1932

Abstract

Understanding the partitioning of seismic and aseismic fault slip is central to seismotectonics as it ultimately determines the seismic potential of faults. Thanks to advances in tectonic geodesy, it is now possible to develop kinematic models of the spatiotemporal evolution of slip over the seismic cycle and to determine the budget of seismic and aseismic slip. Studies of subduction zones and continental faults have shown that aseismic creep is common and sometimes prevalent within the seismogenic depth range. Interseismic coupling is generally observed to be spatially heterogeneous, defining locked patches of stress accumulation, to be released in future earthquakes or aseismic transients, surrounded by creeping areas. Clay-rich tectonites, high temperature, and elevated pore-fluid pressure seem to be key factors promoting aseismic creep. The generally logarithmic time evolution of afterslip is a distinctive feature of creeping faults that suggests a logarithmic dependency of fault friction on slip rate, as observed in laboratory friction experiments. Most faults can be considered to be paved with interlaced patches where the friction law is either rate-strengthening, inhibiting seismic rupture propagation, or rate-weakening, allowing for earthquake nucleation. The rate-weakening patches act as asperities on which stress builds up in the interseismic period; they might rupture collectively in a variety of ways. The pattern of interseismic coupling can help constrain the return period of the maximum- magnitude earthquake based on the requirement that seismic and aseismic slip sum to match long-term slip. Dynamic models of the seismic cycle based on this conceptual model can be tuned to reproduce geodetic and seismological observations. The promise and pitfalls of using such models to assess seismic hazard are discussed.

[Erratum, Closure]

An erratum has been published for this article:
From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle
Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060614-105302
2015-05-30
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/earth/43/1/annurev-earth-060614-105302.html?itemId=/content/journals/10.1146/annurev-earth-060614-105302&mimeType=html&fmt=ahah

Literature Cited

  1. Abercrombie RE, Antolik M, Ekström G. 2003. The June 2000 Mw 7.9 earthquakes south of Sumatra: deformation in the India–Australia Plate. J. Geophys. Res. 108:B12018 [Google Scholar]
  2. Ader T, Avouac JP, Liu-Zeng J, Lyon-Caen H, Bollinger L. et al. 2012. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: implications for seismic hazard. J. Geophys. Res. 117:B04403 [Google Scholar]
  3. Ader TJ, Lapusta N, Avouac JP, Ampuero JP. 2014. Response of rate-and-state seismogenic faults to harmonic shear-stress perturbations. Geophys. J. Int. 197:1138–53 [Google Scholar]
  4. Ambraseys NN. 1970. Some characteristic features of the Anatolian fault zone. Tectonophysics 9:143–65 [Google Scholar]
  5. Ambraseys NN, Douglas J. 2004. Magnitude calibration of north Indian earthquakes. Geophys. J. Int. 159:165–206 [Google Scholar]
  6. Ampuero JP, Rubin AM. 2008. Earthquake nucleation on rate and state faults—aging and slip laws. J. Geophys. Res. 113:B01302 [Google Scholar]
  7. Aochi H, Fukuyama E, Matsura M. 2000. Spontaneous rupture propagation on a nonplanar fault in 3-D elastic medium. Pure Appl. Geophys. 157:2003–7 [Google Scholar]
  8. Avouac JP. 2003. Mountain building, erosion and the seismic cycle in the Nepal Himalaya. Adv. Geophys. 46:1–80 [Google Scholar]
  9. Avouac JP. 2011. The lessons of Tohoku-Oki. Nature 475:300–1 [Google Scholar]
  10. Baba T, Hirata K, Hori T, Sakaguchi H. 2006. Offshore geodetic data conducive to the estimation of the afterslip distribution following the 2003 Tokachi-oki earthquake. Earth Planet. Sci. Lett. 241:281–92 [Google Scholar]
  11. Bakun WH, Aagaard B, Dost B, Ellsworth WL, Hardebeck JL. et al. 2005. Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature 437:969–74 [Google Scholar]
  12. Barbot S, Lapusta N, Avouac JP. 2012. Under the hood of the earthquake machine: toward predictive modeling of the seismic cycle. Science 336:707–10 [Google Scholar]
  13. Bedford J, Moreno M, Baez JC, Lange D, Tilmann F. et al. 2013. A high-resolution, time-variable afterslip model for the 2010 Maule Mw = 8.8, Chile megathrust earthquake. Earth Planet. Sci. Lett. 383:26–36 [Google Scholar]
  14. Beeler NM, Lockner DA. 2003. Why earthquakes correlate weakly with the solid Earth tides: effects of periodic stress on the rate and probability of earthquake occurrence. J. Geophys. Res. 108:B82391 [Google Scholar]
  15. Benioff V. 1951. Earthquakes and rock creep. Part I: Creep characteristics of rocks and the origin of aftershocks. Bull. Seismol. Soc. Am. 41:31–62 [Google Scholar]
  16. Bennett RA, Friedrich AM, Furlong KP. 2004. Codependent histories of the San Andreas and San Jacinto fault zones from inversion of fault displacement rates. Geology 32:961–64 [Google Scholar]
