1932

Abstract

Algal oil as an alternative to fossil fuel has attracted attention since the 1940s, when it was discovered that many microalgae species can produce large amounts of lipids. Economics and energy security were the motivational factors for a spurt in algae research during the 1970s, 1990s, and early 2000s. Whenever crude prices declined, research on algae stopped. The scenario today is different. Even given low and volatile crude prices ($30–$50/barrel), interest in algae continues all over the world. Algae, with their cure-all characteristics, have the potential to provide sustainable solutions to problems in the energy-food-climate nexus. However, after years of effort, there are no signs of algae-to-biofuel technology being commercialized. This article critically reviews past work; summarizes the current status of the technology; and based on the lessons learned, provides a balanced perspective on a potential path toward commercialization of algae-to-oil technology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060816-101630
2017-06-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/8/1/annurev-chembioeng-060816-101630.html?itemId=/content/journals/10.1146/annurev-chembioeng-060816-101630&mimeType=html&fmt=ahah

Literature Cited

  1. 1. DOE (US Department of Energy). 2016. National Algal Biofuels Technology Review Washington, DC: US Dep. Energy, Off. Energy Effic. Renew. Energy, Bioenergy Technol. Off
  2. 2. DOE (US Department of Energy). 2013. Algal Biofuels Strategy: Workshop and Proceedings Report Washington, DC: US Dep. Energy, Off. Energy Effic. Renew. Energy, Bioenergy Technol. Off
  3. Peterson C, Lewis J. 3.  2013. Status of Algal Biofuels Boston: Clean Air Task Force17 pp.
  4. Hankus A, Champenois F, Lestari W, Mouliney M, Yeoh K. 4.  2015. Microalgae: A Promising Source of Fuel for Mobility Paris: IFP School
  5. Spoehr HA, Milner HW. 5.  1949. The chemical composition of Chlorella; effect of environmental conditions. Plant Physiol 24:120–49 [Google Scholar]
  6. Rosch C, Skarka J, Patyk A. 6.  2009. Microalgae – opportunities and challenges of an innovative energy source Presented at 17th Eur. Biomass Conf. Exhib., June 29–July 3 Hamburg, Ger:
  7. Darzins A, Pienkos P, Edye L. 7.  2010. Current status and potential for algal biofuels production Rep. T39-T2, Natl. Renew. Energy Lab., Golden, CO, and Bioind. Partn., Brisbane, Aust.
  8. Benemann J. 8.  2013. Microalgae for biofuels and animal feeds. Energies 6:5869–86 [Google Scholar]
  9. Richmond A, Hu Q. 9.  2013. Handbook of Microalgal Culture Applied Phycology and Biotechnology Hoboken, NJ: Wiley-Blackwell, 2nd ed..
  10. Chaumont D. 10.  1993. Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J. Appl. Phycol. 5:593–604 [Google Scholar]
  11. Burlew JS. 11.  1976. Algal Culture: From Laboratory to Pilot Plant Washington, DC: Carnegie Institution of Washington
  12. Borowitzka MA. 12.  2013. High-value products from microalgae—their development and commercialization. J. Appl. Phycol. 25:743–56 [Google Scholar]
  13. Becker EW. 13.  2008. Microalgae: Biotechnology and Microbiology Cambridge, UK: Cambridge Univ. Press
  14. Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR. 14.  2010. A Realistic Technology and Engineering Assessment of Algae Biofuel Production Berkeley, CA: Energy BioSciences Inst., Univ. Calif
  15. 15. ExxonMobil. 2017. Synthetic genomics and ExxonMobil renew algae biofuel research agreement News Release, Jan. 18, ExxonMobil News Irving, Tex: http://news.exxonmobil.com/press-release/synthetic-genomics-and-exxonmobil-renew-algae-biofuels-research-agreement
