zanton SJ, Pugh BF. 39.  2006. Nucleosome positions predicted through comparative genomics. Nat. Genet. 38:1210–15 [Google Scholar]
  40. Iyer V, Struhl K. 40.  1995. Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J. 14:2570–79 [Google Scholar]
  41. Jessen WJ, Hoose SA, Kilgore JA, Kladde MP. 41.  2006. Active PHO5 chromatin encompasses variable numbers of nucleosomes at individual promoters. Nat. Struct. Mol. Biol. 13:256–63 [Google Scholar]
  42. Jin J, Bai L, Johnson DS, Fulbright RM, Kireeva ML. 42.  et al. 2010. Synergistic action of RNA polymerases in overcoming the nucleosomal barrier. Nat. Struct. Mol. Biol. 17:745–52 [Google Scholar]
  43. Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D. 43.  et al. 2009. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458:362–66 [Google Scholar]
  44. Korber P, Hörz W. 44.  2004. In vitro assembly of the characteristic chromatin organization at the yeast PHO5 promoter by a replication-independent extract system. J. Biol. Chem. 279:35113–20 [Google Scholar]
  45. Kornberg RD, Lorch Y. 45.  1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–94 [Google Scholar]
  46. Kornberg RD, Stryer L. 46.  1988. Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. Nucleic Acids Res. 16:6677–90 [Google Scholar]
  47. Kulaeva OI, Hsieh F-K, Studitsky VM. 47.  2010. RNA polymerase complexes cooperate to relieve the nucleosomal barrier and evict histones. Proc. Natl. Acad. Sci. USA 107:11325–30 [Google Scholar]
  48. Lam FH, Steger DJ, O'Shea EK. 48.  2008. Chromatin decouples promoter threshold from dynamic range. Nature 453:246–50 [Google Scholar]
  49. Lee K, Kim SC, Jung I, Kim K, Seo J. 49.  et al. 2013. Genetic landscape of open chromatin in yeast. PLoS Genet. 9:e1003229 [Google Scholar]
  50. Lee S-I, Pe'er D, Dudley AM, Church GM, Koller D. 50.  2006. Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. Proc. Natl. Acad. Sci. USA 103:14062–67 [Google Scholar]
  51. Lee W, Tillo D, Bray N, Morse RH, Davis RW. 51.  et al. 2007. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39:1235–44 [Google Scholar]
  52. Li B, Pattenden SG, Lee D, Gutiérrez J, Chen J. 52.  et al. 2005. Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc. Natl. Acad. Sci. USA 102:18385–90 [Google Scholar]
  53. Lidor Nili E, Field Y, Lubling Y, Widom J, Oren M, Segal E. 53.  2010. p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy. Genome Res. 20:1361–68 [Google Scholar]
  54. Lomvardas S, Thanos D. 54.  2002. Modifying gene expression programs by altering core promoter chromatin architecture. Cell 110:261–71 [Google Scholar]
  55. Lowary PT, Widom J. 55.  1998. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276:19–42 [Google Scholar]
  56. Lu Q, Wallrath LL, Elgin SC. 56.  1995. The role of a positioned nucleosome at the Drosophila melanogaster hsp26 promoter. EMBO J. 14:4738–46 [Google Scholar]
  57. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. 57.  1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–60 [Google Scholar]
  58. Martens JA, Laprade L, Winston F. 58.  2004. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429:571–74 [Google Scholar]
  59. Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP. 59.  et al. 2008. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res. 18:1073–83 [Google Scholar]
  60. McKnight JN, Jenkins KR, Nodelman IM, Escobar T, Bowman GD. 60.  2011. Extranucleosomal DNA binding directs nucleosome sliding by Chd1. Mol. Cell. Biol. 31:4746–59 [Google Scholar]
  61. McPherson CE, Shim EY, Friedman DS, Zaret KS. 61.  1993. An active tissue-specific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array. Cell 75:387–98 [Google Scholar]
  62. Mito Y, Henikoff JG, Henikoff S. 62.  2005. Genome-scale profiling of histone H3.3 replacement patterns. Nat. Genet. 37:1090–97 [Google Scholar]
  63. Mobius W, Gerland U. 63.  2010. Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites. PLoS Comput. Biol. 6:e1000891 [Google Scholar]
  64. Moshkin YM, Chalkley GE, Kan TW, Reddy BA, Ozgur Z. 64.  et al. 2012. Remodelers organize cellular chromatin by counteracting intrinsic histone-DNA sequence preferences in a class-specific manner. Mol. Cell. Biol. 32:675–88 [Google Scholar]
  65. Nagy PL, Cleary ML, Brown PO, Lieb JD. 65.  2003. Genomewide demarcation of RNA polymerase II transcription units revealed by physical fractionation of chromatin. Proc. Natl. Acad. Sci. USA 100:6364–69 [Google Scholar]
  66. Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M. 66.  et al. 2006. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441:840–46 [Google Scholar]
