1932

Abstract

Evidence is now compelling that elements heavier than helium in many white dwarf atmospheres have accumulated by accretion from orbiting rocky bodies, often larger than 100 km in diameter, such as asteroids. Consequently, we now possess a powerful tool to measure the elemental constituents of extrasolar minor planets. To zeroth order, the accreted extrasolar parent bodies resemble bulk Earth: They are at least 85% by mass composed of oxygen, magnesium, silicon, and iron; carbon and ice are only trace constituents. Assembled data for white dwarf pollutions suggest that differentiation of extrasolar planetesimals, leading to iron-rich cores and aluminum-rich crusts, is common. Except for instances of unexpectedly high calcium abundances, the compositions of extrasolar planetesimals can be understood as resulting from processes similar to those controlling the formation and evolution of objects in the inner Solar System.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060313-054740
2014-05-30
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/earth/42/1/annurev-earth-060313-054740.html?itemId=/content/journals/10.1146/annurev-earth-060313-054740&mimeType=html&fmt=ahah

Literature Cited

  1. Aannestad PA, Kenyon SJ, Hammond GL, Sion EM. 1993. Cool metallic-line white dwarfs, radial velocities, and interstellar accretion. Astron. J. 105:1033–44 [Google Scholar]
  2. Absil O, Defrere D, Coude du Foresto V, Di Folco E, Merand A. et al. 2013. A near-infrared interferometric survey of debris-disc stars. III. First statistics based on 42 stars observed with CHARA/FLUOR. Astron. Astrophys. 555:104A [Google Scholar]
  3. Alcock C, Fristrom CC, Siegelman R. 1986. On the number of comets around other single stars. Astrophys. J. 302:462–76 [Google Scholar]
  4. Barber SD, Patterson AJ, Kilic M, Leggett SK, Dufour P. et al. 2012. The frequency of debris disks at white dwarfs. Astrophys. J. 760:26 [Google Scholar]
  5. Becklin EE, Farihi J, Jura M, Song I, Weinberger A. et al. 2005. A dusty disk around GD 362, a white dwarf with a uniquely high photospheric metal abundance. Astrophys. J. Lett. 632:L119–22 [Google Scholar]
  6. Bergeron P, Wesemael F, Dufour P, Beauchamp A, Hunter C. et al. 2011. A comprehensive spectroscopic analysis of DB white dwarfs. Astrophys. J. 737:28 [Google Scholar]
  7. Bond JC, O'Brien DP, Lauretta DS. 2010. The compositional diversity of extrasolar terrestrial planets. I. In situ simulations. Astrophys. J. 715:1050–70 [Google Scholar]
  8. Bonsor A, Mustill AJ, Wyatt MC. 2011. Dynamical effects of stellar mass-loss on a Kuiper-like belt. MNRAS 414:930–39 [Google Scholar]
  9. Brown SM, Elkins-Tanton LT. 2009. Compositions of Mercury's earliest crust from magma ocean models. Earth Planet. Sci. Lett. 286:446–55 [Google Scholar]
  10. Canup RM. 2004. Dynamics of lunar formation. Annu. Rev. Astron. Astrophys. 42:441–75 [Google Scholar]
  11. Chayer P, Fontaine G, Wesemael F. 1995. Radiative levitation in hot white dwarfs: equilibrium theory. Astrophys. J. Suppl. 99:189–221 [Google Scholar]
  12. Chen CH, Jura M. 2001. A possible massive asteroid belt around ζ Leporis. Astrophys. J. Lett. 560:L171–74 [Google Scholar]
  13. Chen CH, Sargent BA, Bohac C, Kim KH, Leibensperger E. et al. 2006. Spitzer IRS spectroscopy of IRAS-discovered debris disks. Astrophys. J. Suppl. 166:351–77 [Google Scholar]
  14. Davidsson BJR. 1999. Tidal splitting and rotational breakup of solid spheres. Icarus 142:525–35 [Google Scholar]
  15. Debes JH, Sigurdsson S. 2002. Are there unstable planetary systems around white dwarfs?. Astrophys. J. 572:556–65 [Google Scholar]
  16. Debes JH, Kilic M, Faedi F, Shkolnik EL, Lopez-Morales M. et al. 2012a. Detection of weak circumstellar gas around the DAZ white dwarf WD 1124−293: evidence for the accretion of multiple asteroids. Astrophys. J. 754:59 [Google Scholar]
  17. Debes JH, Walsh KJ, Stark C. 2012b. The link between planetary systems, dusty white dwarfs, and metal-polluted white dwarfs. Astrophys. J. 747:148 [Google Scholar]
  18. Desharnais S, Wesemael F, Chayer P, Kruk JW, Saffer RA. 2008. FUSE observations of heavy elements in the photospheres of cool DB white dwarfs. Astrophys. J. 672:540–52 [Google Scholar]
  19. Dickinson NJ, Barstow MA, Welsh BY, Burleigh M, Farihi J. et al. 2012. The origin of hot white dwarf circumstellar features. MNRAS 423:1397–410 [Google Scholar]
  20. Dufour P, Bergeron P, Liebert J, Harris HC, Knapp GR. et al. 2007. On the spectral evolution of cool, helium-atmosphere white dwarfs: detailed spectroscopic and photometric analysis of DZ stars. Astrophys. J. 663:1291–308 [Google Scholar]
  21. Dufour P, Kilic M, Fontaine G, Bergeron P, Melis C. et al. 2012. Detailed compositional analysis of the heavily polluted DBZ white dwarf SDSS J073842.56+183509.06: a window on planet formation?. Astrophys. J. 749:6 [Google Scholar]
  22. Duncan MJ, Lissauer JJ. 1998. The effects of post-main-sequence solar mass loss on the stability of our planetary system. Icarus 134:303–10 [Google Scholar]
  23. Dupuis J, Fontaine G, Pelletier C, Wesemael F. 1992. A study of metal abundance patterns in cool white dwarfs. I. Time-dependent calculations of gravitational settling. Astrophys. J. Suppl. 82:505–21 [Google Scholar]
  24. Dupuis J, Fontaine G, Wesemael F. 1993. A study of metal abundance patterns in cool white dwarfs. III. Comparison of the predictions of the two-phase accretion model with the observations. Astrophys. J. Suppl. 87:345–65 [Google Scholar]
  25. Encrenaz T. 2008. Water in the Solar System. Annu. Rev. Astron. Astrophys. 46:57–87 [Google Scholar]
  26. Farihi J, Brinkworth CS, Gaensicke BT, Marsh TR, Girven J. et al. 2011. Possible signs of water and differentiation in a rocky exoplanetary body. Astrophys. J. Lett. 728:L8 [Google Scholar]
  27. Farihi J, Gaensicke BT, Koester D. 2013. Evidence for water in the rocky debris of a disrupted extrasolar minor planet. Science 342:218–20 [Google Scholar]
  28. Farihi J, Gaensicke BT, Steele PR, Girven J, Burleigh MR. et al. 2012a. A trio of metal-rich dust and gas discs found orbiting candidate white dwarfs with K-band excess. MNRAS 421:1635–43 [Google Scholar]
  29. Farihi J, Gaensicke BT, Wyatt MC, Girven J, Pringle JE. et al. 2012b. Scars of intense accretion episodes at metal-rich white dwarfs. MNRAS 424:464–71 [Google Scholar]
  30. Farihi J, Jura M, Zuckerman B. 2009. Infrared signatures of disrupted minor planets at white dwarfs. Astrophys. J. 694:805–19 [Google Scholar]
  31. Fortney JJ. 2012. On the carbon-to-oxygen ratio measurement in nearby Sun-like stars: implications for planet formation and the determination of stellar abundances. Astrophys. J. Lett. 747:L27 [Google Scholar]
  32. Gaensicke BT, Koester D, Farihi J, Girven J, Parsons SG. et al. 2012. The chemical diversity of exo-terrestrial planetary debris around white dwarfs. MNRAS 424:333–47 [Google Scholar]
  33. Gaensicke BT, Koester D, Marsh TR, Rebassa-Mansergas A, Southworth J. 2008. SDSS J084539.17+225728.0: the first DBZ white dwarf with a metal-rich gaseous debris disc. MNRAS Lett. 391:L103–7 [Google Scholar]
  34. Gaensicke BT, Marsh TR, Southworth J. 2007. SDSS J104341.53+085558.2: a second white dwarf with a gaseous debris disc. MNRAS Lett. 380:L35–39 [Google Scholar]
  35. Gaensicke BT, Marsh TR, Southworth J, Rebassa-Mansergas A. 2006. A gaseous metal disk around a white dwarf. Science 314:1908–10 [Google Scholar]
  36. Ghosh A, McSween HY. 1998. A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus 134:187–206 [Google Scholar]
  37. Gianninas A, Dufour P, Bergeron P. 2004. Discovery of a cool, massive, and metal-rich DAZ white dwarf. Astrophys. J. Lett. 617:L57–60 [Google Scholar]
  38. Girven J, Brinkworth CS, Farihi J, Gaensicke BT, Hoard DW. et al. 2012. Constraints on the lifetimes of disks resulting from tidally destroyed rocky planetary bodies. Astrophys. J. 749:154 [Google Scholar]
  39. Goldstein JI, Scott ERD, Winfield T, Yang J. 2013. Thermal histories of group IAB and related iron meteorites and comparison with other groups of irons and stony iron meteorites. Lunar Planet. Sci. Conf. Abstr. 44:1394 [Google Scholar]
  40. Gritschneder M, Lin DNC, Murray SD, Yin Q-Z, Gong M-N. 2012. The supernova triggered formation and evolution of the Solar System. Astrophys. J. 745:22 [Google Scholar]
  41. Grossman L. 1980. Refractory inclusions in the Allende meteorite. Annu. Rev. Earth Planet. Sci. 8:559–608 [Google Scholar]
  42. Hanghoj K, Kelemen PB, Hassler D, Godard M. 2010. Composition and genesis of depleted mantle peridotites from the Wadi Tayin Massif, Oman Ophiolite; major and trace element geochemistry, and Os isotope and PGE systematics. J. Petrol. 51:201–27 [Google Scholar]
  43. Hansen BMS, Liebert J. 2003. Cool white dwarfs. Annu. Rev. Astron. Astrophys. 41:465–515 [Google Scholar]
  44. Jewitt D, Chizmadia L, Grimm R, Prialnik D. 2007. Water in the small bodies of the Solar System. Protostars and Planets 5 B Reipurth, D Jewitt, K Keil 863–78 Tucson: Univ. Ariz. Press [Google Scholar]
  45. Jura M. 2003. A tidally disrupted asteroid around the white dwarf G29-38. Astrophys. J. Lett. 584:L91–94 [Google Scholar]
  46. Jura M. 2006. Carbon deficiency in externally polluted white dwarfs: evidence for accretion of asteroids. Astrophys. J. 653:613–20 [Google Scholar]
  47. Jura M. 2008. Pollution of single white dwarfs by accretion of many small asteroids. Astron. J. 135:1785–92 [Google Scholar]
  48. Jura M. 2014. The elemental compositions of extrasolar planetesimals. Formation, Detection and Characterization of Extrasolar Habitable Planets N Haghighipour, J-L Zhou 100–9 IAU Symp. Proc. 293 Paris: IAU [Google Scholar]
  49. Jura M, Farihi J, Zuckerman B. 2007. Externally polluted white dwarfs with dust disks. Astrophys. J. 663:1285–90 [Google Scholar]
  50. Jura M, Muno M, Farihi J, Zuckerman B. 2009. X-ray and infrared observations of two externally polluted white dwarfs. Astrophys. J. 699:1743–49 [Google Scholar]
  51. Jura M, Xu S. 2010. The survival of water within extrasolar minor planets. Astron. J. 140:1129–36 [Google Scholar]
  52. Jura M, Xu S. 2012. Water fractions in extrasolar planetesimals. Astron. J. 143:6 [Google Scholar]
  53. Jura M, Xu S. 2013. Extrasolar refractory-dominated planetesimals: an assessment. Astron. J. 145:30 [Google Scholar]
  54. Jura M, Xu S, Klein B, Koester D, Zuckerman B. 2012. Two extrasolar asteroids with low volatile-element mass fractions. Astrophys. J. 750:69 [Google Scholar]
  55. Jura M, Xu S, Young ED. 2013. 26Al in the early Solar System: not so unusual after all. Astrophys. J. Lett. 775:L41 [Google Scholar]
  56. Kawka A, Vennes S, Dinnbier F, Cibulkova H, Nemeth P. 2011. Abundance analysis of DAZ white dwarfs. Planetary Systems Beyond the Main Sequence S Schuh, H Drechsel, U Heber 238–45 AIP Conf. Proc. 1331 Melville, NY: AIP [Google Scholar]
  57. Kilic M, von Hippel T, Leggett S, Winget DE. 2005. Excess infrared radiation from the massive DAZ white dwarf GD 362: a debris disk?. Astrophys. J. Lett. 632:L115–18 [Google Scholar]
  58. Kilic M, von Hippel T, Leggett S, Winget DE. 2006. Debris disks around white dwarfs: the DAZ connection. Astrophys. J. Lett. 646:474–79 [Google Scholar]
  59. Klein B, Jura M, Koester D, Zuckerman B. 2011. Rocky extrasolar planetary compositions derived from externally polluted white dwarfs. Astrophys. J. 741:64 [Google Scholar]
  60. Klein B, Jura M, Koester D, Zuckerman B, Melis C. 2010. Chemical abundances in the externally polluted white dwarf GD 40: evidence of a rocky extrasolar minor planet. Astrophys. J. 709:950–62 [Google Scholar]
  61. Kleinman SJ, Kepler SO, Koester D, Pelisoli I, Pecanha V. et al. 2013. SDSS DR7 white dwarf catalog. Astrophys. J. Suppl. 204:5 [Google Scholar]
  62. Koester D. 2009. Accretion and diffusion in white dwarfs. New diffusion timescales and applications to GD 362 and G 29-38. Astron. Astrophys. 498:517–25 [Google Scholar]
  63. Koester D. 2013. A cautionary note on diffusion timescales for white dwarfs Inst. Theor. Phys. Astrophys., Univ. Kiel, Ger., updated Jan. http://www1.astrophysik.uni-kiel.de/∼koester/astrophysics/
  64. Koester D, Gaensicke B, Girven J, Farihi J. 2013. Search for metal pollution in 81 DA white dwarfs. 18th European White Dwarf Workshop J Krzesinski, G Stachowski, P Moskalik, K Bajan, pp. 445–50. Astron. Soc. Pac. Conf. Ser. 469 Orem, UT: Astron. Soc. Pac. [Google Scholar]
  65. Koester D, Girven J, Gaensicke BT, Dufour P. 2011. Cool DZ white dwarfs in the SDSS. Astron. Astrophys. 530:A114 [Google Scholar]
  66. Koester D, Rollenhagen K, Napiwotzki R, Voss B, Christlieb N. et al. 2005. Metal traces in white dwarfs of the SPY (ESO Supernova Ia Progenitor Survey) sample. Astron. Astrophys. 432:1025–32 [Google Scholar]
  67. Koester D, Wilken D. 2006. The accretion-diffusion scenario for metals in cool white dwarfs. Astron. Astrophys. 453:1051–57 [Google Scholar]
  68. Krasinsky GA, Petjeva EV, Vasilyev MV, Yagudina EI. 2002. Hidden mass in the asteroid belt. Icarus 158:98–105 [Google Scholar]
  69. Lecar M, Podolak M, Sasselov D, Chiang E. 2006. On the location of the snow line in a protoplanetary disk. Astrophys. J. 640:1115–18 [Google Scholar]
  70. Lee J-E, Bergin EA, Nomura H. 2010. The solar nebula on fire: a solution to the carbon deficit in the inner Solar System. Astrophys. J. Lett. 710:L21–25 [Google Scholar]
  71. Lodders K. 2003. Solar System abundances and condensation temperatures of the elements. Astrophys. J. 591:1220–47 [Google Scholar]
  72. Lodders K. 2004. Jupiter formed with more tar than ice. Astrophys. J. 611:587–97 [Google Scholar]
  73. Madhusudhan N. 2012. C/O ratio as a dimension for characterizing exoplanetary atmospheres. Astrophys. J. 758:36 [Google Scholar]
  74. Madhusudhan N, Lee KKM, Mousis O. 2012. A possible carbon-rich interior in super-Earth 55 Cancri e. Astrophys. J. Lett. 759:L40 [Google Scholar]
  75. Martin P, Knoedlseder J, Diehl R, Meynet G. 2009. New estimates of the gamma-ray line emission of the Cygnus region from INTEGRAL/SPI observations. Astron. Astrophys. 506:703–10 [Google Scholar]
  76. Marty B. 2012. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313:56–66 [Google Scholar]
  77. McCook GP, Sion EM. 1999. A catalog of spectroscopically identified white dwarfs. Astrophys. J. Suppl. 121:1–130 [Google Scholar]
  78. Melis C, Dufour P, Farihi J, Bochanski J, Burgassser AJ. et al. 2012. Gaseous material orbiting the polluted, dusty white dwarf HE 1349–2305. Astrophys. J. Lett. 751:L4 [Google Scholar]
  79. Melis C, Farihi J, Dufour P, Zuckerman B, Burgasser AJ. et al. 2011. Accretion of a terrestrial-like minor planet by a white dwarf. Astrophys. J. 732:90 [Google Scholar]
  80. Melis C, Jura M, Albert L, Klein B, Zuckerman B. 2010. Echoes of a decaying planetary system: the gaseous and dusty disks surrounding three white dwarfs. Astrophys. J. 722:1078–91 [Google Scholar]
  81. Metzger BD, Rafikov RR, Bochkarev KV. 2012. Global models of runaway accretion in white dwarf debris discs. MNRAS 423:505–28 [Google Scholar]
  82. Morales FY, Rieke GH, Werner MW, Bryden G, Stapelfeldt KR. et al. 2011. Common warm dust temperatures around main-sequence stars. Astrophys. J. 730:L29 [Google Scholar]
  83. Morales FY, Werner MW, Bryden G, Plavchan P, Stapelfeldt KR. et al. 2009. Spitzer mid-IR spectra of dust debris around A and late B type stars: asteroid belt analogs and power-law dust distributions. Astrophys. J. 699:1067–86 [Google Scholar]
  84. Nissen PE. 2013. The carbon-to-oxygen ratio in stars with planets. Astron. Astrophys. 552:A73 [Google Scholar]
  85. O'Neill HSC, Palme H. 2008. Collisional erosion and the non-chondritic composition of the terrestrial planets. Philos. Trans. R. Soc. A 366:4205–38 [Google Scholar]
  86. Petigura EA, Marcy GW. 2011. Carbon and oxygen in nearby stars: keys to protoplanetary disk chemistry. Astrophys. J. 735:41 [Google Scholar]
  87. Presnall DC, Hoover JD. 1987. High pressure phase equilibrium constraints on the origin of mid-ocean ridge basalts. Magmatic Processes: Physicochemical Principles BO Mysen 75–89 Geochem. Soc. Spec. Publ. 1 Saint Louis, MO: Geochem. Soc. [Google Scholar]
  88. Rafikov RR. 2011a. Metal accretion onto white dwarfs caused by Poynting–Robertson drag on their debris disks. Astrophys. J. Lett. 732:L3 [Google Scholar]
  89. Rafikov RR. 2011b. Runaway accretion of metals from compact discs of debris on to white dwarfs. MNRAS Lett. 416:L55–59 [Google Scholar]
  90. Reach WT, Kuchner MJ, von Hippel T, Burrows A, Mullally F. et al. 2005. The dust cloud around the white dwarf G29-38. Astrophys J. Lett. 635:L161–64 [Google Scholar]
  91. Reddy BE, Tomkin J, Lambert DL, Prieto Allende C. 2003. The chemical compositions of galactic disk F and G dwarfs. MNRAS 340:304–40 [Google Scholar]
  92. Rudnick RL, Gao S. 2003. Composition of the continental crust. Treatise Geochem. 3:1–64 [Google Scholar]
  93. Scott ERD, Haack H, Love SG. 2001. Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid. Meteorit. Planet. Sci. 36:869–91 [Google Scholar]
  94. Scott ERD, Krot TV, Goldstein JI. 2013. Thermal and impact histories of ordinary chondrites and their parent bodies: constraints from metallic Fe-Ni in type 3 chondrites. Lunar Planet. Sci. Conf. Abstr. 44:1826 [Google Scholar]
  95. Sion EM, Kenyon SJ, Aannestad PA. 1990. An atlas of optical spectra of DZ white dwarfs and related objects. Astrophys. J. Suppl. 72:707–14 [Google Scholar]
  96. Su KYL, Rieke GH, Stansberry JA, Bryden G, Stapelfeldt KR. et al. 2006. Debris disk evolution around A stars. Astrophys. J. 653:675–89 [Google Scholar]
  97. Taylor JG, Warren P, Ryder G, Dalano J, Pieters C. et al. 1991. Lunar rocks. Lunar Sourcebook: A User's Guide to the Moon GH Heiken, DT Vaniman, BM French, J Schmitt 183–284 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  98. Vennes S, Kawka A, Nemeth P. 2011. Pressure shifts and abundance gradients in the atmosphere of the DAZ white dwarf GALEX J193156.8+011745. MNRAS 413:2545–53 [Google Scholar]
  99. Veras D, Mustill AJ, Bonsor A, Wyatt MC. 2013. Simulations of two-planet systems through all phases of stellar evolution: implications for the instability boundary and white dwarf pollution. MNRAS 431:1686–708 [Google Scholar]
  100. Veras D, Wyatt MC, Mustill AJ, Bonsor A, Eldridge JJ. 2011. The great escape: how exoplanets and smaller bodies desert dying stars. MNRAS 417:2104–23 [Google Scholar]
  101. Warren PH. 2005. “New” lunar meteorites: implications for composition of the global lunar surface, lunar crust, and the bulk Moon. Meteorit. Planet. Sci. 40:477–506 [Google Scholar]
  102. Warren PH, Kallemeyn GW, Huber H, Ulff-Moller F, Choe W. 2009. Siderophile and other geochemical constraints on mixing relationships among HED-meteoritic breccias. Geochim. Cosmochim. Acta 73:5918–43 [Google Scholar]
  103. Wasson JT, Kallemeyn GW. 1988. Compositions of chondrites. Philos. Trans. R. Soc. A 325:535–44 [Google Scholar]
  104. Williams KA, Bolte M, Koester D. 2009. Probing the lower mass limit for supernova progenitors and the high-mass end of the initial-final mass relation from white dwarfs in the open cluster M 35 (NGC 2168). Astrophys. J. 693:355–69 [Google Scholar]
  105. Xu S, Jura M. 2012. Spitzer observations of white dwarfs; the missing planetary debris around DZ stars. Astrophys. J. 745:88 [Google Scholar]
  106. Xu S, Jura M, Klein B, Koester D, Zuckerman B. 2013b. Two beyond-primitive extrasolar planetesimals. Astrophys. J. 766:132 [Google Scholar]
  107. Xu S, Jura M, Koester D, Klein B, Zuckerman B. 2013a. Discovery of molecular hydrogen in white dwarf atmospheres. Astrophys. J. Lett. 766:L18 [Google Scholar]
  108. Xu S, Jura M, Koester D. Klein B, Zuckerman B. 2014. Elemental compositions of two extrasolar rocky planetesimals.. Astrophys. J. 783:79 [Google Scholar]
  109. Zuckerman B, Becklin EE. 1987. Excess infrared radiation from a white dwarf—an orbiting brown dwarf?. Nature 330:138–40 [Google Scholar]
  110. Zuckerman B, Koester D, Dufour P, Melis C, Klein B. et al. 2011. An aluminum/calcium-rich, iron-poor, white dwarf star: evidence for an extrasolar planetary lithosphere?. Astrophys. J. 739:101 [Google Scholar]
  111. Zuckerman B, Koester D, Melis C, Hansen B, Jura M. 2007. The chemical composition of an extrasolar minor planet. Astrophys. J. 671:872–77 [Google Scholar]
  112. Zuckerman B, Koester D, Reid IN, Hunsch M. 2003. Metal lines in DA white dwarfs. Astrophys. J. 596:477–95 [Google Scholar]
  113. Zuckerman B, Melis C, Klein B, Koester D, Jura M. 2010. Ancient planetary systems are orbiting a large fraction of white dwarf stars. Astrophys. J. 722:725–36 [Google Scholar]
/content/journals/10.1146/annurev-earth-060313-054740
Loading
/content/journals/10.1146/annurev-earth-060313-054740
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error