  17. Bilek SL, Lay T. 2002. Tsunami earthquakes possibly widespread manifestations of frictional conditional stability. Geophys. Res. Lett. 29:18–118-4 [Google Scholar]
  18. Bilham R, Larson K, Freymueller J, Jouanne F, LeFort P. et al. 1997. GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386:61–64 [Google Scholar]
  19. Bird P, Kagan YY. 2004. Plate-tectonic analysis of shallow seismicity: apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings. Bull. Seismol. Soc. Am. 94:2380–99 [Google Scholar]
  20. Blanpied ML, Lockner DA, Byerlee JD. 1991. Fault stability inferred from granite sliding experiments at hydrothermal conditions. Geophys. Res. Lett. 18:609–12 [Google Scholar]
  21. Blanpied ML, Lockner DA, Byerlee JD. 1995. Frictional slip of granite at hydrothermal conditions. J. Geophys. Res. 100:B713045–64 [Google Scholar]
  22. Bollinger L, Avouac JP, Cattin R, Pandey MR. 2004. Stress buildup in the Himalaya. J. Geophys. Res. 109:B11405 [Google Scholar]
  23. Bonilla MG. 1966. Deformation of railroad tracks by slippage on the Hayward fault in the Niles district of Fremont, California. Bull. Seismol. Soc. Am. 56:281–89 [Google Scholar]
  24. Bourouis S, Bernard P. 2007. Evidence for coupled seismic and aseismic fault slip during water injection in the geothermal site of Soultz (France), and implications for seismogenic transients. Geophys. J. Int. 169:723–32 [Google Scholar]
  25. Brace WF, Byerlee JD. 1966. Stick-slip as a mechanism for earthquakes. Science 153:990–92 [Google Scholar]
  26. Brantut N, Schubnel A, Rouzaud JN, Brunet F, Shimamoto T. 2008. High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics. J. Geophys. Res. 113:B10401 [Google Scholar]
  27. Briggs RW, Sieh K, Amidon WH, Galetzka J, Prayudi D. et al. 2008. Persistent elastic behavior above a megathrust rupture patch: Nias island, West Sumatra. J. Geophys. Res. 113:B12406 [Google Scholar]
  28. Briggs RW, Sieh K, Meltzner AJ, Natawidjaja D, Galetzka J. et al. 2006. Deformation and slip along the Sunda megathrust in the great 2005 Nias-Simeulue earthquake. Science 311:1897–901 [Google Scholar]
  29. Bürgmann R, Kogan MG, Steblov GM, Hilley G, Levin VE, Apel E. 2005. Interseismic coupling and asperity distribution along the Kamchatka subduction zone. J. Geophys. Res. 110:B07405 [Google Scholar]
  30. Byrne D, Davis D, Sykes L. 1988. Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics 7:833–57 [Google Scholar]
  31. Cakir Z, Akoglu AM, Belabbes S, Ergintav S, Meghraoui M. 2005. Creeping along the Ismetpasa section of the North Anatolian fault (Western Turkey): rate and extent from InSAR. Earth Planet. Sci. Lett. 238:225–34 [Google Scholar]
  32. Cakir Z, de Chabalier JB, Armijo R, Meyer B, Barka A, Peltzer G. 2003. Coseismic and early postseismic slip associated with the 1999 Izmit earthquake (Turkey), from SAR interferometry and tectonic field observations. Geophys. J. Int. 155:93–110 [Google Scholar]
  33. Calo M, Dorbath C, Cornet FH, Cuenot N. 2011. Large-scale aseismic motion identified through 4-D P-wave tomography. Geophys. J. Int. 186:1295–314 [Google Scholar]
  34. Cattin R, Avouac JP. 2000. Modeling mountain building and the seismic cycle in the Himalaya of Nepal. J. Geophys. Res. 105:B613389–407 [Google Scholar]
  35. Champenois J, Fruneau B, Pathier E, Deffontaines B, Lin KC, Hu JC. 2012. Monitoring of active tectonic deformations in the Longitudinal Valley (Eastern Taiwan) using Persistent Scatterer InSAR method with ALOS PALSAR data. Earth Planet. Sci. Lett. 337:144–55 [Google Scholar]
  36. Chen HY, Lee JC, Tung H, Yu SB, Hsu YJ, Lee H. 2012. Determination of vertical velocity field of southernmost Longitudinal Valley in Eastern Taiwan: a joint analysis of leveling and GPS measurements. Terr. Atmos. Ocean. Sci. 23:355–76 [Google Scholar]
  37. Ching KE, Hsieh ML, Johnson KM, Chen KH, Rau RJ, Yang M. 2011. Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008. J. Geophys. Res. 116:B08406 [Google Scholar]
  38. Chlieh M, Avouac JP, Hjorleifsdottir V, Song TRA, Ji C. et al. 2007. Coseismic slip and afterslip of the great Mw 9.15 Sumatra–Andaman earthquake of 2004. Bull. Seismol. Soc. Am. 97:S152–73 [Google Scholar]
  39. Chlieh M, Avouac JP, Sieh K, Natawidjaja DH, Galetzka J. 2008. Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. J. Geophys. Res. 113:B05305 [Google Scholar]
  40. Chlieh M, de Chabalier JB, Ruegg JC, Armijo R, Dmowska R. et al. 2004. Crustal deformation and fault slip during the seismic cycle in the North Chile subduction zone, from GPS and InSAR observations. Geophys. J. Int. 158:695–711 [Google Scholar]
  41. Chlieh MP, Mothes A, Nocquet JM, Jarrin P, Charvis P. et al. 2014. Distribution of discrete seismic asperities and aseismic slip along the Ecuadorian megathrust. Earth Planet. Sci. Lett. 400:292–301 [Google Scholar]
  42. Chlieh M, Perfettini H, Tavera H, Avouac JP, Remy D. et al. 2011. Interseismic coupling and seismic potential along the Central Andes subduction zone. J. Geophys. Res. 116:B12405 [Google Scholar]
  43. Cluff LS, Steinbrugge KV. 1966. Hayward fault slippage in the Irvington-Niles districts of Fremont, California. Bull. Seismol. Soc. Am. 56:257–79 [Google Scholar]