  67. Olson WK, Zhurkin VB. 67.  2011. Working the kinks out of nucleosomal DNA. Curr. Opin. Struct. Biol. 21:348–57 [Google Scholar]
  68. Orphanides G, LeRoy G, Chang CH, Luse DS, Reinberg D. 68.  1998. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92:105–16 [Google Scholar]
  69. Perales R, Zhang L, Bentley D. 69.  2011. Histone occupancy in vivo at the 601 nucleosome binding element is determined by transcriptional history. Mol. Cell. Biol. 31:3485–96 [Google Scholar]
  70. Polach KJ, Widom J. 70.  1995. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254:130–49 [Google Scholar]
  71. Radman-Livaja M, Ruben G, Weiner A, Friedman N, Kamakaka R, Rando OJ. 71.  2011. Dynamics of Sir3 spreading in budding yeast: secondary recruitment sites and euchromatic localization. EMBO J. 30:1012–26 [Google Scholar]
  72. Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL. 72.  et al. 2005. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123:233–48 [Google Scholar]
  73. Ramirez-Carrozzi VR, Braas D, Bhatt DM, Cheng CS, Hong C. 73.  et al. 2009. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138:114–28 [Google Scholar]
  74. Rando OJ. 74.  2012. Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr. Opin. Genet. Dev. 22:148–55 [Google Scholar]
  75. Rando OJ, Winston F. 75.  2012. Chromatin and transcription in yeast. Genetics 190:351–87 [Google Scholar]
  76. Raser JM, O'Shea EK. 76.  2004. Control of stochasticity in eukaryotic gene expression. Science 304:1811–14 [Google Scholar]
  77. Rhee HS, Pugh BF. 77.  2012. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 483:295–301 [Google Scholar]
  78. Rosin D, Hornung G, Tirosh I, Gispan A, Barkai N. 78.  2012. Promoter nucleosome organization shapes the evolution of gene expression. PLoS Genet. 8:e1002579 [Google Scholar]
  79. Rufiange A, Jacques PE, Bhat W, Robert F, Nourani A. 79.  2007. Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol. Cell 27:393–405 [Google Scholar]
  80. Sasaki S, Mello CC, Shimada A, Nakatani Y, Hashimoto S. 80.  et al. 2009. Chromatin-associated periodicity in genetic variation downstream of transcriptional start sites. Science 323:401–4 [Google Scholar]
  81. Satchwell SC, Drew HR, Travers AA. 81.  1986. Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol. 191:659–75 [Google Scholar]
  82. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A. 82.  et al. 2008. Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–98 [Google Scholar]
  83. Schwartz S, Meshorer E, Ast G. 83.  2009. Chromatin organization marks exon-intron structure. Nat. Struct. Mol. Biol. 16:990–95 [Google Scholar]
  84. Segal E, Fondufe-Mittendorf Y, Chen L, Thåström A, Field Y. 84.  et al. 2006. A genomic code for nucleosome positioning. Nature 442:772–78 [Google Scholar]
  85. Sekinger EA, Moqtaderi Z, Struhl K. 85.  2005. Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol. Cell 18:735–48 [Google Scholar]
  86. Sharon E, Kalma Y, Sharp A, Raveh-Sadka T, Levo M. 86.  et al. 2012. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat. Biotechnol. 30:521–30 [Google Scholar]
  87. Shivaswamy S, Bhinge A, Zhao Y, Jones S, Hirst M, Iyer VR. 87.  2008. Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol. 6:e65 [Google Scholar]
  88. Simpson RT, Stafford DW. 88.  1983. Structural features of a phased nucleosome core particle. Proc. Natl. Acad. Sci. USA 80:51–55 [Google Scholar]
  89. Stockdale C, Flaus A, Ferreira H, Owen-Hughes T. 89.  2006. Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J. Biol. Chem. 281:16279–88 [Google Scholar]
  90. Studitsky VM, Clark DJ, Felsenfeld G. 90.  1994. A histone octamer can step around a transcribing polymerase without leaving the template. Cell 76:371–82 [Google Scholar]
  91. Stünkel W, Kober I, Seifart KH. 91.  1997. A nucleosome positioned in the distal promoter region activates transcription of the human U6 gene. Mol. Cell. Biol. 17:4397–405 [Google Scholar]
  92. Tilgner H, Nikolaou C, Althammer S, Sammeth M, Beato M. 92.  et al. 2009. Nucleosome positioning as a determinant of exon recognition. Nat. Struct. Mol. Biol. 16:996–1001 [Google Scholar]
  93. Tillo D, Hughes TR. 93.  2009. G+C content dominates intrinsic nucleosome occupancy. BMC Bioinformatics 10:442 [Google Scholar]
  94. Tims HS, Gurunathan K, Levitus M, Widom J. 94.  2011. Dynamics of nucleosome invasion by DNA binding proteins. J. Mol. Biol. 411:430–48 [Google Scholar]
  95. Tirosh I, Barkai N. 95.  2008. Two strategies for gene regulation by promoter nucleosomes. Genome Res. 18:1084–91 [Google Scholar]
  96. Tirosh I, Sigal N, Barkai N. 96.  2010. Divergence of nucleosome positioning between two closely related yeast species: genetic basis and functional consequences. Mol. Syst. Biol. 6:365 [Google Scholar]
  97. Tirosh I, Weinberger A, Carmi M, Barkai N. 97.  2006. A genetic signature of interspecies variations in gene expression. Nat. Genet. 38:830–34 [Google Scholar]
  98. Tolkunov D, Zawadzki KA, Singer C, Elfving N, Morozov AV, Broach JR. 98.  2011. Chromatin remodelers clear nucleosomes from intrinsically unfavorable sites to establish nucleosome-depleted regions at promoters. Mol. Biol. Cell 22:2106–18 [Google Scholar]
  99. Tomar RS, Psathas JN, Zhang H, Zhang Z, Reese JC. 99.  2009. A novel mechanism of antagonism between ATP-dependent chromatin remodeling complexes regulates RNR3 expression. Mol. Cell. Biol. 29:3255–65 [Google Scholar]
  100. Tsankov A, Yanagisawa Y, Rhind N, Regev A, Rando OJ. 100.  2011. Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization. Genome Res. 21:1851–62 [Google Scholar]
  101. Tsankov AM, Thompson DA, Socha A, Regev A, Rando OJ. 101.  2010. The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol. 8:e1000414 [Google Scholar]
  102. Vaillant C, Palmeira L, Chevereau G, Audit B, d'Aubenton-Carafa Y. 102.  et al. 2010. A novel strategy of transcription regulation by intragenic nucleosome ordering. Genome Res. 20:59–67 [Google Scholar]
  103. Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, Sidow A. 103.  2011. Determinants of nucleosome organization in primary human cells. Nature 474:516–20 [Google Scholar]
  104. van Bakel H, Tsui K, Gebbia M, Mnaimneh S, Hughes TR, Nislow C. 104.  2013. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription. PLoS Genet. 9:e1003479 [Google Scholar]
  105. Van Holde KE. 105.  1989. Chromatin New York: Springer-Verlag497
  106. Vavouri T, Lehner B. 106.  2012. Human genes with CpG island promoters have a distinct transcription-associated chromatin organization. Genome Biol. 13:R110 [Google Scholar]
  107. Vinces MD, Legendre M, Caldara M, Hagihara M, Verstrepen KJ. 107.  2009. Unstable tandem repeats in promoters confer transcriptional evolvability. Science 324:1213–16 [Google Scholar]
  108. Wang J, Zhuang J, Iyer S, Lin X, Whitfield TW. 108.  et al. 2012. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res. 22:1798–812 [Google Scholar]
  109. Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N. 109.  2010. High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res. 20:90–100 [Google Scholar]
  110. Weintraub H, Groudine M. 110.  1976. Chromosomal subunits in active genes have an altered conformation. Science 193:848–56 [Google Scholar]
  111. West SM, Rohs R, Mann RS, Honig B. 111.  2010. Electrostatic interactions between arginines and the minor groove in the nucleosome. J. Biomol. Struct. Dyn. 27:861–66 [Google Scholar]
  112. Whitehouse I, Rando OJ, Delrow J, Tsukiyama T. 112.  2007. Chromatin remodelling at promoters suppresses antisense transcription. Nature 450:1031–35 [Google Scholar]
  113. Whitehouse I, Tsukiyama T. 113.  2006. Antagonistic forces that position nucleosomes in vivo. Nat. Struct. Mol. Biol. 13:633–40 [Google Scholar]
  114. Workman JL, Kingston RE. 114.  1992. Nucleosome core displacement in vitro via a metastable transcription factor-nucleosome complex. Science 258:1780–84 [Google Scholar]
  115. Yarragudi A, Miyake T, Li R, Morse RH. 115.  2004. Comparison of ABF1 and RAP1 in chromatin opening and transactivator potentiation in the budding yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 24:9152–64 [Google Scholar]
  116. Yen K, Vinayachandran V, Batta K, Koerber RT, Pugh BF. 116.  2012. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 149:1461–73 [Google Scholar]
  117. Yu L, Morse RH. 117.  1999. Chromatin opening and transactivator potentiation by RAP1 in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:5279–88 [Google Scholar]
  118. Yuan G-C, Liu JS. 118.  2008. Genomic sequence is highly predictive of local nucleosome depletion. PLoS Comput. Biol. 4:e13 [Google Scholar]
  119. Yuan G-C, Liu Y-J, Dion MF, Slack MD, Wu LF. 119.  et al. 2005. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309:626–30 [Google Scholar]
  120. Zentner GE, Tsukiyama T, Henikoff S. 120.  2013. ISWI and CHD chromatin remodelers bind promoters but act in gene bodies. PLoS Genet. 9:e1003317 [Google Scholar]
  121. Zhang Y, Moqtaderi Z, Rattner BP, Euskirchen G, Snyder M. 121.  et al. 2009. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat. Struct. Mol. Biol. 16:847–52 [Google Scholar]
  122. Zhang Z, Wippo CJ, Wal M, Ward E, Korber P, Pugh BF. 122.  2011. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332:977–80 [Google Scholar]
/content/journals/10.1146/annurev-biophys-051013-023114
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error