  16. Orosz M, Forney D. 16.  2008. A comparison of algae to biofuel conversion pathways for energy storage off-grid Rep. 2.62, MIT Cambridge, MA:
  17. Benemann JR. 17.  2000. Hydrogen production by microalgae. J. Appl. Phycol. 12:291–300 [Google Scholar]
  18. Sheehan J, Dunahay T, Benemann J, Roessler P. 18.  1998. A look back at the U.S. Department of Energy's Aquatic Species Program—biodiesel from algae. Rep. NREL/TP-580–24190, Natl. Renew. Energy Lab. Golden, CO:
  19. 19. DOE (US Department of Energy). 2010. National Algal Biofuels Technology Roadmap Washington, DC: US Dep. Energy, Off. Energy Effic. Renew. Energy, Biomass Prog
  20. Posten C, Walter C. 20.  2012. Microalgal Biotechnology: Integration and Economy Berlin/Boston: Walter de Gruyter GmbH
  21. Davis R, Kinchin C, Markham J, Tan ECD, Laurens LML. 21.  2014. Process design and economics for the conversion of algal biomass to biofuels: algal biomass fractionation to lipid- and carbohydrate-derived fuel products Tech. Rep., Natl. Renew. Energy Lab. Golden, CO: [Google Scholar]
  22. Elliott DC, Hart TR, Schmidt AJ, Neuenschwander GG, Rotness LJ. 22.  et al. 2013. Process development for hydrothermal liquefaction of algae feedstock in a continuous flow reactor. Algal Res 2:445–54 [Google Scholar]
  23. Andersen RA. 23.  2005. Algal Culturing Techniques Amsterdam: Elsevier
  24. Rocca S, Agostini A, Giuntoli J, Marelli L. 24.  2015. Biofuels from algae: technology options, energy balance and GHG emission Sci. Tech. Res. Rep., Off. Eur. Union Luxembourg:
  25. Weyer KM, Bush DR, Darzins A, Willson HD. 25.  2010. Theoretical maximum algal oil production. Bioenerg. Res. 3:204–13 [Google Scholar]
  26. Xu Y, Boeing WJ. 26.  2014. Modeling maximum lipid productivity of microalgae: review and next step. Renew. Sustain. Energy Rev. 32:29–39 [Google Scholar]
  27. Subramanian S, Barry AN, Pieris S, Sayre RT. 27.  2013. Comparative energetics and kinetics of autotrophic lipid and starch metabolism in chlorophytic microalgae: implications for biomass and biofuel production. Biotechnol. Biofuels 6:1150 [Google Scholar]
  28. Di Caprio F, Visca A, Altimari P, Toro L, Masciocchi B, Iaquaniello G, Pagnanelli F. 28.  2016. Two stage process of microalgae cultivation for starch and carotenoid production. Chem. Eng. Tran. 49:415–20 [Google Scholar]
  29. Polle JEW, Kanakagiri S, Jin E, Masuda T, Melis A. 29.  2002. Truncated chlorophyll antenna size of the photosystems - a practical method to improve microalgal productivity and hydrogen production in mass culture. Int. J. Hydrogen Energy 27:1257–64 [Google Scholar]
  30. Benemann JR. 30.  2009. Algae biofuels: challenges in scale-up, productivity and harvesting (and economics too!) Presented at IEA Bioenergy ExCo64, Jan. 10 Liege, Belg: http://www.ieabioenergy.com/wp-content/uploads/2013/09/6444.pdf
  31. Unkefer CJ, Sayre RT, Magnuson JK, Anderson DB, Baxter I. 31.  et al. 2016. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Res 22:187–215 [Google Scholar]
  32. Boyle NR, Morgan JA. 32.  2009. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. . BMC Syst. Biol. 3:4 [Google Scholar]
  33. Yang C, Hua Q, Shimizu K. 33.  2002. Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metab. Eng. 4:3202–16 [Google Scholar]
  34. Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ. 34.  et al. 2012. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLOS Genet 8:11e1003064 [Google Scholar]
  35. Falkowski PG, Raven JA. 35.  2007. Aquatic Photosynthesis Princeton, NJ: Princeton Univ. Press