  44. Cohen SC. 1999. Numerical models of crustal deformation in seismic zones. Adv. Geophys. 41:134–231 [Google Scholar]
  45. Cornet FH, Helm J, Poitrenaud H, Etchecopar A. 1997. Seismic and aseismic slips induced by large-scale fluid injections. Pure Appl. Geophys. 150:563–83 [Google Scholar]
  46. Cross RS, Freymueller JT. 2007. Plate coupling variation and block translation in the Andreanof segment of the Aleutian arc determined by subduction zone modeling using GPS data. Geophys. Res. Lett. 34:L06304 [Google Scholar]
  47. Cubas N, Avouac JP, Souloumiac P, Leroy Y. 2013. Megathrust friction determined from mechanical analysis of the forearc in the Maule earthquake area. Earth Planet. Sci. Lett. 381:92–103 [Google Scholar]
  48. Custódio S, Archuleta RJ. 2007. Parkfield earthquakes: characteristic or complementary?. J. Geophys. Res. 112:B05310 [Google Scholar]
  49. de Michele MD, Raucoules F, Rolandone P, Briole J, Salichon A. et al. 2011. Spatiotemporal evolution of surface creep in the Parkfield region of the San Andreas Fault (1993–2004) from synthetic aperture radar. Earth Planet. Sci. Lett. 308:141–50 [Google Scholar]
  50. den Hartog SAM, Niemeijer AR, Spiers CJ. 2012. New constraints on megathrust slip stability under subduction zone P–T conditions. Earth Planet. Sci. Lett. 353:240–52 [Google Scholar]
  51. DeShon HR, Schwartz SY, Newman AV, Gonzalez V, Protti M. et al. 2006. Seismogenic zone structure beneath the Nicoya Peninsula, Costa Rica, from three-dimensional local earthquake P- and S-wave tomography. Geophys. J. Int. 164:109–24 [Google Scholar]
  52. Di Toro G, Han R, Hirose T, De Paola N, Nielsen S. et al. 2011. Fault lubrication during earthquakes. Nature 471:494–98 [Google Scholar]
  53. Dieterich JH. 1979a. Modeling of rock friction. 1: Experimental results and constitutive equations. J. Geophys. Res. 84:2161–68 [Google Scholar]
  54. Dieterich JH. 1979b. Modeling of rock friction. 2: Simulation of preseismic slip. J. Geophys. Res. 84:2169–75 [Google Scholar]
  55. Dieterich JH. 1987. Nucleation and triggering of earthquake slip: effect of periodic stresses. Tectonophysics 144:127–39 [Google Scholar]
  56. Dieterich JH. 1994. A constitutive law for the rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. 99:B22601–18 [Google Scholar]
  57. Donnellan A, Parker J, Hensley S, Pierce M, Wang J, Rundle J. 2014. UAVSAR observations of triggered slip on the Imperial, Superstition Hills, and East Elmore Ranch Faults associated with the 2010 M 7.2 El Mayor-Cucapah earthquake. Geochem. Geophys. Geosyst. 15:815–29 [Google Scholar]
  58. Doubre C, Peltzer G. 2007. Fluid-controlled faulting process in the Asal Rift, Djibouti, from 8 yr of radar interferometry observations. Geology 35:69–72 [Google Scholar]
  59. Douglas A, Beavan J, Wallace L, Townend J. 2005. Slow slip on the northern Hikurangi subduction interface, New Zealand. Geophys. Res. Lett. 32:L16305 [Google Scholar]
  60. Dragert H, Wang K, Rogers G. 2004. Geodetic and seismic signatures of episodic tremor and slip in the northern Cascadia subduction zone. Earth Planets Space 56:1143–50 [Google Scholar]
  61. Duan BC, Oglesby DD. 2005. Multicycle dynamics of nonplanar strike-slip faults. J. Geophys. Res. 110:B03304 [Google Scholar]
  62. Dublanchet P, Bernard P, Favreau P. 2013. Interactions and triggering in a 3-D rate-and-state asperity model. J. Geophys. Res. Solid Earth 118:2225–45 [Google Scholar]
  63. Duquesnoy T, Barrier E, Kasser M, Aurelio M, Gaulon R. et al. 1994. Detection of creep along the Philippine fault: first results of geodetic measurements on Leyte Island, central Philippine. Geophys. Res. Lett. 21:975–78 [Google Scholar]
  64. Feng L, Newman AV, Protti M, Gonzalez V, Jiang Y, Dixon TH. 2012. Active deformation near the Nicoya Peninsula, northwestern Costa Rica, between 1996 and 2010: interseismic megathrust coupling. J. Geophys. Res. 117:B06407 [Google Scholar]
  65. Fournier TJ, Freymueller JT. 2007. Transition from locked to creeping subduction in the Shumagin region, Alaska. Geophys. Res. Lett. 34:L06303 [Google Scholar]
  66. Friedrich AM, Wernicke BP, Niemi NA, Bennett RA, Davis JL. 2003. Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years. J. Geophys. Res. 108:B42199 [Google Scholar]
  67. Frohlich C, Wetzel LR. 2007. Comparison of seismic moment release rates along different types of plate boundaries. Geophys. J. Int. 171:909–20 [Google Scholar]
  68. Fruneau B, Pathier E, Raymond D, Deffontaines B, Lee CT. et al. 2001. Uplift of Tainan Tableland (SW Taiwan) revealed by SAR interferometry. Geophys. Res. Lett. 28:3071–74 [Google Scholar]
  69. Fujiwara T, Kodaira S, No T, Kaiho Y, Takahashi N, Kaneda Y. 2011. The 2011 Tohoku-Oki earthquake: displacement reaching the trench axis. Science 334:1240 [Google Scholar]
  70. Gagnon K, Chadwell CD, Norabuena E. 2005. Measuring the onset of locking in the Peru–Chile trench with GPS and acoustic measurements. Nature 434:205–8 [Google Scholar]
  71. Gratier JP, Dysthe DK, Renard F. 2013. The role of pressure solution creep in the ductility of the Earth's upper crust. Adv. Geophys. 4:47–179 [Google Scholar]
