1932

Abstract

Telomeres play an important part in aging and show relationships to lifetime adversity, particularly childhood adversity. Meta-analyses demonstrate reliable associations between psychopathology (primarily depression) and shorter telomere length, but the nature of this relationship has not been fully understood. Here, we review and evaluate the evidence for impaired telomere biology as a consequence of psychopathology or as a contributing factor, and the important mediating roles of chronic psychological stress and impaired allostasis. There is evidence for a triadic relationship among stress, telomere shortening, and psychiatric disorders that is positively reinforcing and unfolds across the life course and, possibly, across generations. We review the role of genetics and biobehavioral responses that may contribute to shorter telomere length, as well as the neurobiological impact of impaired levels of telomerase. These complex interrelationships are important to elucidate because they have implications for mental and physical comorbidity and, potentially, for the prevention and treatment of depression.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-clinpsy-032816-045054
2018-05-07
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/clinpsy/14/1/annurev-clinpsy-032816-045054.html?itemId=/content/journals/10.1146/annurev-clinpsy-032816-045054&mimeType=html&fmt=ahah

Literature Cited

  1. Aiken CE, Tarry-Adkins JL, Ozanne SE. 2015. Transgenerational developmental programming of ovarian reserve. Sci. Rep. 5:16175 [Google Scholar]
  2. Alegria M, Jackson JS, Kessler RC, Takeuchi D. 2003. National Comorbidity Survey Replication (NCS-R), 2001–2003 ICPSR 00189 Inter-Univ. Consort. Political Soc Res., Ann Arbor, MI: https://www.icpsr.umich.edu/icpsrweb/DSDR/studies/00189
  3. Asok A, Bernard K, Roth TL, Rosen JB, Dozier M. 2013. Parental responsiveness moderates the association between early-life stress and reduced telomere length. Dev. Psychopathol. 25:577–85 [Google Scholar]
  4. Aubert G, Baerlocher GM, Vulto I, Poon SS, Lansdorp PM. 2012. Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLOS Genet 8:e1002696 [Google Scholar]
  5. Aviv A, Hunt SC, Lin J, Cao X, Kimura M, Blackburn E. 2011. Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by Southern blots and qPCR. Nucleic Acids Res 39:e134 [Google Scholar]
  6. Aydinonat D, Penn DJ, Smith S, Moodley Y, Hoelzl F. et al. 2014. Social isolation shortens telomeres in African Grey parrots (Psittacus erithacus erithacus). PLOS ONE 9:e93839 [Google Scholar]
  7. Barrett JH, Iles MM, Dunning AM, Pooley KA. 2015. Telomere length and common disease: study design and analytical challenges. Hum. Genet. 134:679–89 [Google Scholar]
  8. Beery AK, Lin J, Biddle JS, Francis DD, Blackburn EH, Epel ES. 2012. Chronic stress elevates telomerase activity in rats. Biol. Lett. 8:1063–66 [Google Scholar]
  9. Bersani FS, Lindqvist D, Mellon SH, Penninx BWJH, Verhoeven JE. et al. 2015. Telomerase activation as a possible mechanism of action for psychopharmacological interventions. Drug Discov. Today 20:1305–9 [Google Scholar]
  10. Bioque M, García-Portilla MAP, García-Rizo C, Cabrera B, Lobo A. et al. 2017. Evolution of metabolic risk factors over a two-year period in a cohort of first episodes of psychosis. Schizophr. Res. press. https://doi.org/10.1016/j.schres.2017.06.032 [Crossref]
  11. Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BWJH. 2015. Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology 51:164–75 [Google Scholar]
  12. Blackburn EH. 1991. Structure and function of telomeres. Nature 350:569–73 [Google Scholar]
  13. Blackburn EH, Epel ES, Lin J. 2015. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350:1193–98 [Google Scholar]
  14. Broer L, Codd V, Nyholt DR, Deelen J, Mangino M. et al. 2013. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur. J. Hum. Genet. 21:1163–68 [Google Scholar]