  36. Govindjee, Shevela D, Björn LO. 36.  2017. Evolution of the Z-scheme of photosynthesis: a perspective. Photosynth. Res. In press. doi: 10.1007/s11120-016-0333-z
  37. Zhu XG, Long SP, Ort DR. 37.  2008. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?. Curr. Opin. Biotechnol. 19:153–59 [Google Scholar]
  38. Robertson DE, Jacobson SA, Morgan F, Berry D, Church GM, Afeyan NB. 38.  2011. A new dawn for industrial photosynthesis. Photosynth. Res. 107:269–77 [Google Scholar]
  39. Michel H. 39.  2012. The nonsense of biofuels. Angew. Chem. Int. Ed. 51:2516–18 [Google Scholar]
  40. Hill A, Feinberg A, McIntosh R, Neenan B, Terry K. 40.  1984. Fuels from microalgae: technical status, potential, and research issues Solar Energy Res. Inst. Rep., SERI/SP-231-255, US Dep. Commer. Springfield, VA:
  41. Kent M. 41.  2000. Advanced Biology Oxford, UK: Oxford Univ. Press
  42. Elliott DC. 42.  2016. Review of recent reports on process technology for thermochemical conversion of whole algae to liquid fuels. Algal Res 13:255–63 [Google Scholar]
  43. Jones S, Zhu Y, Anderson D, Hallen RT, Elliott DC. 43.  et al. 2014. Process design and economics for the conversion of algal biomass to hydrocarbons: whole algae hydrothermal liquefaction and upgrading PNNL-23227, US Dep. Energy, Pacific Northwest Natl. Lab. Richland, WA:
  44. Elliott DC, Hart TR, Neuenschwander GG, Deverman GS, Werpy TA. 44.  et al. 1995. Low-temperature catalytic gasification of wet industrial wastes. FY 1993–1994 Interim report PNNL-10513, US Dep. Energy, Pacific Northwest Natl. Lab. Richland, WA:
  45. Lane J. 45.  2016. Hydrothermal processing and algae to oil: the Digest's 2016 multi-slide guide to Reliance Industries. BioFuels Digest Nov. 1
  46. Park H, Lee CG. 46.  2016. Theoretical calculations on the feasibility of microalgal biofuels: Utilization of marine resources could help realizing the potential of microalgae. Biotechnol. J. 11:1461–70 [Google Scholar]
  47. Davis R, Markham J, Kinchin C, Grundl N, Tan ECD, Humbird D. 47.  2016. Process design and economics for the production of algal biomass: algal biomass production in open pond systems and processing through dewatering for downstream conversion Rep. NREL/TP-5100-64772, US Dep. Energy Bioenergy Technol. Off
  48. Narala RR, Garg S, Sharma KK, Thomas-Hall SR, Deme M. 48.  et al. 2016. Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Front. Energy Res. 4:1–10 [Google Scholar]
  49. Huntley ME, Johnson ZI, Brown SL, Sills DL, Gerber L. 49.  et al. 2015. Demonstrated large-scale production of marine microalgae for fuels and feed. Algal Res 10:249–65 [Google Scholar]
  50. Kumar K, Mishra SK, Shrivastav A, Park MS, Yang JW. 50.  2015. Recent trends in the mass cultivation of algae in raceway ponds. Renew. Sustain. Energy Rev. 51:875–85 [Google Scholar]
  51. Hoffman J. 51.  2016. Techno-economic assessment of micro-algae production systems MS Thesis, Utah State Univ., Logan:
  52. Richardson JW, Johnson MD, Outlaw JL. 52.  2012. Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Res 1:93–100 [Google Scholar]
  53. Moheimani NR, Borowitzka MA. 53.  2006. The long-term culture of coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J. Appl. Phycol. 18:703–12 [Google Scholar]
  54. Brennan L, Owende P. 54.  2010. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14:557–77 [Google Scholar]
  55. Huesemann M, Crowe B, Waller P, Chavis A, Hobbs A. 55.  et al. 2016. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities. Algal Res 13:195–206 [Google Scholar]
  56. Wigmosta MS, Coleman AM, Skaggs RJ, Huesemann MH, Lane LJ. 56.  2011. National microalgae biofuel production potential and resource demand. Water Resour. Res. 47:31–13 [Google Scholar]
  57. Béchet Q, Shilton A, Guieysse B. 57.  2013. Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol. Adv. 31:81648–63 [Google Scholar]
  58. Behrenfeld M, Falkowski PG. 58.  1997. A consumer's guide to phytoplankton primary productivity models. Limnol. Oceanogr. 42:71479–91 [Google Scholar]
  59. Goldman JC. 59.  1979. Outdoor algal mass cultures—II. Photosynthetic yield limitations. Water Res 13:2119–36 [Google Scholar]
  60. Kroon BMA, Ketelaars HAM, Fallowfield HJ, Mur LR. 60.  1989. Modelling microalgal productivity in a high rate algal pond based on wavelength dependent optical properties. J. Appl. Phycol. 1:3247–56 [Google Scholar]
  61. Bernard O. 61.  2011. Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production. J. Process Control 21:101378–89 [Google Scholar]
  62. Packer A, Li Y, Andersen T, Hu Q, Kuang Y, Sommerfeld M. 62.  2011. Growth and neutral lipid synthesis in green microalgae: a mathematical model. Bioresour. Technol. 102:1111–17 [Google Scholar]
  63. Quinn L, deWinter J, Bradley T. 63.  2011. Microalgae bulk growth model with application to industrial scale systems. Bioresour. Technol. 102:85083–92 [Google Scholar]
  64. Bernard O, Rémond B. 64.  2012. Validation of a simple model accounting for light and temperature effect on microalgal growth. Bioresour. Technol. 123:520–27 [Google Scholar]
  65. James SC, Janardhanam V, Hanson DH. 65.  2013. Simulating pH effects in an algal-growth hydrodynamics model. J. Phycol. 49:3608–15 [Google Scholar]
  66. Cornet JF, Dussap CG. 66.  2009. A simple and reliable formula for assessment of maximum volumetric productivities in photobioreactors. Biotechnol. Prog. 25:2424–35 [Google Scholar]
  67. Pottier L, Pruvost J, Deremetz J, Cornet JF, Legrand J, Dussap CG. 67.  2005. A fully predictive model for one-dimensional light attenuation by Chlamydomonas reinhardtii in a torus photobioreactor. Biotechnol. Bioeng. 91:5569–82 [Google Scholar]
  68. Pruvost J, Vooren GV, Gouic BL, Mossion AC, Legrand J. 68.  2011. Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour. Technol. 102:1150–58 [Google Scholar]
  69. Allnutt FCT, Kessler BA. 69.  2015. Harvesting and downstream processing—and their economics. Biomass and Biofuels from Microalgae NR Moheimani, MP McHenry, K de Boer, PA Bahri 89–310 Cham, Switz.: Springer Int. Pub [Google Scholar]
  70. Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A. 70.  2010. Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J. Renew. Sustain. Energy 2:012701 [Google Scholar]
  71. Bilad MR, Arafat HA, Vankelecom IFJ. 71.  2014. Membrane technology in microalgae cultivation and harvesting: a review. Biotechnol. Adv. 32:1283–300 [Google Scholar]
  72. Bhave R, Kuritz T, Powell L, Adcock D. 72.  2012. Membrane-based energy efficient dewatering of microalgae in biofuels production and recovery of value added co-products. Environ. Sci. Technol. 46:5599–606 [Google Scholar]
  73. 73. DOE (US Department of Energy). 2014. NAABB Synopsis Washington, DC: US Dep. Energy, Off. Energy Effic. Renew. Energy, Bioenergy Technol. Off https://energy.gov/sites/prod/files/2014/06/f16/naabb_synopsis_report.pdf
  74. Prakash J, Pushparaj B, Carlozzi P, Torzillo G, Montaini E, Materassi R. 74.  1997. Microalgae drying by a simple solar device. Int. J. Solar Energy 18:4303–11 [Google Scholar]
  75. Desmorieux H, Decaen N. 75.  2006. Convective drying of spirulina in thin layer. J. Food Eng. 66:4497–503 [Google Scholar]
  76. Leach G, Oliveira G, Morais R. 76.  1998. Spray-drying of Dunaliella salina to produce a β-carotene rich powder. J. Ind. Microbiol. Biotechnol. 20:282–85 [Google Scholar]
  77. Grima EM, Medina AR, Giménez AG, Pérez JAS, Camacho FG, Sanchez JLG. 77.  1994. Comparison between extraction of lipids and fatty acids from microalgal biomass. J. Am. Oil Chem. Soc. 71:9955–59 [Google Scholar]
  78. Davis R, Biddy M. 78.  2013. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Washington, DC: US Dep. Energy, Off. Energy Effic. Renew. Energy, Bioenergy Technol. Off
  79. Cooney M, Nagle N, Young G. 79.  2009. Extraction of bio-oils from microalgae. Sep. Purif. Rev. 38:4291–325 [Google Scholar]
  80. Ramluckan K, Moodley KG, Bux F. 80.  2014. An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method. Fuel 116:103–8 [Google Scholar]
  81. Mulbry W, Kondrad S, Buyer J, Luthria DL. 81.  2009. Optimization of an oil extraction process for algae from the treatment of manure effluent. J. Am. Oil Chem. Soc. 86:9909–15 [Google Scholar]
  82. Hejazi MA, de Lamarliere C, Rocha JMS, Vermuë M, Tramper J, Wijffels RH. 82.  2002. Selective extraction of carotenoids from the microalga Dunaliella salina with retention of viability. Biotechnol. Bioeng. 79:129–36 [Google Scholar]
  83. Olkiewicz M, Plechkova NV, Fabregat A, Stüber F, Fortuny A. 83.  et al. 2015. Efficient extraction of lipids from primary sewage sludge using ionic liquids for biodiesel production. Sep. Purif. Technol. 153:118–25 [Google Scholar]
  84. Du Y, Schuur B, Samorì C, Tagliavini E, Brilman DFW. 84.  2013. Secondary amines as switchable solvents for lipid extraction from non-broken microalgae. Bioresour. Technol. 149:253–60 [Google Scholar]
  85. Jazrawi C, Biller P, Ross AB, Montoya A, Maschmeyer T, Haynes BS. 85.  2013. Pilot plant testing of continuous hydrothermal liquefaction of microalgae. Algal Res 2:268–77 [Google Scholar]
  86. Duan P, Savage PE. 86.  2011. Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Ind. Eng. Chem. Res. 50:52–61 [Google Scholar]
  87. Chen Y, Wu Y, Ding R, Zhang P, Liu J, Yang M. 87.  2015. Catalytic hydrothermal liquefaction of D. tertiolecta for the production of bio-oil over different acid/base catalysts. AIChE J 61:1118–28 [Google Scholar]
  88. Ross AB, Biller P, Kubacki ML, Li H, Lea-Langton A, Jones JM. 88.  2010. Hydrothermal processing of microalgae using alkali and organic acids. Fuel 89:2234–43 [Google Scholar]
  89. Benemann JR, Oswald WJ. 89.  1996. Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report. Rep. DOE/PC/93204–T5, US Dep. Energy, Natl. Energy Technol. Lab. Pittsburgh, PA:
  90. Lohman EJ, Gardner RD, Halverson L, Macur RE, Peyton BM, Gerlach R. 90.  2013. An efficient and scalable extraction and quantification method for algal derived biofuel. J. Microbiol. Methods 94:3235–44 [Google Scholar]
  91. Liyakathali NAM, Muley PD, Aita G, Boldor D. 91.  2016. Effect of frequency and reaction time in focused ultrasonic pretreatment of energy cane bagasse for bioethanol production. Bioresour. Technol. 200:262–71 [Google Scholar]
  92. Parniakov O, Barba FJ, Grimi N, Marchal L, Jubeau S. 92.  et al. 2015. Pulsed electric field and pH assisted selective extraction of intracellular components from microalgae Nannochloropsis. . Algal Res. 8:128–34 [Google Scholar]
  93. Davis R, Aden A, Pienkos PT. 93.  2011. Techno-economic analysis of autotrophic microalgae for fuel production. Appl. Energy 88:3524–31 [Google Scholar]
  94. Quinn JC, Davis R. 94.  2015. The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modelling. Bioresour. Technol. 184:444–52 [Google Scholar]
  95. Beal CM, Gerber LN, Sills D, Huntley ME, Machesky SC. 95.  et al. 2015. Algal biofuel production for fuels and feed in a 100-ha facility: a comprehensive techno-economic analysis and life cycle assessment. Algal Res 10:266–79 [Google Scholar]
  96. Jena U, Das KC. 96.  2011. Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy & Fuels 25:115472–82 [Google Scholar]
  97. Grierson S, Strezov V, Bengtsson J. 97.  2013. Life cycle assessment of a microalgae biomass cultivation, bio-oil extraction and pyrolysis processing regime. Algal Res 2:3299–311 [Google Scholar]
  98. Wang X, Zhao B, Tang X, Yang X. 98.  2015. Comparison of direct and indirect pyrolysis of micro-algae Isochrysis. . Bioresour. Technol. 179:58–62 [Google Scholar]
  99. Chaiwong K, Kiatsiriroat T, Vorayos N, Thararax C. 99.  2013. Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass Bioenergy 56:600–6 [Google Scholar]
  100. Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ. 100.  2012. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour. Technol. 109:178–87 [Google Scholar]
  101. Dong T, Knoshaug EP, Davis R, Laurens LML, Wychen SV. 101.  et al. 2016. Combined algal processing: a novel integrated biorefinery process to produce algal biofuels and bioproducts. Algal Res 19:316–23 [Google Scholar]
  102. Albrecht KO, Zhu Y, Schmidt AJ, Billing JM, Hart TR. 102.  et al. 2016. Impact of heterotrophically stressed algae for biofuel production via hydrothermal liquefaction and catalytic hydrotreating in continuous-flow reactors. Algal Res 14:17–27 [Google Scholar]
  103. Savage PE, Levine RB, Huelsman CM. 103.  2010. Hydrothermal processing of biomass. Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals M Crocker 192–215 Cambridge, UK: RSC Publishing [Google Scholar]
  104. Elliott DC. 104.  2011. Hydrothermal processing. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power RC Brown 200–31 Chichester, UK: Wiley [Google Scholar]
  105. Elliott DC, Biller P, Ross AB, Schmidt AJ, Jones SB. 105.  2015. Hydrothermal liquefaction of biomass: development from batch to continuous process. Bioresour. Technol. 178:147–56 [Google Scholar]
  106. 106. DOE (US Department of Energy). 2015. National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report Washington, DC: US Dep. Energy, Off. Energy Effic. Renew. Energy
  107. Jazrawi C, Biller P, He Y, Montoya A, Ross AB. 107.  et al. 2015. Two-stage hydrothermal liquefaction of a high-protein microalga. Algal Res 8:15–22 [Google Scholar]
  108. Alba LG, Torri C, Samorì C, Spek JV, Fabbri D. 108.  et al. 2012. Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy & Fuels 26:1642–57 [Google Scholar]
  109. Leow S, Witter JR, Vardon DR, Sharma BK, Guest JS, Strathmann TJ. 109.  2015. Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition. Green Chem 17:3584–99 [Google Scholar]
  110. Li H, Liu Z, Zhang Y, Li B, Lu H. 110.  et al. 2014. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Bioresour. Technol. 154:322–29 [Google Scholar]
  111. Miao C, Chakraborty M, Chen S. 111.  2012. Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process. Bioresour. Technol. 110:617–27 [Google Scholar]
  112. Venteris ER, Skaggs R, Wigmosta MS, Coleman AM. 112.  2014. A national-scale comparison of resource and nutrient demands for algae-based biofuel production by lipid extraction and hydrothermal liquefaction. Biomass Bioenergy 64:276–90 [Google Scholar]
  113. Li Y, Leow S, Fedders AC, Sharma BK, Guest JS, Strathmann TJ. 113.  2017. Quantitative multiphase model for hydrothermal liquefaction of algal biomass. Green Chem 19:41163–74 [Google Scholar]
  114. Barreiro DL, Beck M, Hornung U, Ronsse F, Kruse A, Prins W. 114.  2015. Suitability of hydrothermal liquefaction as a conversion route to produce biofuels from macroalgae. Algal Res 11:234–41 [Google Scholar]
  115. Moscoso JG, Teymouri A, Kumar S. 115.  2015. Kinetics of peptides and arginine production from microalgae (Scenedesmus sp.) by flash hydrolysis. Ind. Eng. Chem. Res. 54:72048–58 [Google Scholar]
  116. Talbot C, Garcia-Moscoso J, Drake H, Stuart BJ, Kumar S. 116.  2016. Cultivation of microalgae using flash hydrolysis nutrient recycle. Algal Res 18:191–97 [Google Scholar]
  117. Barbera E, Sforza E, Kumar S, Morosinotto T, Bertucco A. 117.  2016. Cultivation of Scenedesmus obliquus in liquid hydrolysate from flash hydrolysis for nutrient recycling. Bioresour. Technol. 207:59–66 [Google Scholar]
  118. Teymouri A, Kumar S, Barbera E, Sforza E, Bertucco A, Morosinotto T. 118.  2017. Integration of biofuels intermediates production and nutrients recycling in the processing of a marine algae. AIChE J In press. doi: 10.1002/aic.15537
  119. Marrone PA. 119.  2016. Genifuel hydrothermal processing bench-scale technology evaluation project Rep. LIFT6T14, Leidos Inc. Reston, VA:
  120. Duan P, Savage PE. 120.  2011. Upgrading of crude algal bio-oil in supercritical water. Bioresour. Technol. 102:1899–906 [Google Scholar]
  121. Patel B, Hellgardt K. 121.  2015. Hydrothermal upgrading of algae paste in a continuous flow reactor. Bioresour. Technol. 191:460–68 [Google Scholar]
  122. Duan P, Bai X, Xu Y, Zhang A, Wang F. 122.  et al. 2013. Catalytic upgrading of crude algal oil using platinum/gamma alumina in supercritical water. Fuel 109:225–33 [Google Scholar]
  123. Freeman CJ, Jones SB, Padmaperuma AB, Santosa M, Valkenburg C, Shinn J. 123.  2013. Initial assessment of U.S. refineries for purposes of potential bio-based oil insertions. Rep. No. 22432, Pac. Northwest Natl. Lab. Richland, WA:
  124. Leung DYC, Caramanna G, Maroto-Valer MM. 124.  2014. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 39:426–43 [Google Scholar]
  125. Svensson R, Odenberger M, Johnsson F, Strömberg L. 125.  2004. Transportation systems for CO2—application to carbon capture and storage. Energy Convers. Manag. 45:2343–53 [Google Scholar]
  126. 126. NETL (Natl. Energy Technol. Lab.). 2014. Carbon dioxide transport and storage costs in NETL studies Rep. DOE/NETL2014/1653. US Dep. Energy Washington, DC:
  127. McCoy ST, Rubin ES. 127.  2008. An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage. Int. J. Greenh. Gas Control 2:219–29 [Google Scholar]
  128. Yue LH, Chen GH, Yang QP. 128.  2015. Influence of SO2, NO and soot dust in flue gas on microalgae ZY-1 growth Presented at 3rd Int. Conf. Adv. Energy Environ. Sci., July 25–26 Zhuhai, China:
  129. Zhao B, Su Y. 129.  2014. Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew. Sustain. Energy Rev. 31:121–32 [Google Scholar]
  130. Kao CY, Chen TY, Chang YB, Chiu TW, Lin HY. 130.  et al. 2014. Utilization of carbon dioxide in industrial flue gases for cultivation of microalga Chlorella sp. Bioresour. Technol. 166:485–93 [Google Scholar]
  131. 131. Carbon Sequestration Leadership Forum. 2015. Supporting development of 2nd and 3rd generation carbon capture technologies Rep. CSLF-T-2015-08 Carbon Sequestration Leadersh. Forum Washington, DC:
  132. 132. NETL (Natl. Energy Technol. Lab.). 2013. DOE/NETL Advanced Carbon Dioxide Capture R&D Program: Tech Update Washington, DC: US Dep. Energy
  133. 133. IEAGHG (Int. Energy Agency Greenh. Gas). 2014. Assessment of emerging CO2 capture technologies and their potential to reduce costs Rep. 2014/TR4 IEAGHG Cheltenham, UK:
  134. Wang J, Huang L, Yang R, Zhang Z, Wu J. 134.  et al. 2014. Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ. Sci. 7:3478–518 [Google Scholar]
  135. Goeppert A, Czaun M, Surya Prakash GK, Olah GA. 135.  2012. Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere. Energy Environ. Sci. 5:7833–53 [Google Scholar]
  136. Broehm M, Strefler J, Bauer N. 136.  2015. Techno-economic review of direct air capture systems for large scale mitigation of atmospheric CO2. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2665702
  137. Nemet GF, Brandt AR. 137.  2011. Supporting Information for: Willingness to Pay for a Climate Backstop Madison: Univ. Wisconsin http://faculty.nelson.wisc.edu/nemet/si_wtpcb.pdf
  138. Sahzabi YA, Davidson DJ, Sasaki K, Nagata A, Yousefi H. 138.  2014. Climate technology investment and innovation: potential benefits of CO2 capture from the air. Invest. Manag. Financial Innov. 11:292–303 [Google Scholar]
  139. 139. American Physical Society. 2011. Direct Air Capture of CO2 with Chemicals: A Technology Assessment for the APS Panel on Public Affairs College Park, MD: Am. Phys. Soc
  140. Dickson AG, Goyet C. 140.  1994. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2 ORNL/CDIAC-74 Washington, DC: US Dep. Energy
  141. Al-Anezi K, Somerfield C, Mee D, Hilal N. 141.  2008. Parameters affecting the solubility of carbon dioxide in seawater at the conditions encountered in MSF desalination plants. Desalination 222:548–71 [Google Scholar]
  142. Weissman JC, Goebel RP. 142.  1987. Design and analysis of microalgae open pond systems for the purpose of producing fuels SERI/STR-231-2840 Sol. Energy Res. Inst. Golden, CO:
  143. Du H, Lin J, Zuercher C. 143.  2012. Higher efficiency of CO2 injection into seawater by a venturi than a conventional diffuser system. Bioresour. Technol. 107:131–34 [Google Scholar]
  144. Cao G, Orru R. 144.  2014. Current Environmental Issues and Challenges New York: Springer
  145. Weissman JC, Goebel RP. 145.  1985. Production of liquid fuels and chemicals by microalgae Rep. SERI/STR-231-2649 Sol. Energy Res. Inst Golden, CO:
  146. Cheng J, Huang Y, Feng J, Sun J, Zhou J Cen K. 146.  2013. Improving CO2 fixation efficiency by optimizing algae PY-ZU1 culture conditions in sequential bioreactors. Bioresour. Technol. 144:321–27 [Google Scholar]
  147. Li S, Luo S, Guo R. 147.  2013. Efficiency of CO2 fixation by microalgae in a closed pond. Bioresour. Technol. 136:267–72 [Google Scholar]
  148. Zuang CD, Li W, Shi YH, Li YG, Huang JK, Li HX. 148.  2016. A new technology for CO2 supplementary for microalgae cultivation on large scale—a spraying absorption tower coupled with an outdoor open raceway pond. Bioresour. Technol. 209:351–59 [Google Scholar]
  149. Davis R, Fishman D, Frank ED, Wigmosta MS. 149.  2012. Renewable diesel from algal lipids: an integrated baseline for cost, emissions, and resource potential from a harmonized model Rep. NREL/TP-5100-55431 US Dep. Energy Bioenergy Technol. Off
  150. Tews IJ, Zhu Y, Drennan CV, Elliott DC, Snowden-Swan LJ. 150.  et al. 2014. Biomass direct liquefaction options: technoeconomic and life cycle assessment PNNL-23579 US Dep. Energy, Pacific Northwest Natl. Lab. Richland, WA:
  151. Deane P, Shea RO, Gallachóir BO. 151.  2015. Biofuels for aviation. Rapid Response Energy Brief 1–8 http://www.innoenergy.com/wp-content/uploads/2016/03/RREB_Biofuels_in_Aviation_Draft_Final.pdf
/content/journals/10.1146/annurev-chembioeng-060816-101630
Loading
/content/journals/10.1146/annurev-chembioeng-060816-101630
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error