  72. Gratier JP, Renard D, Vial B. 2014. Postseismic pressure solution creep: evidence and time-dependent change from dynamic indenting experiments. J. Geophys. Res. Solid Earth 119:2764–79 [Google Scholar]
  73. Gratier JP, Richard J, Renard F, Mittempergher S, Doan ML. et al. 2011. Aseismic sliding of active faults by pressure solution creep: evidence from the San Andreas Fault Observatory at Depth. Geology 39:1131–34 [Google Scholar]
  74. Graymer RW, Ponce DA, Jachens RC, Simpson RW, Phelps GA, Wentworth CM. 2005. Three-dimensional geologic map of the Hayward fault, northern California: correlation of rock units with variations in seismicity, creep rate, and fault dip. Geology 33:521–24 [Google Scholar]
  75. Hadizadeh J, Mittempergher S, Gratier JP, Renard F, Di Toro G. et al. 2012. A microstructural study of fault rocks from the SAFOD: implications for the deformation mechanisms and strength of the creeping segment of the San Andreas Fault. J. Struct. Geol. 42:246–60 [Google Scholar]
  76. Hashimoto C, Noda A, Sagiya T, Matsu'ura M. 2009. Interplate seismogenic zones along the Kuril–Japan trench inferred from GPS data inversion. Nat. Geosci. 2:141–44 [Google Scholar]
  77. Hauck ML, Nelson KD, Brown LD, Zhao W, Ross AR. 1998. Crustal structure of the Himalayan orogen at ∼90° east longitude from Project INDEPTH deep reflection profiles. Tectonics 17:481–500 [Google Scholar]
  78. Hawthorne JC, Rubin AM. 2010. Tidal modulation of slow slip in Cascadia. J. Geophys. Res. 115:B09406 [Google Scholar]
  79. Hearn EH, Bürgmann R, Reilinger RE. 2002. Dynamics of Izmit earthquake postseismic deformation and loading of the Duzce earthquake hypocenter. Bull. Seismol. Soc. Am. 92:172–93 [Google Scholar]
  80. Hetland EA, Simons M. 2010. Post-seismic and interseismic fault creep II: transient creep and interseismic stress shadows on megathrusts. Geophys. J. Int. 181:99–112 [Google Scholar]
  81. Hilairet N, Reynard B, Wang YB, Daniel I, Merkel S. et al. 2007. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science 318:1910–13 [Google Scholar]
  82. Hill EM, Borrero JC, Huang ZH, Qiu Q, Banerjee P. et al. 2012. The 2010 Mw 7.8 Mentawai earthquake: very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data. J. Geophys. Res. 117:B06402 [Google Scholar]
  83. Hirose H, Asano Y, Obara K, Kimura T, Matsuzawa T. et al. 2010. Slow earthquakes linked along dip in the Nankai subduction zone. Science 330:1502 [Google Scholar]
  84. Holdsworth RE, van Diggelen EWE, Spiers CJ, de Bresser JHP, Walker RJ, Bowen L. 2011. Fault rocks from the SAFOD core samples: implications for weakening at shallow depths along the San Andreas Fault, California. J. Struct. Geol. 33:132–44 [Google Scholar]
  85. Holtkamp S, Brudzinski MR. 2014. Megathrust earthquake swarms indicate frictional changes which delimit large earthquake ruptures. Earth Planet. Sci. Lett. 390:234–43 [Google Scholar]
  86. Hori T, Kato N, Hirahara K, Baba T, Kaneda Y. 2004. A numerical simulation of earthquake cycles along the Nankai Trough in southwest Japan: Lateral variation in fictional property due to the slab geometry controls the nucleation position. Earth Planet. Sci. Lett. 228:215–26 [Google Scholar]
  87. Hreinsdottir S, Bennett RA. 2009. Active aseismic creep on the Alto Tiberina low-angle normal fault, Italy. Geology 37:683–86 [Google Scholar]
  88. Hsu YJ, Avouac JP, Yu SB, Chang CH, Wu YM, Woessner J. 2009a. Spatio-temporal slip, and stress level on the faults within the western foothills of Taiwan: implications for fault frictional properties. Pure Appl. Geophys. 166:1853–84 [Google Scholar]
  89. Hsu YJ, Bechor N, Segall P, Yu SB, Kuo LC, Ma KF. 2002. Rapid afterslip following the 1999 Chi-Chi, Taiwan earthquake. Geophys. Res. Lett. 29:1–4 [Google Scholar]
  90. Hsu YJ, Simons M, Avouac JP, Galetzka J, Sieh K. et al. 2006. Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra. Science 312:1921–26 [Google Scholar]
  91. Hsu YJ, Yu SB, Chen HY. 2009b. Coseismic and postseismic deformation associated with the 2003 Chengkung, Taiwan, earthquake. Geophys. J. Int. 176:420–30 [Google Scholar]
  92. Huang CY, Chien CW, Yao BC, Chang CP. 2008. The Lichi Mélange: a collision mélange formation along early arcward backthrusts during forearc basin closure, Taiwan arc-continent collision. Geol. Soc. Am. Spec. Pap. 436:127–54 [Google Scholar]
  93. Huang MH, Bürgmann R, Freed AM. 2014. Probing the lithospheric rheology across the eastern margin of the Tibetan Plateau. Earth Planet. Sci. Lett. 396:88–96 [Google Scholar]
  94. Huang MH, Hu JC, Ching KE, Rau RJ, Hsieh CS. et al. 2009. Active deformation of Tainan tableland of southwestern Taiwan based on geodetic measurements and SAR interferometry. Tectonophysics 466:322–34 [Google Scholar]
  95. Hutton W, DeMets C, Sanchez O, Suarez G, Stock J. 2001. Slip kinematics and dynamics during and after the 1995 October 9 Mw = 8.0 Colima–Jalisco earthquake, Mexico, from GPS geodetic constraints. Geophys. J. Int. 146:637–58 [Google Scholar]
  96. Hyndman RD, Yamano M, Oleskevich DA. 1997. The seismogenic zone of subduction thrust faults. Island Arc 6:244–60 [Google Scholar]
  97. Ikari MJ, Saffer DM, Marone C. 2009. Frictional and hydrologic properties of clay-rich fault gouge. J. Geophys. Res. 114:B05409 [Google Scholar]
  98. Irwin WP, Barnes I. 1975. Effect of geologic structure and metamorphic fluids on seismic behavior of the San Andreas fault system in central and northern California. Geology 3:713–16 [Google Scholar]
  99. Johnson KM, Segall P. 2004. Viscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system. J. Geophys. Res. 109:B10403 [Google Scholar]
  100. Jolivet R, Lasserre C, Doin MP, Guillaso S, Peltzer G. et al. 2012. Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR interferometry. J. Geophys. Res. 117:B06401 [Google Scholar]
  101. Jolivet R, Lasserre C, Doin MP, Peltzer G, Avouac JP. et al. 2013. Spatio-temporal evolution of aseismic slip along the Haiyuan fault, China: implications for fault frictional properties. Earth Planet. Sci. Lett. 377:23–33 [Google Scholar]
  102. Jouanne F, Awan A, Madji A, Pecher A, Latif M. et al. 2011. Postseismic deformation in Pakistan after the 8 October 2005 earthquake: evidence of afterslip along a flat north of the Balakot-Bagh thrust. J. Geophys. Res. 116:B07401 [Google Scholar]
  103. Kanamori H. 1986. Rupture process of subduction-zone earthquakes. Annu. Rev. Earth Planet. Sci. 14:293–322 [Google Scholar]
  104. Kanamori H, McNally KC. 1982. Variable rupture mode of the subduction zone along the Ecuador-Colombia coast. Bull. Seismol. Soc. Am. 72:1241–53 [Google Scholar]
  105. Kanamori H, Rivera L, Lee WHK. 2010. Historical seismograms for unravelling a mysterious earthquake: the 1907 Sumatra earthquake. Geophys. J. Int. 183:358–74 [Google Scholar]
  106. Kaneko Y, Avouac JP, Lapusta N. 2010. Towards inferring earthquake patterns from geodetic observations of interseismic coupling. Nat. Geosci. 3:363–69 [Google Scholar]
  107. Kaneko Y, Fialko Y, Sandwell DT, Tong X, Furuya M. 2013. Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties. J. Geophys. Res. Solid Earth 118:316–31 [Google Scholar]
  108. Kato N. 2007. Expansion of aftershock areas caused by propagating post-seismic sliding. Geophys. J. Int. 168:797–808 [Google Scholar]
  109. Kato N. 2008. Numerical simulation of recurrence of asperity rupture in the Sanriku region, northeastern Japan. J. Geophys. Res. 113:B06302 [Google Scholar]
  110. Kiser E, Ishii M. 2013. Hidden aftershocks of the 2011 Mw 9.0 Tohoku, Japan earthquake imaged with the backprojection method. J. Geophys. Res. Solid Earth 118:5564–76 [Google Scholar]
  111. Kisslinger C. 1996. Aftershocks and fault-zone properties. Adv. Geophys. 38:1–36 [Google Scholar]
  112. Konca AO, Avouac JP, Sladen A, Meltzner AJ, Sieh K. et al. 2008a. Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature 456:631–35 [Google Scholar]
  113. Konca AO, Avouac JP, Sladen A, Sieh K, Meltzner AJ. et al. 2008b. The 2007 Mentawai earthquake sequence on the Sumatra megathrust Presented at AGU Fall Meet., Sept. 15–19, San Francisco
  114. Kositsky AP, Avouac JP. 2010. Inverting geodetic time series with a principal component analysis-based inversion method. J. Geophys. Res. 115:B03401 [Google Scholar]
  115. Lapusta N, Rice JR. 2003. Nucleation and early seismic propagation of small and large events in a crustal earthquake model. J. Geophys. Res. 108:B42205 [Google Scholar]
  116. Lapusta N, Rice JR, Ben-Zion Y, Zheng G. 2000. Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate- and state-dependent friction. J. Geophys. Res. 105:B1023765–89 [Google Scholar]
  117. Lavé J, Avouac JP. 2000. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J. Geophys. Res. 105:B35735–70 [Google Scholar]
  118. Lay T, Ammon CJ, Kanamori H, Xue L, Kim MJ. 2011a. Possible large near-trench slip during the 2011 Mw 9.0 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63:687–92 [Google Scholar]
  119. Lay T, Ammon CJ, Kanamori H, Yamazaki Y, Cheung KF, Hutko AR. 2011b. The 25 October 2010 Mentawai tsunami earthquake (Mw 7.8) and the tsunami hazard presented by shallow megathrust ruptures. Geophys. Res. Lett. 38:L06302 [Google Scholar]
  120. Lay T, Astiz L, Kanamori H, Christensen DH. 1989. Temporal variation of large interplate earthquakes in coupled subduction zones. Phys. Earth Planet. Inter. 54:258–312 [Google Scholar]
  121. Le Guen Y, Renard F, Hellmann R, Brosse E, Collombet M. et al. 2007. Enhanced deformation of limestone and sandstone in the presence of high Pco2fluids. J. Geophys. Res. 112:B05421 [Google Scholar]
  122. Lemonnier C, Marquis G, Perrier F, Avouac JP, Chitrakar G. et al. 1999. Electrical structure of the Himalaya of Central Nepal: high conductivity around the mid-crustal ramp along the MHT. Geophys. Res. Lett. 26:3261–64 [Google Scholar]
  123. Lin YN, Sladen A, Ortega-Culaciati F, Simons M, Avouac JP. et al. 2013. Coseismic and postseismic slip associated with the 2010 Maule Earthquake, Chile: characterizing the Arauco Peninsula barrier effect. J. Geophys. Res. Solid Earth 118:3142–59 [Google Scholar]
  124. Liteanu E, Niemeijer A, Spiers CJ, Peach CJ, de Bresser JHP. 2012. The effect of CO2 on creep of wet calcite aggregates. J. Geophys. Res. 117:B03211 [Google Scholar]
  125. Liu YJ, Rice JR. 2007. Spontaneous and triggered aseismic deformation transients in a subduction fault model. J. Geophys. Res. 112:B09404 [Google Scholar]
  126. Lohman RB, McGuire JJ. 2007. Earthquake swarms driven by aseismic creep in the Salton Trough, California. J. Geophys. Res. 112:B04405 [Google Scholar]
  127. Loveless JP, Meade BJ. 2010. Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan. J. Geophys. Res. 115:B02410 [Google Scholar]
  128. Loveless JP, Meade BJ. 2011. Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 MW = 9.0 Tohoku-oki earthquake. Geophys. Res. Lett. 38:L17306 [Google Scholar]
  129. Lowry AR, Larson KM, Kostoglodov V, Bilham R. 2001. Transient fault slip in Guerrero, southern Mexico. Geophys. Res. Lett. 28:3753–56 [Google Scholar]
  130. Manaker DM, Calais E, Freed AM, Ali ST, Przybylski P. et al. 2008. Interseismic plate coupling and strain partitioning in the Northeastern Caribbean. Geophys. J. Int. 174:889–903 [Google Scholar]
  131. Marone C. 1998. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26:643–96 [Google Scholar]
  132. Marone C, Scholtz C, Bilham R. 1991. On the mechanics of earthquake afterslip. J. Geophys. Res. 96:B58441–52 [Google Scholar]
  133. Matsumoto Y, Ishikawa T, Fujita M, Sato M, Saito H. et al. 2008. Weak interplate coupling beneath the subduction zone off Fukushima, NE Japan, inferred from GPS/acoustic seafloor geodetic observation. Earth Planets Space 60:E9–12 [Google Scholar]
  134. Matsu'ura T, Kimura H, Komatsubara J, Goto N, Yanagida M. et al. 2014. Late Quaternary uplift rate inferred from marine terraces, Shimokita Peninsula, northeastern Japan: a preliminary investigation of the buried shoreline angle. Geomorphology 209:1–17 [Google Scholar]
  135. McGuire JJ, Boettcher MS, Jordan TH. 2005. Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults. Nature 434:457–61 [Google Scholar]
  136. Melbourne TI, Webb FH, Stock JM, Reigber C. 2002. Rapid postseismic transients in subduction zones from continuous GPS. J. Geophys. Res. 107:B102241 [Google Scholar]
  137. Melnick D, Bookhagen B, Echtler HP, Strecker MR. 2006. Coastal deformation and great subduction earthquakes, Isla Santa María, Chile (37°S). Geol. Soc. Am. Bull. 118:1463–80 [Google Scholar]
  138. Meltzner AJ, Sieh K, Chiang HW, Shen CC, Suwargadi BW. et al. 2010. Coral evidence for earthquake recurrence and an A.D. 1390–1455 cluster at the south end of the 2004 Aceh–Andaman rupture. J. Geophys. Res. 115:B10402 [Google Scholar]
  139. Meltzner AJ, Sieh K, Chiang HW, Shen CC, Suwargadi BW. et al. 2012. Persistent termini of 2004- and 2005-like ruptures of the Sunda megathrust. J. Geophys. Res. 117:B04405 [Google Scholar]
  140. Métois M, Socquet A, Vigny C. 2012. Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction zone. J. Geophys. Res. 117:B03406 [Google Scholar]
  141. Métois M, Vigny C, Socquet A, Delorme A, Morvan S. et al. 2014. GPS-derived interseismic coupling on the subduction and seismic hazards in the Atacama region, Chile. Geophys. J. Int. 196:644–55 [Google Scholar]
  142. Miller M, Melbourne T, Johnson DJ, Summer WQ. 2002. Periodic slow earthquakes from the Cascadia subduction zone. Science 295:2423 [Google Scholar]
  143. Minoura K, Imamura F, Sugawara D, Kono Y, Iwashita T. 2001. The 869 Jōgan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of northeast Japan. J. Nat. Disaster Sci. 23:83–88 [Google Scholar]
  144. Miyazaki S, Segall P, Fukuda J, Kato T. 2004. Space time distribution of afterslip following the 2003 Tokachi-oki earthquake: implications for variations in fault zone frictional properties. Geophys. Res. Lett. 31:L06623 [Google Scholar]
  145. Mochizuki K, Yamada T, Shinohara M, Yamanaka Y, Kanazawa T. 2008. Weak interplate coupling by seamounts and repeating M ∼ 7 earthquakes. Science 321:1194–97 [Google Scholar]
  146. Molnar P. 1979. Earthquake recurrence intervals and plate tectonics. Bull. Seismol. Soc. Am. 69:115–33 [Google Scholar]
  147. Montési LGJ. 2004. Controls of shear zone rheology and tectonic loading on postseismic creep. J. Geophys. Res. 109:B10404 [Google Scholar]
  148. Moore DE, Lockner DA, Shengli M, Summers R, Byerlee JD. 1997. Strengths of serpentinite gouges at elevated temperatures. J. Geophys. Res. 102:14787–801 [Google Scholar]
  149. Moore DE, Rymer MJ. 2007. Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature 448:795–97 [Google Scholar]
  150. Moore DE, Rymer MJ. 2012. Correlation of clayey gouge in a surface exposure of serpentinite in the San Andreas Fault with gouge from the San Andreas Fault Observatory at Depth (SAFOD). J. Struct. Geol. 38:51–60 [Google Scholar]
  151. Moreno M, Haberland C, Oncken O, Rietbrock A, Angiboust S, Heidbach O. 2014. Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake. Nat. Geosci. 7:292–96 [Google Scholar]
  152. Moreno M, Melnick D, Rosenau M, Bolte J, Klotz J. et al. 2011. Heterogeneous plate locking in the South-Central Chile subduction zone: building up the next great earthquake. Earth Planet. Sci. Lett. 305:413–24 [Google Scholar]
  153. Mozziconacci L, Delouis B, Angelier J, Hu JC, Huang BS. 2009. Slip distribution on a thrust fault at a plate boundary: the 2003 Chengkung earthquake, Taiwan. Geophys. J. Int. 177:609–23 [Google Scholar]
  154. Natawidjaja D, Sieh K, Galetzka J, Suwargadi BW, Edwards RL, Cheng H. 2004. Crustal vertical motions from paleogeodetic data of the Sumatran subduction zone, 1950 to 2003: steady versus episodic strain accumulation Presented at AGU Fall Meet., Dec. 13–17, San Francisco
  155. Natawidjaja D, Sieh K, Suwargadi B, Galetzka J. 2000. A continuous 400-year-long paleogeodetic record of aseismic and seismic subduction from a coral microtall, West Sumatra, Indonesia. Eos Trans. AGU 81:Fall Meet. Suppl.S11D–07 (Abstr.) [Google Scholar]
  156. Newcomb K, McCann W. 1987. Seismic history and seismotectonics of the Sunda arc. J. Geophys. Res. 92:421–39 [Google Scholar]
  157. Niemeijer A, Marone C, Elsworth D. 2008. Healing of simulated fault gouges aided by pressure solution: results from rock analogue experiments. J. Geophys. Res. 113:B04204 [Google Scholar]
  158. Niemeijer AR, Spiers CJ. 2006. Velocity dependence of strength and healing behaviour in simulated phyllosilicate-bearing fault gouge. Tectonophysics 427:231–53 [Google Scholar]
  159. Niemeijer AR, Vissers RLM. 2014. Earthquake rupture propagation inferred from the spatial distribution of fault rock frictional properties. Earth Planet. Sci. Lett. 396:154–64 [Google Scholar]
  160. Noda H, Lapusta N. 2013. Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature 493:518–21 [Google Scholar]
  161. Obara K, Hirose H, Yamamizu F, Kasahara K. 2004. Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone. Geophys. Res. Lett. 31:L23602 [Google Scholar]
  162. Oglesby DD, Day SM. 2001. Fault geometry and the dynamics of the 1999 Chi-Chi (Taiwan) earthquake. Bull. Seismol. Soc. Am. 91:1099–111 [Google Scholar]
  163. Oglesby DD, Mai PM. 2012. Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara. Geophys. J. Int. 188:1071–87 [Google Scholar]
  164. Ohta Y, Freymueller JT, Hreinsdottir S, Suito H. 2006. A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone. Earth Planet. Sci. Lett. 247:108–16 [Google Scholar]
  165. Okada Y. 1985. Surface deformation to shear and tensile faults in a half space. Bull. Seismol. Soc. Am. 75:1135–54 [Google Scholar]
  166. Ozawa S, Nishimura T, Munekane H, Suito H, Kobayashi T. et al. 2012. Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan. J. Geophys. Res. 117:B07404 [Google Scholar]
  167. Page BM, Suppe J. 1981. The Pliocene Lichi mélange of Taiwan; its plate-tectonic and olistostromal origin. Am. J. Sci. 281:193–227 [Google Scholar]
  168. Park SC, Mori J. 2007. Are asperity patterns persistent? Implication from large earthquakes in Papua New Guinea. J. Geophys. Res. 112:B03303 [Google Scholar]
  169. Peltzer G, Crampe F, Hensley S, Rosen P. 2001. Transient strain accumulation and fault interaction in the Eastern California Shear Zone. Geology 29:975–78 [Google Scholar]
  170. Peng ZG, Gomberg J. 2010. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nat. Geosci. 3:599–607 [Google Scholar]
  171. Perfettini H, Avouac JP. 2004a. Postseismic relaxation driven by brittle creep: a possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan. J. Geophys. Res. 109:B02304 [Google Scholar]
  172. Perfettini H, Avouac JP. 2004b. Stress transfer and strain rate variations during the seismic cycle. J. Geophys. Res. 109:B06402 [Google Scholar]
  173. Perfettini H, Avouac JP. 2014. The seismic cycle in the area of the 2011 Mw 9.0 Tohoku-Oki earthquake. J. Geophys. Res. Solid Earth 119:4469–515 [Google Scholar]
  174. Perfettini H, Avouac JP, Ruegg JC. 2005. Geodetic displacements and aftershocks following the 2001 Mw= 8.4 Peru earthquake: implications for the mechanics of the earthquake cycle along subduction zones. J. Geophys. Res. 110:B09404 [Google Scholar]
  175. Perfettini H, Avouac JP, Tavera H, Kositsky A, Nocquet JM. et al. 2010. Seismic and aseismic slip on the Central Peru megathrust. Nature 465:78–81 [Google Scholar]
  176. Philibosian B, Sieh K, Avouac JP, Natawidjaja DH, Chiang HW. et al. 2014. Rupture and variable coupling behavior of the Mentawai segment of the Sunda megathrust during the supercycle culmination of 1797 to 1833. J. Geophys. Res. Solid Earth 119:7258–87 [Google Scholar]
  177. Prawirodirdjo L, McCaffrey R, Chadwell CD, Bock Y, Subarya C. 2010. Geodetic observations of an earthquake cycle at the Sumatra subduction zone: role of interseismic strain segmentation. J. Geophys. Res. 115:B03414 [Google Scholar]
  178. Protti M, Gonzalez V, Newman AV, Dixon TH, Schwartz SY. et al. 2014. Nicoya earthquake rupture anticipated by geodetic measurement of the locked plate interface. Nat. Geosci. 7:117–21 [Google Scholar]
  179. Radiguet M, Cotton F, Vergnolle M, Campillo M, Valette B. et al. 2011. Spatial and temporal evolution of a long term slow slip event: the 2006 Guerrero Slow Slip Event. Geophys. J. Int. 184:816–28 [Google Scholar]
  180. Radiguet M, Cotton F, Vergnolle M, Campillo M, Walpersdorf A. et al. 2012. Slow slip events and strain accumulation in the Guerrero gap, Mexico. J. Geophys. Res. 117:B04305 [Google Scholar]
  181. Reinen LA, Weeks JD, Tullis TE. 1991. The frictional behavior of serpentinite: implications for aseismic creep on shallow crustal faults. Geophys. Res. Lett. 18:1921–24 [Google Scholar]
  182. Rowe CD, Fagereng A, Miller JA, Mapani B. 2012a. Signature of coseismic decarbonation in dolomitic fault rocks of the Naukluft Thrust, Namibia. Earth Planet. Sci. Lett. 333:200–10 [Google Scholar]
  183. Rowe CD, Meneghini F, Moore JC. 2012b. Textural record of the seismic cycle: strain-rate variation in an ancient subduction thrust. Geol. Soc. Lond. Spec. Publ. 359:77–95 [Google Scholar]
  184. Rubin AM. 2008. Episodic slow slip events and rate-and-state friction. J. Geophys. Res. 113:B11414 [Google Scholar]
  185. Rubin AM, Ampuero JP. 2005. Earthquake nucleation on (aging) rate and state faults. J. Geophys. Res. 110:B11312 [Google Scholar]
  186. Ruff LJ, Tichelaar BW. 1996. What controls the seismogenic plate interface in subduction zones?. Subduction: Top to Bottom GE Bebout, DW Scholl, SH Kirby, JP Platt 105–11 Washington, DC: AGU [Google Scholar]
  187. Ruina A. 1983. Slip instability and state variable friction laws. J. Geophys. Res. 88:359–70 [Google Scholar]
  188. Sabadini R, Aoudia A, Barzaghi R, Crippa B, Marotta AM. et al. 2009. First evidences of fast creeping on a long-lasting quiescent earthquake normal-fault in the Mediterranean. Geophys. J. Int. 179:720–32 [Google Scholar]
  189. Saffer DM, Lockner DA, McKiernan A. 2012. Effects of smectite to illite transformation on the frictional strength and sliding stability of intact marine mudstones. Geophys. Res. Lett. 39:L11304 [Google Scholar]
  190. Saffer DM, Marone C. 2003. Comparison of smectite- and illite-rich gouge frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts. Earth Planet. Sci. Lett. 215:219–35 [Google Scholar]
  191. Saffer DM, Tobin HJ. 2011. Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. Annu. Rev. Earth Planet. Sci. 39:157–86 [Google Scholar]
  192. Saillard M, Hall SR, Audin L, Farber DL, Herail G. et al. 2009. Non-steady long-term uplift rates and Pleistocene marine terrace development along the Andean margin of Chile (31°S) inferred from 10Be dating. Earth Planet. Sci. Lett. 277:50–63 [Google Scholar]
  193. Savage JC. 1983. A dislocation model of strain accumulation and release at a subduction zone. J. Geophys. Res. 88:4984–96 [Google Scholar]
  194. Savage JC, Svarc JL, Yu SB. 2005. Postseismic relaxation and transient creep. J. Geophys. Res. 110:B11402 [Google Scholar]
  195. Savage JC, Svarc JL, Yu SB. 2007. Postseismic relaxation and aftershocks. J. Geophys. Res. 112:B06406 [Google Scholar]
  196. Schaff DP, Beroza GC, Shaw BE. 1998. Postseismic response of repeating aftershocks. Geophys. Res. Lett. 25:4549–52 [Google Scholar]
  197. Scholz CH. 1990. The Mechanics of Earthquakes Cambridge, UK: Cambridge Univ. Press
  198. Scholz CH. 1998. Earthquakes and friction laws. Nature 391:37–42 [Google Scholar]
  199. Schwartz DP, Coppersmith KJ. 1984. Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas fault zones. J. Geophys. Res. 89:5681–98 [Google Scholar]
  200. Schwartz SY. 1999. Noncharacteristic behavior and complex recurrence of large subduction zone earthquakes. J. Geophys. Res. 104:B1023111–25 [Google Scholar]
  201. Schwartz SY, Rokosky JM. 2007. Slow slip events and seismic tremor at circum-Pacific subduction zones. Rev. Geophys. 45:RG3004 [Google Scholar]
  202. Scotti O, Cornet FH. 1994. In situ evidence for fluid-induced aseismic slip events along fault zones. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 31:347–58 [Google Scholar]
  203. Segall P. 1993. How similar were the 1934 and 1966 Parkfield earthquakes?. J. Geophys. Res. 98:B34527–38 [Google Scholar]
  204. Shelly DR, Beroza GC, Ide S. 2007. Non-volcanic tremor and low-frequency earthquake swarms. Nature 446:305–7 [Google Scholar]
  205. Shirzaei M, Bürgmann R, Foster J, Walter TR, Brooks BA. 2013. Aseismic deformation across the Hilina fault system, Hawaii, revealed by wavelet analysis of InSAR and GPS time series. Earth Planet. Sci. Lett. 376:12–19 [Google Scholar]
  206. Shyu JBH, Chung LH, Chen YG, Lee JC, Sieh K. 2007. Re-evaluation of the surface ruptures of the November 1951 earthquake series in eastern Taiwan, and its neotectonic implications. J. Asian Earth Sci. 31:317–31 [Google Scholar]
  207. Sibson RH. 1982. Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States. Bull. Seismol. Soc. Am. 72:151–63 [Google Scholar]
  208. Sibson RH. 1985. Fluid flow accompanying faulting: field evidence and models. Earthquake Prediction DW Simpson, PG Richards 593–603 Washington, DC: AGU [Google Scholar]
  209. Sieh K, Natawidjaja DH, Meltzner AJ, Shen CC, Cheng H. et al. 2008. Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra. