1932

Abstract

Primarily on the basis of C, N, S, and O stable isotope systematics, this article reviews recent achievements in understanding diamond formation and growth in Earth's mantle. Diamond is a metasomatic mineral that results from either the reduction or oxidation of mobile C-bearing liquids (fluids or melts) that intrude preexisting lithologies (eclogites, peridotites, and metamorphic rocks). This process seems ubiquitous, as it occurs over a large range of depths and extends through time. Diamond-forming carbon derives mainly from the convective asthenosphere. Most of its isotopic anomalies reflect fractionation processes in the lithospheric mantle, which are attributed to diamond precipitation itself and/or a mineralogical control occurring prior to diamond precipitation. Evidence for a mineralogical control would be the decoupling of the 15N/14N ratios in eclogitic diamond from other tracers of subduction in inclusions in the same diamond. C isotope anomalies related to subduction are rare and are probably best seen in diamonds from the transition zone.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-042711-105259
2014-05-30
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/earth/42/1/annurev-earth-042711-105259.html?itemId=/content/journals/10.1146/annurev-earth-042711-105259&mimeType=html&fmt=ahah

Literature Cited

  1. Akagi T, Masuda A. 1988. Isotopic and elemental evidence for a relationship between kimberlite and Zaire cubic diamonds. Nature 336:665–67 [Google Scholar]
  2. Anand M, Taylor LA, Misra KC, Carlson WD, Sobolev NV. 2004. Nature of diamonds in Yakutian eclogites: views from eclogite tomography and mineral inclusions in diamonds. Lithos 77:333–48 [Google Scholar]
  3. Arima M, Kozai Y, Akaishi M. 2002. Diamond nucleation and growth by reduction of carbonate melts under high-pressure and high-temperature conditions. Geology 30:691–94 [Google Scholar]
  4. Aulbach S, Stachel T, Viljoen KS, Brey GP, Harris JW. 2002. Eclogitic and websteritic diamond sources beneath the Limpopo Belt—is slab-melting the link?. Contrib. Mineral. Petrol. 143:56–70 [Google Scholar]
  5. Badziag P, Verwoerd WS, Ellis WP, Greiner NR. 1990. Nanometre-sized diamonds are more stable than graphite. Nature 343:244–45 [Google Scholar]
  6. Bebout GE, Fogel ML. 1992. Nitrogen-isotope compositions of metasedimentary rocks in the Catalina schist, California: implications for metamorphic devolatilization history. Geochim. Cosmochim. Acta 56:2839–49 [Google Scholar]
  7. Boyd SR, Mattey DP, Pillinger CT, Milledge HJ, Mendelssohn M, Seal M. 1987. Multiple growth events during diamond genesis: an integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones. Earth Planet. Sci. Lett. 86:341–53 [Google Scholar]
  8. Boyd SR, Pineau F, Javoy M. 1994. Modeling the growth of natural diamonds. Chem. Geol. 116:29–42 [Google Scholar]
  9. Brenker FE, Vincze L, Vekemans B, Nasdala L, Stachel T. et al. 2005. Detection of a Ca-rich lithology in the Earth's deep (>300 km) convecting mantle. Earth Planet. Sci. Lett. 236:579–87 [Google Scholar]
  10. Brown M. 2007. Metamorphic conditions in orogenic belts: a record of secular change. Int. Geol. Rev. 49:193–234 [Google Scholar]
  11. Bulanova GP, Walter MJ, Smith CB, Kohn SC, Armstrong LS. et al. 2010. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib. Mineral. Petrol. 160:489–510 [Google Scholar]
  12. Bureau H, Langenhorst F, Auzende A-L, Frost DJ, Esteve I, Siebert J. 2012. The growth of fibrous, cloudy and polycrystalline diamonds. Geochim. Cosmochim. Acta 77:202–14 [Google Scholar]
  13. Busigny V, Bebout GE. 2013. Nitrogen in the silicate Earth: speciation and isotopic behavior during mineral-fluid interactions. Elements 9:353–58 [Google Scholar]
  14. Busigny V, Cartigny P, Philippot P. 2011. Nitrogen isotopes in ophiolitic metagabbros: a re-evaluation of modern nitrogen fluxes in subduction zones and implication for the early Earth atmosphere. Geochim. Cosmochim. Acta 75:7502–21 [Google Scholar]
  15. Busigny V, Cartigny P, Philippot P, Ader M, Javoy M. 2003. Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: evidence from HP to UHP oceanic metasediments of the Schistes Lustres nappe (western Alps, Europe). Earth Planet. Sci. Lett. 215:27–42 [Google Scholar]
  16. Butler JE, Woodin RL. 1993. Thin-film diamond growth mechanisms. Philos. Trans. R. Soc. A 342:209–24 [Google Scholar]
  17. Cartigny P. 2005. Stable isotopes and the origin of diamond. Elements 1:79–84 [Google Scholar]
  18. Cartigny P. 2010. Mantle-related carbonados? Geochemical insights from diamonds from the Dachine komatiite (French Guiana). Earth Planet. Sci. Lett. 296:329–39 [Google Scholar]
  19. Cartigny P, Chinn I, Viljoen KS, Robinson D. 2004a. Early Proterozoic ultrahigh pressure metamorphism: evidence from microdiamonds. Science 304:853–55 [Google Scholar]
  20. Cartigny P, De Corte K, Shatsky VS, Ader M, De Paepe P. et al. 2001a. The origin and formation of metamorphic microdiamonds from the Kokchetav massif, Kazakhstan: a nitrogen and carbon isotopic study. Chem. Geol. 176:265–81 [Google Scholar]
  21. Cartigny P, Farquhar J, Thomassot E, Harris JW, Wing B. et al. 2009. A mantle origin for Paleoarchean peridotitic diamonds from the Panda kimberlite, Slave Craton: evidence from 13C-, 15N- and 33,34S-stable isotope systematics. Lithos 112:852–64 [Google Scholar]
  22. Cartigny P, Harris JW, Javoy M. 1998a. Eclogitic diamond formation at Jwaneng: no room for a recycled component. Science 280:1421–24 [Google Scholar]
  23. Cartigny P, Harris JW, Javoy M. 2001b. Diamond genesis, mantle fractionations and mantle nitrogen content: a study of delta 13C-N concentrations in diamonds. Earth Planet. Sci. Lett. 185:85–98 [Google Scholar]
  24. Cartigny P, Harris JW, Phillips D, Girard M, Javoy M. 1998b. Subduction-related diamonds? The evidence for a mantle-derived origin from coupled δ13C-δ15N determinations. Chem. Geol. 147:147–59 [Google Scholar]
  25. Cartigny P, Marty B. 2013. Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere-crust-mantle connection. Elements 9:359–66 [Google Scholar]
  26. Cartigny P, Stachel T, Harris JW, Javoy M. 2004b. Constraining diamond metasomatic growth using C- and N-stable isotopes: examples from Namibia. Lithos 77:359–73 [Google Scholar]
  27. Chacko T, Cole DR, Horita J. 2001. Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Rev. Mineral. Geochem. 43:1–81 [Google Scholar]
  28. Chaussidon M, Albarede F, Sheppard SMF. 1987. Sulfur isotope heterogeneity in the mantle from ion microprobe measurements of sulfide inclusions in diamonds. Nature 330:242–44 [Google Scholar]
  29. Chinn IL, Gurney JJ, Milledge JH, Taylor WR, Woods PA. 1995. Cathodoluminescence properties of CO2-bearing and CO2-free diamonds from the George Creek K1 kimberlite dike. Int. Geol. Rev. 37:254–58 [Google Scholar]
  30. Chrenko RM, Tuft RE, Strong HM. 1977. Transformation of state of nitrogen in diamond. Nature 270:141–44 [Google Scholar]
  31. Craven JA, Harte B, Fisher D, Schulze DJ. 2009. Diffusion in diamond. I. Carbon isotope mapping of natural diamond. Mineral. Mag. 73:193–200 [Google Scholar]
  32. Creighton S, Stachel T, Matveev S, Höfer H, McCammon C, Luth R. 2009. Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism. Contrib. Mineral. Petrol. 157:491–504 [Google Scholar]
  33. Dasgupta R, Hirschmann MM. 2010. The deep carbon cycle and melting in Earth's interior. Earth Planet. Sci. Lett. 298:1–13 [Google Scholar]
  34. Daulton TL, Ozima M. 1996. Radiation-induced diamond formation in uranium-rich carbonaceous materials. Science 271:1260–63 [Google Scholar]
  35. Davies RM, Griffin WL, Pearson NJ, Andrew A, Doyle BJ, O'Reilly SY. 1999. Diamonds from the deep: pipe DO-27, Slave craton, Canada. Proc. 7th Int. Kimberlite Conf. JJ Gurney, JL Gurney, MD Pascoe, SH Richardson 148–55 Cape Town, S. Afr: Red Roof Des. [Google Scholar]
  36. De Corte K, Cartigny P, Shatsky VS, Sobolev NV, Javoy M. 1998. Evidence of fluid inclusions in metamorphic microdiamonds from the Kokchetav massif, northern Kazakhstan. Geochim. Cosmochim. Acta 62:3765–73 [Google Scholar]
  37. De Stefano A, Kopylova MG, Cartigny P, Afanasiev V. 2009. Diamonds and eclogites of the Jericho kimberlite (Northern Canada). Contrib. Mineral. Petrol. 158:295–315 [Google Scholar]
  38. Deines P. 1980. The carbon isotopic composition of diamonds: relationship to diamond shape, color, occurrence, and vapor composition. Geochim. Cosmochim. Acta 44:943–61 [Google Scholar]
  39. Deines P. 2002. The carbon isotope geochemistry of mantle xenoliths. Earth-Sci. Rev. 58:247–78 [Google Scholar]
  40. Deines P, Harris JW. 1995. Sulfide inclusion chemistry and carbon isotopes of African diamonds. Geochim. Cosmochim. Acta 59:3173–88 [Google Scholar]
  41. Deines P, Harris JW, Gurney JJ. 1987. Carbon isotopic composition, nitrogen content and inclusion composition of diamonds from the Roberts Victor kimberlite, South Africa: evidence for 13C depletion in the mantle. Geochim. Cosmochim. Acta 51:1227–43 [Google Scholar]
  42. Deines P, Harris JW, Gurney JJ. 1991. The carbon isotopic composition and nitrogen content of lithospheric and asthenospheric diamonds from the Jagersfontein and Koffiefontein kimberlite, South Africa. Geochim. Cosmochim. Acta 55:2615–25 [Google Scholar]
  43. Deines P, Harris JW, Gurney JJ. 1993. Depth-related carbon-isotope and nitrogen concentration variability in the mantle below the Orapa kimberlite, Botswana, Africa. Geochim. Cosmochim. Acta 57:2781–96 [Google Scholar]
  44. DeVries RC. 1973. Evidence for plastic deformation in the natural polycrystalline diamond, framesite. Mater. Res. Bull. 8:733–42 [Google Scholar]
  45. Dobrzhinetskaya L, Wirth R, Green H. 2014. Diamonds in Earth's oldest zircons from Jack Hills conglomerate, Australia, are contamination. Earth Planet. Sci. Lett. 387:212–18 [Google Scholar]
  46. Dunn SR, Valley JW. 1992. Calcite graphite isotope thermometry: a test for polymetamorphism in marble, Tudor gabbro aureole, Ontario, Canada. J. Metamorph. Geol. 10:487–501 [Google Scholar]
  47. Eiler JM. 2001. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev. Mineral. Geochem. 43:319–64 [Google Scholar]
  48. Eldridge CS, Comston W, Williams IS, Harris JW, Bristow JW. 1991. Isotope evidence for the involvement of recycled sediments in diamond formation. Nature 353:649–53 [Google Scholar]
  49. Evans T, Harris JW. 1989. Nitrogen aggregation, inclusion equilibration temperatures and the age of diamonds. See Ross et al. 1989 1001–6
  50. Evans T, Qi Z. 1982. The kinetics of the aggregation of nitrogen atoms in diamond. Proc. R. Soc. A 381:159–78 [Google Scholar]
  51. Farquhar J, Bao HM, Thiemens M. 2000. Atmospheric influence of Earth's earliest sulfur cycle. Science 289:756–58 [Google Scholar]
  52. Farquhar J, Wing BA, McKeegan KD, Harris JW, Cartigny P, Thiemens MH. 2002. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science 298:2369–72 [Google Scholar]
  53. Finnie KS, Fisher D, Griffin WL, Harris JW, Sobolev NV. 1994. Nitrogen aggregation in metamorphic diamonds from Kazakhstan. Geochim. Cosmochim. Acta 58:5173–77 [Google Scholar]
  54. Fitzsimons ICW, Harte B, Chinn IL, Gurney JJ, Taylor WR. 1999. Extreme chemical variation in complex diamonds from George Creek, Colorado: a SIMS study of nitrogen abundance and carbon isotope composition. Mineral. Mag. 63:857–78 [Google Scholar]
  55. Frezzotti ML, Selverstone J, Sharp ZD, Compagnoni R. 2011. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat. Geosci. 4:703–6 [Google Scholar]
  56. Frost DJ, Liebske C, Langenhorst F, McCammon CA, Tronnes RG, Rubie DC. 2004. Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 428:409–12 [Google Scholar]
  57. Frost DJ, McCammon CA. 2008. The redox state of Earth's mantle. Annu. Rev. Earth Planet. Sci. 36:389–420 [Google Scholar]
  58. Galimov EM. 1991. Isotope fractionation related to kimberlite magmatism and diamond formation. Geochim. Cosmochim. Acta 55:1697–708 [Google Scholar]
  59. Garai J, Haggerty SE, Rekhi S, Chance M. 2006. Infrared absorption investigations confirm the extraterrestrial origin of carbonado diamonds. Astrophys. J. Lett. 653:153–56 [Google Scholar]
  60. Gurney JJ. 1989. Diamonds. See Ross et al. 1989 935–65
  61. Gurney JJ, Harris JW, Rickard RS. 1984. Silicate and oxide inclusions in diamonds from the Orapa mine, Botswana. See Kornprobst 1984 3–10
  62. Haggerty SE. 1986. Diamond genesis in a multiply-constrained model. Nature 320:34–38 [Google Scholar]
  63. Haggerty SE. 1999. A diamond trilogy: superplumes, supercontinents, and supernovae. Science 285:851–60 [Google Scholar]
  64. Haggerty SE. 2014. Carbonado: physical and chemical properties, a critical evaluation of proposed origins, and a revised genetic model. Earth-Sci. Rev. 130:49–72 [Google Scholar]
  65. Harris JW. 1992. Diamond geology. The Properties of Natural and Synthetic Diamond JE Field 345–94 London: Academic [Google Scholar]
  66. Harris JW, Gurney JJ. 1979. Inclusions in diamond. The Properties of Diamond JE Field 555–91 London: Academic [Google Scholar]
  67. Harris JW, Hawthorne JB, Oosterveld MM, Wehmeyer E. 1975. A classification scheme for diamond and a comparative study of South African diamond characteristics. Phys. Chem. Earth 9:765–83 [Google Scholar]
  68. Harte B. 2010. Diamond formation in the deep mantle; the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral. Mag. 74:189–215 [Google Scholar]
  69. Harte B, Harris JW. 1994. Lower mantle mineral associations preserved in diamonds. Mineral. Mag. 58A:384–86 [Google Scholar]
  70. Harte B, Harris JW, Hutchison MT, Watt GR, Wilding MC. 1999. Lower mantle mineral associations in diamonds from São Luiz, Brazil. Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd Y Fei, CM Bertka, BO Mysen 125–53 Houston: Geochem. Soc. [Google Scholar]
  71. Harte B, Richardson S. 2012. Mineral inclusions in diamonds track the evolution of a Mesozoic subducted slab beneath West Gondwanaland. Gondwana Res. 21:236–45 [Google Scholar]
  72. Heaney PJ, Vicenzi EP, De S. 2005. Strange diamonds: the mysterious origins of carbonado and framesite. Elements 1:85–89 [Google Scholar]
  73. Hough RM, Gilmour I, Pillinger CT, Arden JW, Gilkes KWR. et al. 1995. Diamond and silicon-carbide in impact melt rock from the Ries impact crater. Nature 378:41–44 [Google Scholar]
  74. Hwang SL, Chu HT, Yui TF, Shen PY, Schertl HP. et al. 2006. Nanometer-size P/K-rich silica glass (former melt) inclusions in microdiamond from the gneisses of Kokchetav and Erzgebirge massifs: diversified characteristics of the formation media of metamorphic microdiamond in UHP rocks due to host-rock buffering. Earth Planet. Sci. Lett. 243:94–106 [Google Scholar]
  75. Ickert RB, Stachel T, Stern RA, Harris JW. 2013. Diamond from recycled crustal carbon documented by coupled δ18O-δ13C measurements of diamonds and their inclusions. Earth Planet. Sci. Lett. 364:85–97 [Google Scholar]
  76. Izraeli ES, Harris JW, Navon O. 2001. Brine inclusions in diamonds: a new upper mantle fluid. Earth Planet. Sci. Lett. 187:323–32 [Google Scholar]
  77. Izraeli ES, Harris JW, Navon O. 2004. Fluid and mineral inclusions in cloudy diamonds from Koffiefontein, South Africa. Geochim. Cosmochim. Acta 68:2561–75 [Google Scholar]
  78. Jacob DE. 2004. Nature and origin of eclogite xenoliths from kimberlites. Lithos 77:295–316 [Google Scholar]
  79. Jacob DE, Viljoen KS, Grassineau N, Jagoutz E. 2000. Remobilization in the cratonic lithosphere recorded by polycrystalline diamond (framesite). Science 289:1182–85 [Google Scholar]
  80. Jacob DE, Wirth R, Enzmann F, Kronz A, Schreiber A. 2011. Nano-inclusion suite and high resolution micro-computed-tomography of polycrystalline diamond (framesite) from Orapa, Botswana. Earth Planet. Sci. Lett. 308:307–16 [Google Scholar]
  81. Janse AJA, Sheahan PA. 1995. Catalogue of worldwide diamond and kimberlite occurrences: a selective and annotative approach. J. Geochem. Explor. 53:73–111 [Google Scholar]
  82. Javoy M, Pineau F, Delorme H. 1986. Carbon and nitrogen isotopes in the mantle. Chem. Geol. 57:41–62 [Google Scholar]
  83. Jeynes C. 1978. Natural polycrystalline diamond. Ind. Diam. Rev. 39:14–23 [Google Scholar]
  84. Johnson CN, Stachel T, Muehlenbachs K, Stern RA, Armstrong JP. 2012. The micro-/macro-diamond relationship: a case study from the Artemisia kimberlite (Northern Slave Craton, Canada). Lithos 148:86–97 [Google Scholar]
  85. Kagi H, Fukura S. 2008. Infrared and Raman spectroscopic observations of Central African carbonado and implications for its origin. Eur. J. Mineral. 20:387–93 [Google Scholar]
  86. Kaiser W, Bond WL. 1959. Nitrogen, a major impurity in common type I diamond. Phys. Rev. 115:857–63 [Google Scholar]
  87. Kaminsky FV. 1991. Carbonado and yakutite: properties and possible genesis. Proc. 5th Int. Kimberlite Conf. HOA Meyer, OH Leonardos 136–43 Brasilia, Braz: Dept. Nac. Prod. Min. [Google Scholar]
  88. Kaminsky FV. 2012. Mineralogy of the lower mantle: a review of “super-deep” mineral inclusions in diamond. Earth-Sci. Rev. 110:127–47 [Google Scholar]
  89. Kaminsky FV, Zakharchenko OD, Davies R, Griffin WL, Khachatryan-Blinova GK, Shiryaev AA. 2001. Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib. Mineral. Petrol. 140:734–53 [Google Scholar]
  90. Kamiya Y, Lang AR. 1964. On the structure of coated diamonds. Philos. Mag. 11:347–56 [Google Scholar]
  91. Kennedy CS, Kennedy GC. 1976. Equilibrium boundary between graphite and diamond. J. Geophys. Res. 81:2467–70 [Google Scholar]
  92. Kesson SE, Ringwood AE. 1989. Slab mantle interactions. 2. The formation of diamonds. Chem. Geol. 78:97–118 [Google Scholar]
  93. Kirkley MB, Gurney JJ, Otter ML, Hill SJ, Daniels LR. 1991. The application of C isotope measurements to the identification of the sources of C in diamonds: a review. Appl. Geochem. 6:477–94 [Google Scholar]
  94. Klein-BenDavid O, Izraeli ES, Hauri E, Navon O. 2004. Mantle fluid evolution—a tale of one diamond. Lithos 77:243–53 [Google Scholar]
  95. Klein-BenDavid O, Pearson DG, Nowell GM, Ottley C, McNeill JCR, Cartigny P. 2010. Mixed fluid sources involved in diamond growth constrained by Sr-Nd-Pb-C-N isotopes and trace elements. Earth Planet. Sci. Lett. 289:123–33 [Google Scholar]
  96. Klein-BenDavid O, Pearson DG, Nowell GM, Ottley C, McNeill JCR. et al. 2014. The sources and time-integrated evolution of diamond-forming fluids: trace elements and isotopic evidence. Geochim. Cosmochim. Acta 125:146–69 [Google Scholar]
  97. Knoche R, Sweeney RJ, Luth RW. 1999. Carbonation and decarbonation of eclogites: the role of garnet. Contrib. Mineral. Petrol. 135:332–39 [Google Scholar]
  98. Koga KT, Van Orman JA, Walter MJ. 2003. Diffusive relaxation of carbon and nitrogen isotope heterogeneity in diamond: a new thermochronometer. Phys. Earth Planet. Inter. 139:35–43 [Google Scholar]
  99. Koga KT, Walter MJ, Nakamura E, Kobayashi K. 2005. Carbon self-diffusion in a natural diamond. Phys. Rev. B 72:024108 [Google Scholar]
  100. Konishi H, Xu HF, Spicuzza M, Valley JW. 2008. Polycrystalline diamond inclusions in Jack Hills zircon: carbonado?. Geochim. Cosmochim. Acta 72:A489 [Google Scholar]
  101. Kopylova M, Navon O, Dubrovinsky L, Khachatryan G. 2010. Carbonatitic mineralogy of natural diamond-forming fluids. Earth Planet. Sci. Lett. 291:126–37 [Google Scholar]
  102. Kornprobst J. 1984. Proc. 3rd Int. Kimberlite Conf. Amsterdam: Elsevier
  103. Leost I, Stachel T, Brey GP, Harris JW, Ryabchikov ID. 2003. Diamond formation and source carbonation: mineral associations in diamonds from Namibia. Contrib. Mineral. Petrol. 145:15–24 [Google Scholar]
  104. Litvin YA. 1998. Hot spots of mantle and experiment to 10 GPa: alkaline reactions, lithosphere carbonatization, and new diamond-generating systems. Russ. Geol. Geophys. 39:1760–68 [Google Scholar]
  105. Liu Y, Taylor LA, Sarbadhikari AB, Valley JW, Ushikubo T. et al. 2009. Metasomatic origin of diamonds in the world's largest diamondiferous eclogite. Lithos 112:1014–24 [Google Scholar]
  106. Lowry D, Mattey DP, Harris JW. 1999. Oxygen isotope composition of syngenetic inclusions in diamond from the Finsch Mine, RSA. Geochim. Cosmochim. Acta 63:1825–36 [Google Scholar]
  107. Luth RW. 1993. Diamonds, eclogites, and the oxidation-state of the Earth's mantle. Science 261:66–68 [Google Scholar]
  108. McNeill J, Pearson DG, Klein-BenDavid O, Nowell GM, Ottley CJ, Chinn I. 2009. Quantitative analysis of trace element concentrations in some gem-quality diamonds. J. Phys. Condens. Matter 21:364207 [Google Scholar]
  109. Menneken M, Nemchin AA, Geisler T, Pidgeon RT, Wilde SA. 2007. Hadean diamonds in zircon from Jack Hills, Western Australia. Nature 448:917–20 [Google Scholar]
  110. Mikhail S, Dobosi G, Verchovsky AB, Kurat G, Jones AP. 2013. Peridotitic and websteritic diamondites provide new information regarding mantle melting and metasomatism induced through the subduction of crustal volatiles. Geochim. Cosmochim. Acta 107:1–11 [Google Scholar]
  111. Mikhail S, Guillermier C, Franchi IA, Beard AD, Crispin K. et al. 2014. Empirical evidence for the fractionation of carbon isotopes between diamond and iron carbide from the Earth's mantle. Geochem. Geophys. Geosyst. doi: 10.1002/2013GC005138
  112. Mitchell RS, Giardini AA. 1953. Oriented olivine inclusions in diamond. Am. Mineral. 38:136–38 [Google Scholar]
  113. Moore M. 1985. Diamond morphology. Ind. Diamond Rev. 45:67–71 [Google Scholar]
  114. Moore RO, Gurney JJ. 1985. Pyroxene solid solution in garnets included in diamond. Nature 318:553–55 [Google Scholar]
  115. Moore RO, Gurney JJ, Griffin WL, Shimizu N. 1991. Ultra-high pressure garnet inclusions in Monastery diamonds: trace element abundance patterns and conditions of origin. Eur. J. Mineral. 3:213–30 [Google Scholar]
  116. Navon O. 1999. Formation of diamonds in the Earth's mantle. Proc. 7th Int. Kimberlite Conf. JJ Gurney, JL Gurney, MD Pascoe, SH Richardson 148–55 Cape Town, S. Afr: Red Roof Des. [Google Scholar]
  117. Navon O, Hutcheon ID, Rossman GR, Wasserburg GJ. 1988. Mantle-derived fluids in diamond micro-inclusions. Nature 355:784–89 [Google Scholar]
  118. Nisbet EG, Mattey DP, Lowry D. 1994. Can diamonds be dead bacteria?. Nature 367:694 [Google Scholar]
  119. Orlov YL. 1977. The Mineralogy of the Diamond New York: Wiley
  120. Ozima M, Zashu S. 1991. Noble gas state of the ancient mantle as deduced from noble gases in coated diamonds. Earth Planet. Sci. Lett. 105:13–27 [Google Scholar]
  121. Palot M, Cartigny P, Harris JW, Kaminsky FV, Stachel T. 2012. Evidence for deep mantle convection and primordial heterogeneity from nitrogen and carbon stable isotopes in diamond. Earth Planet. Sci. Lett. 357–58:179–93 [Google Scholar]
  122. Palot M, Cartigny P, Viljoen F. 2009. Diamond origin and genesis: a C and N stable isotope study on diamonds from a single eclogitic xenolith (Kaalvallei, South Africa). Lithos 112:758–66 [Google Scholar]
  123. Palot M, Pearson DG, Stern RA, Stachel T, Harris JW. 2013. Multiple growth events, processes and fluid sources involved in diamond genesis: a micro-analytical study of sulphide-bearing diamonds from Finsch mine, RSA. Geochim. Cosmochim. Acta 106:51–70 [Google Scholar]
  124. Pal'yanov YN, Bataleva YV, Sokol AG, Borzdova YM, Kupriyanov IN. et al. 2013. Mantle-slab interaction and redox mechanism of diamond formation. Proc. Natl. Acad. Sci. USA 110:20408–13 [Google Scholar]
  125. Pal'yanov YN, Sokol AG, Borzdov YM, Khokhryakov AF, Sobolev NV. 1999. Diamond formation from mantle carbonate fluids. Nature 400:417–18 [Google Scholar]
  126. Pal'yanov YN, Sokol AG, Borzdov YM, Khokhryakov AF, Sobolev NV. 2002. Diamond formation through carbonate-silicate interaction. Am. Mineral. 87:1009–13 [Google Scholar]
  127. Pearson DG, Wittig N. 2008. Formation of Archaean continental lithosphere and its diamonds: the root of the problem. J. Geol. Soc. 165:895–914 [Google Scholar]
  128. Pidgeon RT. 1989. Archean diamond xenocrysts in kimberlites—how definitive is the evidence?. See Ross et al. 1989 1007–11
  129. Pollack HN, Chapman DS. 1977. On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38:279–96 [Google Scholar]
  130. Rege S, Griffin WL, Kurat G, Jackson SE, Pearson N, O'Reilly SY. 2008. Trace-element geochemistry of diamondite: crystallisation of diamond from kimberlite-carbonatite melts. Lithos 106:39–54 [Google Scholar]
  131. Rege S, Griffin WL, Pearson NJ, Araujo D, Zedgenizov D, O'Reilly SY. 2010. Trace-element patterns of fibrous and monocrystalline diamonds: insights into mantle fluids. Lithos 118:313–37 [Google Scholar]
  132. Rice A. 2003. Do diamond-inclusion ages date only the protolith, not the diamond formation?. S. Afr. J. Sci. 99:227–33 [Google Scholar]
  133. Richardson SH, Gurney JJ, Erlank AJ, Harris JW. 1984. Origin of diamonds in old enriched mantle. Nature 310:198–202 [Google Scholar]
  134. Robertson R, Fox JJ, Martin AE. 1934. Two types of diamond. Philos. Trans. R. Soc. A 232:463–85 [Google Scholar]
  135. Robinson DN, Gurney JJ, Shee SR. 1984. Diamond eclogite and graphite eclogite xenoliths from Orapa, Botswana. See Kornprobst 1984 11–24
  136. Robinson DN, Scott JA, Van Nierkerk A, Anderson VG. 1989. The sequence of events reflected in the diamonds of some southern African kimberlites. See Ross et al. 1989 966–89
  137. Rohrbach A, Ballhaus C, Golla-Schindler U, Ulmer P, Kamenetsky VS, Kuzmin DV. 2007. Metal saturation in the upper mantle. Nature 449:456–58 [Google Scholar]
  138. Rohrbach A, Schmidt MW. 2011. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling. Nature 472:209–12 [Google Scholar]
  139. Ross J, Jaques AL, Ferguson J, Green DH, O'Reilly SY. et al. eds; 1989. Proc. 4th Int. Kimberlite Conf. Perth, Aust: Geol. Soc. Aust. [Google Scholar]
  140. Satish-Kumar M, So H, Yoshino T, Kato M, Hiroi Y. 2011. Experimental determination of carbon isotope fractionation between iron carbide melt and carbon: 12C-enriched carbon in the Earth's core?. Earth Planet. Sci. Lett. 310:340–48 [Google Scholar]
  141. Sautter V, Haggerty SE, Field S. 1991. Ultradeep (>300 kilometers) ultramafic xenoliths: petrological evidence from the transition zone. Science 252:827–30 [Google Scholar]
  142. Schauble EA. 2009. Equilibrium carbon and hydrogen isotope fractionation in iron. Eos Trans. AGU 90, Fall Meet. Suppl., Abstr. V11C-1967
  143. Schidlowski M. 2001. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambr. Res. 106:117–34 [Google Scholar]
  144. Schrauder M, Navon O. 1993. Solid carbon dioxide in a natural diamond. Nature 365:42–44 [Google Scholar]
  145. Schrauder M, Navon O. 1994. Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim. Cosmochim. Acta 58:761–71 [Google Scholar]
  146. Schulze DJ, Harte B, Edinb. Ion Microprobe Facil. Staff, Page FZ, Valley JW et al. 2013. Anticorrelation between low δ13C of eclogitic diamonds and high δ18O of their coesite and garnet inclusions requires a subduction origin. Geology 41:455–58 [Google Scholar]
  147. Schulze DJ, Harte B, Valley JW, Brenan JM, Channer DMD. 2003. Extreme crustal oxygen isotope signatures preserved in coesite in diamond. Nature 423:68–70 [Google Scholar]
  148. Schulze DJ, Harte B, Valley JW, Channer DMD. 2004. Evidence of subduction and crust-mantle mixing from a single diamond. Lithos 77:349–58 [Google Scholar]
  149. Schulze DJ, Wiese D, Steude J. 1996. Abundance and distribution of diamonds in eclogite revealed by volume visualization of CT X-ray scans. J. Geol. 104:109–13 [Google Scholar]
  150. Scott Smith BH, Danchin RV, Harris JW, Stracke KJ. 1984. Kimberlites near Orroroo, South Australia. See Kornprobst 1984 121–42
  151. Sellschop JPF. 1992. Nuclear probes in the study of diamond. The Properties of Natural and Synthetic Diamond JE Field 81–179 London: Academic [Google Scholar]
  152. Shirey SB, Cartigny P, Frost DJ, Keshav S, Nestola F. et al. 2013. Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 75:355–422 [Google Scholar]
  153. Shirey SB, Richardson SH. 2011. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333:434–36 [Google Scholar]
  154. Simakov SK. 2011. Nanodiamond formation in natural processes from fluid systems at low P-T parameters. Dokl. Earth Sci. 436:148–51 [Google Scholar]
  155. Smart KA, Chacko T, Stachel T, Muehlenbachs K, Stern RA, Heaman LM. 2011. Diamond growth from oxidized carbon sources beneath the Northern Slave Craton, Canada: a δ13C-N study of eclogite-hosted diamonds from the Jericho kimberlite. Geochim. Cosmochim. Acta 75:6027–47 [Google Scholar]
  156. Smith CB. 1983. Pb, Sr and Nd isotopic evidence for sources of African Cretaceous kimberlites. Nature 304:51–54 [Google Scholar]
  157. Smith EM, Kopylova MG, Nowell GM, Pearson DG, Ryder J. 2012. Archean mantle fluids preserved in diamonds from Wawa, Superior Craton. Geology 40:1071–74 [Google Scholar]
  158. Smith JV, Dawson JB. 1985. Carbonado: diamond aggregates from early impacts of crustal rocks. Geology 13:342–43 [Google Scholar]
  159. Sobolev NV, Galimov EM, Ivanovskaya IN, Yefimova ES. 1979. The carbon isotope compositions of diamonds containing crystalline inclusions. Dokl. Akad. Nauk. USSR 189:133–36 [Google Scholar]
  160. Sobolev NV, Logvinova AM, Efimova ES. 2009. Syngenetic phlogopite inclusions in kimberlite-hosted diamonds: implications for role of volatiles in diamond formation. Russ. Geol. Geophys. 50:1234–48 [Google Scholar]
  161. Sobolev NV, Schertl HP, Valley JW, Page FZ, Kita NT. et al. 2011. Oxygen isotope variations of garnets and clinopyroxenes in a layered diamondiferous calcsilicate rock from Kokchetav Massif, Kazakhstan: a window into the geochemical nature of deeply subducted UHPM rocks. Contrib. Mineral. Petrol. 162:1079–92 [Google Scholar]
  162. Sobolev NV, Shatsky VS. 1990. Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature 343:742–46 [Google Scholar]
  163. Sobolev NV, Snyder GA, Taylor LA, Keller RA, Yefimova ES. et al. 1998. Extreme chemical diversity in the mantle during eclogitic diamond formation: evidence from 35 garnet and 5 pyroxene inclusions in a single diamond. Int. Geol. Rev. 40:567–78 [Google Scholar]
  164. Stachel T, Aulbach S, Brey GP, Harris JW, Leost I. et al. 2004. The trace element composition of silicate inclusions in diamonds: a review. Lithos 77:1–19 [Google Scholar]
  165. Stachel T, Brey GP, Harris JW. 2000a. Kankan diamonds (Guinea) I: from the lithosphere down to the transition zone. Contrib. Mineral. Petrol. 140:1–15 [Google Scholar]
  166. Stachel T, Harris JW. 2008. The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol. Rev. 34:5–32 [Google Scholar]
  167. Stachel T, Harris JW. 2009. Formation of diamond in the Earth's mantle. J. Phys. Condens. Matter 21:364206 [Google Scholar]
  168. Stachel T, Harris JW, Brey GP, Joswig W. 2000b. Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contrib. Mineral. Petrol. 140:16–27 [Google Scholar]
  169. Stachel T, Harris JW, Muehlenbachs K. 2009. Sources of carbon in inclusion bearing diamonds. Lithos 112:625–37 [Google Scholar]
  170. Sumino H, Dobrzhinetskaya LF, Burgess R, Kagi H. 2011. Deep-mantle-derived noble gases in metamorphic diamonds from the Kokchetav massif, Kazakhstan. Earth Planet. Sci. Lett. 307:439–49 [Google Scholar]
  171. Sunagawa I. 1990. Growth and morphology of diamond crystals under stable and metastable conditions. J. Crystal Growth 99:1156–61 [Google Scholar]
  172. Swart PK, Pillinger CT, Milledge HJ, Seal M. 1983. Carbon isotopic variations within individual diamonds. Nature 303:793–95 [Google Scholar]
  173. Tappert R, Stachel T, Harris JW, Muehlenbachs K, Ludwig T, Brey GP. 2005. Subducting oceanic crust: the source of deep diamonds. Geology 33:565–68 [Google Scholar]
  174. Taylor LA, Anand M. 2004. Diamonds: time capsules from the Siberian mantle. Chem. Erde Geochem. 64:1–74 [Google Scholar]
  175. Taylor LA, Snyder GA, Crozaz G, Sobolev VN, Yefimova ES, Sobolev NV. 1996. Eclogitic inclusions in diamonds: evidence of complex mantle processes over time. Earth Planet. Sci. Lett. 142:535–51 [Google Scholar]
  176. Taylor WR, Jaques AL, Ridd M. 1990. Nitrogen-defect aggregation characteristics of some Australasian diamonds: time-temperature constraints on the source regions of pipe and alluvial diamonds. Am. Mineral. 75:1290–310 [Google Scholar]
  177. Thomassot E, Cartigny P, Harris JW. 2009a. Metasomatic processes in the cratonic lithosphere: the case of polycrystalline diamonds. Proc. 9th Int. Kimberlite Conf. S Foley, S Aulbach, G Brey, H Grütter, H Höfer, et al., abstr. 9IKC-A-00313 Amsterdam: Elsevier http://www.cosis.net/members/meetings/abstracts/file.php/50/115032/pdf/9IKC-A-00313-1.pdf [Google Scholar]
  178. Thomassot E, Cartigny P, Harris JW, Lorand JP, Rollion-Bard C, Chaussidon M. 2009b. Metasomatic diamond growth: a multi-isotope study (13C, 15N, 33S, 34S) of sulphide inclusions and their host diamonds from Jwaneng (Botswana). Earth Planet. Sci. Lett. 282:79–90 [Google Scholar]
  179. Thomassot E, Cartigny P, Harris JW, Viljoen KS. 2007. Methane-related diamond crystallization in the Earth's mantle: stable isotope evidences from a single diamond-bearing xenolith. Earth Planet. Sci. Lett. 257:362–71 [Google Scholar]
  180. Heerden LA, Boyd SR, Milledge JH, Pillinger CT. Van 1995. The carbon and nitrogen-isotope characteristics of the Argyle and Ellendale diamonds, Western Australia. Int. Geol. Rev. 37:39–50 [Google Scholar]
  181. Veizer J, Hoefs J. 1976. Nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks. Geochim. Cosmochim. Acta 40:1387–95 [Google Scholar]
  182. Wada N, Matsuda J. 1998. A noble gas study of cubic diamonds from Zaire: constraints on their mantle source. Geochim. Cosmochim. Acta 62:2335–45 [Google Scholar]
  183. Walter MJ, Bulanova GP, Armstrong LS, Keshav S, Blundy JD. et al. 2008. Primary carbonatite melt from deeply subducted oceanic crust. Nature 454:622–30 [Google Scholar]
  184. Walter MJ, Kohn SC, Araujo D, Bulanova GP, Smith CB. et al. 2011. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 333:54–57 [Google Scholar]
  185. Watenphul A, Wunder B, Wirth R, Heinrich W. 2010. Ammonium-bearing clinopyroxene: a potential nitrogen reservoir in the Earth's mantle. Chem. Geol. 270:240–48 [Google Scholar]
  186. Weiss Y, Griffin WL, Bell DR, Navon O. 2011. High-Mg carbonatitic melts in diamonds, kimberlites and the sub-continental lithosphere. Earth Planet. Sci. Lett. 309:337–47 [Google Scholar]
  187. Weiss Y, Griffin WL, Navon O. 2013. Diamond-forming fluids in fibrous diamonds: the trace-element perspective. Earth Planet. Sci. Lett. 376:110–25 [Google Scholar]
  188. Wirth R, Rocholl A. 2003. Nanocrystalline diamond from the Earth's mantle underneath Hawaii. Earth Planet. Sci. Lett. 211:357–69 [Google Scholar]
  189. Zedgenizov DA, Harte B, Shatsky VS, Politov AA, Rylov GM, Sobolev NV. 2006. Directional chemical variations in diamonds showing octahedral following cuboid growth. Contrib. Mineral. Petrol. 151:45–57 [Google Scholar]
  190. Zedgenizov DA, Kagi H, Shatsky VS, Ragozin AL. 2014. Local variations of carbon isotope composition in diamonds from São-Luis (Brazil): evidence for heterogenous carbon reservoir in sublithospheric mantle. Chem. Geol. 363:114–24 [Google Scholar]
/content/journals/10.1146/annurev-earth-042711-105259
Loading
/content/journals/10.1146/annurev-earth-042711-105259
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error