  15. Cai N, Chang S, Li Y, Li Q, Hu J. et al. 2015. Molecular signatures of major depression. Curr. Biol. 25:1146–56 [Google Scholar]
  16. Campisi J, d'Adda di Fagagna F. 2007. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8:729–40 [Google Scholar]
  17. Carlson LE, Beattie TL, Giese-Davis J, Faris P, Tamagawa R. et al. 2015. Mindfulness-based cancer recovery and supportive-expressive therapy maintain telomere length relative to controls in distressed breast cancer survivors. Cancer 121:476–84 [Google Scholar]
  18. Carroll JE, Diez Roux AV, Fitzpatrick AL, Seeman T. 2013. Low social support is associated with shorter leukocyte telomere length in late life: multi-ethnic study of atherosclerosis. Psychosom. Med. 75:171–77 [Google Scholar]
  19. Carroll JE, Esquivel S, Goldberg A, Seeman TE, Effros RB. et al. 2016. Insomnia and telomere length in older adults. Sleep 39:559–64 [Google Scholar]
  20. Chen SH, Epel ES, Mellon SH, Lin J, Reus VI. et al. 2014. Adverse childhood experiences and leukocyte telomere maintenance in depressed and healthy adults. J. Affect. Disord. 169:86–90 [Google Scholar]
  21. Chen W-D, Wen M-S, Shie S-S, Lo Y-L, Wo H-T. et al. 2014. The circadian rhythm controls telomeres and telomerase activity. Biochem. Biophys. Res. Commun. 451:408–14 [Google Scholar]
  22. Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J. et al. 2013. Identification of seven loci affecting mean telomere length and their association with disease. Nat. Genet. 45:422–27 [Google Scholar]
  23. Coimbra BM, Carvalho CM, Moretti PN, Mello MF, Belangero SI. 2017. Stress-related telomere length in children: a systematic review. J. Psychiatr. Res. 92:47–54 [Google Scholar]
  24. Collopy LC, Walne AJ, Cardoso S, de la Fuente J, Mohamed M. et al. 2015. Triallelic and epigenetic-like inheritance in human disorders of telomerase. Blood 126:176–84 [Google Scholar]
  25. Costa DS, Rosa DVF, Barros AGA, Romano-Silva MA, Malloy-Diniz LF. et al. 2015. Telomere length is highly inherited and associated with hyperactivity-impulsivity in children with attention deficit/hyperactivity disorder. Front. Mol. Neurosci. 8:28 [Google Scholar]
  26. Cui Y, Prabhu VV, Nguyen TB, Devi SM, Chung Y-C. 2017. Longer telomere length of T lymphocytes in patients with early and chronic psychosis. Clin. Psychopharmacol. Neurosci. 15:146–52 [Google Scholar]
  27. Darrow SM, Verhoeven JE, Révész D, Lindqvist D, Penninx BWJH. et al. 2016. The association between psychiatric disorders and telomere length: a meta-analysis involving 14,827 persons. Psychosom. Med. 78:776–87 [Google Scholar]
  28. Deng W, Cheung ST, Tsao SW, Wang XM, Tiwari AFY. 2016. Telomerase activity and its association with psychological stress, mental disorders, lifestyle factors and interventions: a systematic review. Psychoneuroendocrinology 64:150–63 [Google Scholar]
  29. D'Mello MJJ, Ross SA, Briel M, Anand SS, Gerstein H, Paré G. 2015. Association between shortened leukocyte telomere length and cardiometabolic outcomes: systematic review and meta-analysis. Circ. Cardiovasc. Genet. 8:82–90 [Google Scholar]
  30. Eaton WW, Armenian H, Gallo J, Pratt L, Ford DE. 1996. Depression and risk for onset of type II diabetes: a prospective population-based study. Diabetes Care 19:1097–102 [Google Scholar]
  31. Effros RB. 2009. Kleemeier Award Lecture 2008—The canary in the coal mine: telomeres and human healthspan. J. Gerontol. A 64:511–15 [Google Scholar]
  32. Entringer S, Buss C, Wadhwa PD. 2012. Prenatal stress, telomere biology, and fetal programming of health and disease risk. Sci. Signal. 5:pt12 [Google Scholar]
  33. Entringer S, Epel ES, Kumsta R, Lin J, Hellhammer DH. et al. 2011. Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. PNAS 108:E513–18 [Google Scholar]
  34. Entringer S, Epel ES, Lin J, Buss C, Shahbaba B. et al. 2013. Maternal psychosocial stress during pregnancy is associated with newborn leukocyte telomere length. Am. J. Obstet. Gynecol. 208:134e1–7 [Google Scholar]
  35. Epel ES. 2012. How “reversible” is telomeric aging?. Cancer Prev. Res. 5:1163–68 [Google Scholar]
  36. Epel ES, Daubenmier J, Moskowitz JT, Folkman S, Blackburn E. 2009. Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres. Ann. N. Y. Acad. Sci. 1172:34–53 [Google Scholar]
  37. Epel ES, Lin J, Wilhelm FH, Wolkowitz OM, Cawthon R. et al. 2006. Cell aging in relation to stress arousal and cardiovascular disease risk factors. Psychoneuroendocrinology 31:277–87 [Google Scholar]
  38. Fernandez-Egea E, Bernardo M, Heaphy CM, Griffith JK, Parellada E. et al. 2009. Telomere length and pulse pressure in newly diagnosed, antipsychotic-naive patients with nonaffective psychosis. Schizophr. Bull. 35:437–42 [Google Scholar]
  39. Finnicum CT, Dolan CV, Willemsen G, Weber ZM, Petersen JL. et al. 2017. Relative telomere repeat mass in buccal and leukocyte-derived DNA. PLOS ONE 12:e0170765 [Google Scholar]
  40. González-Giraldo Y, Forero DA, Echeverria V, Gonzalez J, Ávila-Rodriguez M. et al. 2016. Neuroprotective effects of the catalytic subunit of telomerase: a potential therapeutic target in the central nervous system. Ageing Res. Rev. 28:37–45 [Google Scholar]
  41. Gotlib IH, LeMoult J, Colich NL, Foland-Ross LC, Hallmayer J. et al. 2015. Telomere length and cortisol reactivity in children of depressed mothers. Mol. Psychiatry 20:615–20 [Google Scholar]
  42. Hägg S, Zhan Y, Karlsson R, Gerritsen L, Ploner A. et al. 2017. Short telomere length is associated with impaired cognitive performance in European ancestry cohorts. Transl. Psychiatry 7:e1100 [Google Scholar]
  43. Hanssen LM, Schutte NS, Malouff JM, Epel ES. 2017. The relationship between childhood psychosocial stressor level and telomere length: a meta-analysis. Health Psychol. Res. 5:6378 [Google Scholar]
  44. Hau M, Haussmann MF, Greives TJ, Matlack C, Costantini D. et al. 2015. Repeated stressors in adulthood increase the rate of biological ageing. Front. Zool. 12:4 [Google Scholar]
  45. Haussmann MF, Heidinger BJ. 2015. Telomere dynamics may link stress exposure and ageing across generations. Biol. Lett. 11:20150396 [Google Scholar]
  46. Hennekens CH, Hennekens AR, Hollar D, Casey DE. 2005. Schizophrenia and increased risks of cardiovascular disease. Am. Heart J. 150:1115–21 [Google Scholar]
  47. Hough CM, Bersani FS, Mellon SH, Epel ES, Reus VI. et al. 2016. Leukocyte telomere length predicts SSRI response in major depressive disorder: a preliminary report. Mol. Neuropsychiatry 2:88–96 [Google Scholar]
  48. Ikeda A, Schwartz J, Peters JL, Baccarelli AA, Hoxha M. et al. 2014. Pessimistic orientation in relation to telomere length in older men: the VA normative aging study. Psychoneuroendocrinology 42:68–76 [Google Scholar]
  49. James S, McLanahan S, Brooks-Gunn J, Mitchell C, Schneper L. et al. 2017. Sleep duration and telomere length in children. J. Pediatr. 187:247–52 [Google Scholar]
  50. Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C. et al. 2014. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat. Commun. 2:4172 [Google Scholar]
  51. Kang JI, Hwang SS, Choi JR, Lee S-T, Kim J. et al. 2017. Telomere length in alcohol dependence: a role for impulsive choice and childhood maltreatment. Psychoneuroendocrinology 83:72–78 [Google Scholar]
  52. Kessler RC, Berglund P, Chiu WT, Demler O, Heeringa S. et al. 2004. The US National Comorbidity Survey Replication (NCS-R): design and field procedures. Int. J. Methods Psychiatr. Res. 13:69–92 [Google Scholar]
  53. Kim TY, Kim SJ, Choi JR, Lee S-T, Kim J. et al. 2017. The effect of trauma and PTSD on telomere length: an exploratory study in people exposed to combat trauma. Sci. Rep. 7:4375 [Google Scholar]
  54. Kroenke CH, Epel E, Adler N, Bush NR, Obradovic J. et al. 2011. Autonomic and adrenocortical reactivity and buccal cell telomere length in kindergarten children. Psychosom. Med 73:533–40 [Google Scholar]
  55. Lee M, Napier CE, Yang SF, Arthur JW, Reddel RR, Pickett HA. 2017. Comparative analysis of whole genome sequencing-based telomere length measurement techniques. Methods 114:4–15 [Google Scholar]
  56. Lengacher CA, Reich RR, Kip KE, Barta M, Ramesar S. et al. 2014. Influence of mindfulness-based stress reduction (MBSR) on telomerase activity in women with breast cancer (BC). Biol. Res. Nurs. 16:438–47 [Google Scholar]
  57. Lex C, Bäzner E, Meyer TD. 2017. Does stress play a significant role in bipolar disorder? A meta-analysis. J. Affect. Disord. 208:298–308 [Google Scholar]
  58. Li X, Wang J, Zhou J, Huang P, Li J. 2017. The association between post-traumatic stress disorder and shorter telomere length: a systematic review and meta-analysis. J. Affect. Disord. 218:322–26 [Google Scholar]
  59. Li Z, He Y, Wang D, Tang J, Chen X. 2017. Association between childhood trauma and accelerated telomere erosion in adulthood: a meta-analytic study. J. Psychiatr. Res. 93:64–71 [Google Scholar]
  60. Lin J, Cheon J, Brown R, Coccia M, Puterman E. et al. 2016. Systematic and cell type–specific telomere length changes in subsets of lymphocytes. J. Immunol. Res. 2016:5371050 [Google Scholar]
  61. Lindqvist D, Epel ES, Mellon SH, Penninx BW, Révész D. et al. 2015. Psychiatric disorders and leukocyte telomere length: underlying mechanisms linking mental illness with cellular aging. Neurosci. Biobehav. Rev. 55:333–64 [Google Scholar]
  62. Liu JJ, Wei YB, Forsell Y, Lavebratt C. 2017. Stress, depressive status and telomere length: Does social interaction and coping strategy play a mediating role?. J. Affect. Disord. 222:138–45 [Google Scholar]
  63. Malouff JM, Schutte NS. 2017. A meta-analysis of the relationship between anxiety and telomere length. Anxiety Stress Coping 30:264–72 [Google Scholar]
  64. Mamdani F, Rollins B, Morgan L, Myers RM, Barchas JD. et al. 2015. Variable telomere length across post-mortem human brain regions and specific reduction in the hippocampus of major depressive disorder. Transl. Psychiatry 5:e636 [Google Scholar]
  65. Marchetto NM, Glynn RA, Ferry ML, Ostojic M, Wolff SM. et al. 2016. Prenatal stress and newborn telomere length. Am. J. Obstet. Gynecol. 215:94e1–8 [Google Scholar]
  66. Martinsson L, Wei Y, Xu D, Melas PA, Mathé AA. et al. 2013. Long-term lithium treatment in bipolar disorder is associated with longer leukocyte telomeres. Transl. Psychiatry 3:e261 [Google Scholar]
  67. Mattson MP, Zhang P, Cheng A. 2008. Telomere neurobiology. Methods Mol. Biol. 438:185–96 [Google Scholar]
  68. Maurya PK, Noto C, Rizzo LB, Rios AC, Nunes SOV. et al. 2016. The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 65:134–44 [Google Scholar]
  69. Maurya PK, Rizzo LB, Xavier G, Tempaku PF, Zeni-Graiff M. et al. 2017. Shorter leukocyte telomere length in patients at ultra high risk for psychosis. Eur. Neuropsychopharmacol. 27:538–42 [Google Scholar]
  70. Mayo D, Corey S, Kelly LH, Yohannes S, Youngquist AL. et al. 2017. The role of trauma and stressful life events among individuals at clinical high risk for psychosis: a review. Front. Psychiatry 8:55 [Google Scholar]
  71. McElhaney JE, Effros RB. 2009. Immunosenescence: What does it mean to health outcomes in older adults?. Curr. Opin. Immunol. 21:418–24 [Google Scholar]
  72. McEwen BS. 2004. Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann. N. Y. Acad. Sci. 1032:1–7 [Google Scholar]
  73. McEwen BS. 2007. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87:873–904 [Google Scholar]
  74. Mitchell C, Hobcraft J, McLanahan SS, Siegel SR, Berg A. et al. 2014. Social disadvantage, genetic sensitivity, and children's telomere length. PNAS 111:5944–49 [Google Scholar]
  75. Monroe SM, Harkness KL. 2005. Life stress, the “kindling” hypothesis, and the recurrence of depression: considerations from a life stress perspective. Psychol. Rev. 112:417–45 [Google Scholar]
  76. Monroy-Jaramillo N, Rodríguez-Agudelo Y, Aviña-Cervantes LC, Roberts DL, Velligan DI, Walss-Bass C. 2017. Leukocyte telomere length in Hispanic schizophrenia patients under treatment with olanzapine. J. Psychiatr. Res. 90:26–30 [Google Scholar]
  77. Natl. Inst. Ment. Health. 2016. Behavioral Assessment Methods for RDoC Constructs: A Report by the National Advisory Mental Health Council Workgroup on Tasks and Measures for Research Domain Criteria (RDoC) Bethesda, MD: Natl. Inst. Ment. Health
  78. Nettle D, Monaghan P, Gillespie R, Brilot B, Bedford T, Bateson M. 2015. An experimental demonstration that early-life competitive disadvantage accelerates telomere loss. Proc. R. Soc. B 282:20141610 [Google Scholar]
  79. Nicholson A, Kuper H, Hemingway H. 2006. Depression as an aetiologic and prognostic factor in coronary heart disease: a meta-analysis of 6362 events among 146 538 participants in 54 observational studies. Eur. Heart J. 27:2763–74 [Google Scholar]
  80. Nilsonne G, Tamm S, Månsson KNT, Åkerstedt T, Lekander M. 2015. Leukocyte telomere length and hippocampus volume: a meta-analysis. F1000Res 4:1073 [Google Scholar]
  81. O'Donovan A, Epel E, Lin J, Wolkowitz O, Cohen B. et al. 2011. Childhood trauma associated with short leukocyte telomere length in posttraumatic stress disorder. Biol. Psychiatry 70:465–71 [Google Scholar]
  82. O'Donovan A, Lin J, Tillie J, Dhabhar FS, Wolkowitz OM. et al. 2009. Pessimism correlates with leukocyte telomere shortness and elevated interleukin-6 in post-menopausal women. Brain Behav. Immun. 23:446–49 [Google Scholar]
  83. O'Donovan A, Tomiyama AJ, Lin J, Puterman E, Adler NE. et al. 2012. Stress appraisals and cellular aging: a key role for anticipatory threat in the relationship between psychological stress and telomere length. Brain Behav. Immun. 26:573–79 [Google Scholar]
  84. Oliveira BS, Zunzunegui MV, Quinlan J, Fahmi H, Tu MT, Guerra RO. 2016. Systematic review of the association between chronic social stress and telomere length: a life course perspective. Ageing Res. Rev. 26:37–52 [Google Scholar]
  85. Ornish D, Lin J, Chan JM, Epel E, Kemp C. et al. 2013. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol 14:1112–20 [Google Scholar]
  86. Ornish D, Lin J, Daubenmier J, Weidner G, Epel E. et al. 2008. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol 9:1048–57 [Google Scholar]
  87. Ownby RL, Crocco E, Acevedo A, John V, Loewenstein D. 2006. Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch. Gen. Psychiatry 63:530–38 [Google Scholar]
  88. Park M, Verhoeven JE, Cuijpers P, Reynolds CF III, Penninx BWJH. 2015. Where you live may make you old: the association between perceived poor neighborhood quality and leukocyte telomere length. PLOS ONE 10:e0128460 [Google Scholar]
  89. Perna G, Iannone G, Alciati A, Caldirola D. 2016. Are anxiety disorders associated with accelerated aging? A focus on neuroprogression. Neural Plast 2016:8457612 [Google Scholar]
  90. Polho GB, De-Paula VJ, Cardillo G, dos Santos B, Kerr DS. 2015. Leukocyte telomere length in patients with schizophrenia: a meta-analysis. Schizophr. Res. 165:195–200 [Google Scholar]
  91. Prather AA, Gurfein B, Moran P, Daubenmier J, Acree M. et al. 2015. Tired telomeres: poor global sleep quality, perceived stress, and telomere length in immune cell subsets in obese men and women. Brain Behav. Immun. 47:155–62 [Google Scholar]
  92. Puterman E, Gemmill A, Karasek D, Weir D, Adler NE. et al. 2016. Lifespan adversity and later adulthood telomere length in the nationally representative US Health and Retirement Study. PNAS 113:E6335–42 [Google Scholar]
  93. Puterman E, Lin J, Krauss J, Blackburn EH, Epel ES. 2015. Determinants of telomere attrition over 1 year in healthy older women: Stress and health behaviors matter. Mol. Psychiatry 20:529–35 [Google Scholar]
  94. Rackley S, Pao M, Seratti GF, Giri N, Rasimas JJ. et al. 2012. Neuropsychiatric conditions among patients with dyskeratosis congenita: a link with telomere biology. Psychosomatics 53:230–35 [Google Scholar]
  95. Raschenberger J, Lamina C, Haun M, Kollerits B, Coassin S. et al. 2016. Influence of DNA extraction methods on relative telomere length measurements and its impact on epidemiological studies. Sci. Rep. 6:25398 [Google Scholar]
  96. Rasgon N, Lin KW, Lin J, Epel E, Blackburn E. 2016. Telomere length as a predictor of response to Pioglitazone in patients with unremitted depression: a preliminary study. Transl. Psychiatry 6:e709 [Google Scholar]
  97. Révész D, Milaneschi Y, Terpstra EM, Penninx BWJH. 2016.a Baseline biopsychosocial determinants of telomere length and 6-year attrition rate. Psychoneuroendocrinology 67:153–62 [Google Scholar]
  98. Révész D, Verhoeven JE, Milaneschi Y, Penninx BWJH. 2016.b Depressive and anxiety disorders and short leukocyte telomere length: mediating effects of metabolic stress and lifestyle factors. Psychol. Med. 46:2337–49 [Google Scholar]
  99. Ridout KK, Levandowski M, Ridout SJ, Gantz L, Goonan K. et al. 2017. Early life adversity and telomere length: a meta-analysis. Mol. Psychiatry. press. https://doi.org/10.1038/mp.2017.26 [Crossref]
  100. Ridout KK, Ridout SJ, Price LH, Sen S, Tyrka AR. 2016. Depression and telomere length: a meta-analysis. J. Affect. Disord. 191:237–47 [Google Scholar]
  101. Rode L, Nordestgaard BG, Bojesen SE. 2015. Peripheral blood leukocyte telomere length and mortality among 64 637 individuals from the general population. J. Natl. Cancer Inst. 107:djv074 [Google Scholar]
  102. Rugulies R. 2002. Depression as a predictor for coronary heart disease. Am. J. Prev. Med. 23:51–61 [Google Scholar]
  103. Sadahiro R, Suzuki A, Enokido M, Matsumoto Y, Shibuya N. et al. 2015. Relationship between leukocyte telomere length and personality traits in healthy subjects. Eur. Psychiatry 30:291–95 [Google Scholar]
  104. Sahin E, Colla S, Liesa M, Moslehi J, Müller FL. et al. 2011. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470:359–65 [Google Scholar]
  105. Salihu HM, King L, Patel P, Paothong A, Pradhan A. et al. 2015. Association between maternal symptoms of sleep disordered breathing and fetal telomere length. Sleep 38:559–66 [Google Scholar]
  106. Savolainen K, Eriksson JG, Kajantie E, Lahti J, Räikkönen K. 2015.a Telomere length and hypothalamic–pituitary–adrenal axis response to stress in elderly adults. Psychoneuroendocrinology 53:179–84 [Google Scholar]
  107. Savolainen K, Eriksson JG, Kajantie E, Pesonen A-K, Räikkönen K. 2015.b Associations between the five-factor model of personality and leukocyte telomere length in elderly men and women: the Helsinki Birth Cohort Study (HBCS). J. Psychosom. Res. 79:233–38 [Google Scholar]
  108. Schneper LM, Brooks-Gunn J, Notterman DA, Suomi SJ. 2016. Early-life experiences and telomere length in adult rhesus monkeys: an exploratory study. Psychosom. Med. 78:1066–71 [Google Scholar]
  109. Schutte NS, Malouff JM. 2014. A meta-analytic review of the effects of mindfulness meditation on telomerase activity. Psychoneuroendocrinology 42:45–48 [Google Scholar]
  110. Schutte NS, Malouff JM. 2015. The association between depression and leukocyte telomere length: a meta-analysis. Depression Anxiety 32:229–38 [Google Scholar]
  111. Schutte NS, Palanisamy SKA, McFarlane JR. 2016. The relationship between positive psychological characteristics and longer telomeres. Psychol. Health 31:1466–80 [Google Scholar]
  112. Send TS, Gilles M, Codd V, Wolf I, Bardtke S. et al. 2017. Telomere length in newborns is related to maternal stress during pregnancy. Neuropsychopharmacology 42:2407–13 [Google Scholar]
  113. Shalev I, Entringer S, Wadhwa PD, Wolkowitz OM, Puterman E. et al. 2013.a Stress and telomere biology: a lifespan perspective. Psychoneuroendocrinology 38:1835–42 [Google Scholar]
  114. Shalev I, Moffitt TE, Braithwaite AW, Danese A, Fleming NI. et al. 2014. Internalizing disorders and leukocyte telomere erosion: a prospective study of depression, generalized anxiety disorder and post-traumatic stress disorder. Mol. Psychiatry 19:1163–70 [Google Scholar]
  115. Shalev I, Moffitt TE, Sugden K, Williams B, Houts RM. et al. 2013.b Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: a longitudinal study. Mol. Psychiatry 18:576–81 [Google Scholar]
  116. Starnino L, Busque L, Tardif J-C, D'Antono B. 2016. Psychological profiles in the prediction of leukocyte telomere length in healthy individuals. PLOS ONE 11:e0165482 [Google Scholar]
  117. Steptoe A, Hamer M, Lin J, Blackburn EH, Erusalimsky JD. 2017. The longitudinal relationship between cortisol responses to mental stress and leukocyte telomere attrition. J. Clin. Endocrinol. Metab. 102:962–69 [Google Scholar]
  118. Stone RC, Horvath K, Kark JD, Susser E, Tishkoff SA, Aviv A. 2016. Telomere length and the cancer–atherosclerosis trade-off. PLOS Genet 12:e1006144 [Google Scholar]
  119. Szebeni A, Szebeni K, DiPeri T, Chandley MJ, Crawford JD. et al. 2014. Shortened telomere length in white matter oligodendrocytes in major depression: potential role of oxidative stress. Int. J. Neuropsychopharmacol. 17:1579–89 [Google Scholar]
  120. Theall KP, Shirtcliff EA, Dismukes AR, Wallace M, Drury SS. 2017. Association between neighborhood violence and biological stress in children. JAMA Pediatr 171:53–60 [Google Scholar]
  121. Tomiyama AJ, O'Donovan A, Lin J, Puterman E, Lazaro A. et al. 2012. Does cellular aging relate to patterns of allostasis? An examination of basal and stress reactive HPA axis activity and telomere length. Physiol. Behav. 106:40–45 [Google Scholar]
  122. Tower J. 2012. Stress and stem cells. Wiley Interdiscip. Rev. Dev. Biol. 1:789–802 [Google Scholar]
  123. Tyrka AR, Price LH, Kao HT, Porton B, Marsella SA, Carpenter LL. 2010. Childhood maltreatment and telomere shortening: preliminary support for an effect of early stress on cellular aging. Biol. Psychiatry 67:531–34 [Google Scholar]
  124. van Ockenburg SL, Bos EH, de Jonge P, van der Harst P, Gans ROB, Rosmalen JGM. 2015. Stressful life events and leukocyte telomere attrition in adulthood: a prospective population-based cohort study. Psychol. Med. 45:2975–84 [Google Scholar]
  125. van Ockenburg SL, de Jonge P, van der Harst P, Ormel J, Rosmalen JGM. 2014. Does neuroticism make you old? Prospective associations between neuroticism and leukocyte telomere length. Psychol. Med. 44:723–29 [Google Scholar]
  126. Verhoeven JE, Lin J, Révész D, Wolkowitz OM, Penninx BWJH. 2016. Unresolved issues in longitudinal telomere length research: response to Susser et al. Am. J. Psychiatry 173:1147–49 [Google Scholar]
  127. Verhoeven JE, Révész D, Epel ES, Lin J, Wolkowitz OM, Penninx BWJH. 2014. Major depressive disorder and accelerated cellular aging: results from a large psychiatric cohort study. Mol. Psychiatry 19:895–901 [Google Scholar]
  128. Verhulst S, Dalgård C, Labat C, Kark JD, Kimura M. et al. 2016. A short leucocyte telomere length is associated with development of insulin resistance. Diabetologia 59:1258–65 [Google Scholar]
  129. Wang X, Sundquist K, Hedelius A, Palmér K, Memon AA, Sundquist J. 2017. Leukocyte telomere length and depression, anxiety and stress and adjustment disorders in primary health care patients. BMC Psychiatry 17:148 [Google Scholar]
  130. Wei YB, Backlund L, Wegener G, Mathé AA, Lavebratt C. 2015. Telomerase dysregulation in the hippocampus of a rat model of depression: normalization by lithium. Int. J. Neuropsychopharmacol. 18:pyv002 [Google Scholar]
  131. Wei YB, Martinsson L, Liu JJ, Forsell Y, Schalling M. et al. 2016. hTERT genetic variation in depression. J. Affect. Disord. 189:62–69 [Google Scholar]
  132. Whisman MA, Richardson ED. 2017. Depressive symptoms and salivary telomere length in a probability sample of middle-aged and older adults. Psychosom. Med. 79:234–42 [Google Scholar]
  133. Whiteman VE, Goswami A, Salihu HM. 2017. Telomere length and fetal programming: a review of recent scientific advances. Am. J. Reprod. Immunol. 77:e12661 [Google Scholar]
  134. Wium-Andersen MK, Ørsted DD, Rode L, Bojesen SE, Nordestgaard BG. 2017. Telomere length and depression: prospective cohort study and Mendelian randomisation study in 67 306 individuals. Br. J. Psychiatry 210:31–38 [Google Scholar]
  135. Wojcicki JM, Olveda R, Heyman MB, Elwan D, Lin J. et al. 2016. Cord blood telomere length in Latino infants: relation with maternal education and infant sex. J. Perinatol. 36:235–41 [Google Scholar]
  136. Wolkowitz OM, Jeste DV, Martin AS, Lin J, Daly RE. et al. 2017. Leukocyte telomere length: effects of schizophrenia, age, and gender. J. Psychiatr. Res. 85:42–48 [Google Scholar]
  137. Wolkowitz OM, Mellon SH, Epel ES, Lin J, Dhabhar FS. et al. 2011.a Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress—preliminary findings. PLOS ONE 6:e17837 [Google Scholar]
  138. Wolkowitz OM, Mellon SH, Epel ES, Lin J, Reus VI. et al. 2012. Resting leukocyte telomerase activity is elevated in major depression and predicts treatment response. Mol. Psychiatry 17:164–72 [Google Scholar]
  139. Wolkowitz OM, Mellon SH, Lindqvist D, Epel ES, Blackburn EH. et al. 2015. PBMC telomerase activity, but not leukocyte telomere length, correlates with hippocampal volume in major depression. Psychiatry Res 232:58–64 [Google Scholar]
  140. Wolkowitz OM, Reus VI, Mellon SH. 2011.b Of sound mind and body: depression, disease, and accelerated aging. Dialogues Clin. Neurosci. 13:25–39 [Google Scholar]
  141. Xie X, Chen Y, Ma L, Shen Q, Huang L. et al. 2017. Major depressive disorder mediates accelerated aging in rats subjected to chronic mild stress. Behav. Brain Res. 329:96–103 [Google Scholar]
  142. Yen Y-C, Lung F-W. 2013. Older adults with higher income or marriage have longer telomeres. Age Ageing 42:234–39 [Google Scholar]
  143. Yim O-S, Zhang X, Shalev I, Monakhov M, Zhong S. et al. 2016. Delay discounting, genetic sensitivity, and leukocyte telomere length. PNAS 113:2780–85 [Google Scholar]
  144. Zalli A, Carvalho LA, Lin J, Hamer M, Erusalimsky JD. et al. 2014. Shorter telomeres with high telomerase activity are associated with raised allostatic load and impoverished psychosocial resources. PNAS 111:4519–24 [Google Scholar]
  145. Zhan Y, Karlsson IK, Karlsson R, Tillander A, Reynolds CA. et al. 2017. Exploring the causal pathway from telomere length to coronary heart disease: a network Mendelian randomization study. Circ. Res. 121:214–19 [Google Scholar]
  146. Zhan Y, Song C, Karlsson R, Tillander A, Reynolds CA. et al. 2015. Telomere length shortening and Alzheimer disease—a Mendelian randomization study. JAMA Neurol 72:1202–3 [Google Scholar]
  147. Zhou Q-G, Hu Y, Wu D-L, Zhu L-J, Chen C. et al. 2011. Hippocampal telomerase is involved in the modulation of depressive behaviors. J. Neurosci. 31:12258–69 [Google Scholar]
  148. Zhou Q-G, Wu H-Y, Zhou H, Liu M-Y, Lee H-W. et al. 2016. Reactivation of Tert in the medial prefrontal cortex and hippocampus rescues aggression and depression of Tert−/− mice. Transl. Psychiatry 6:e836 [Google Scholar]
/content/journals/10.1146/annurev-clinpsy-032816-045054
Loading
/content/journals/10.1146/annurev-clinpsy-032816-045054
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error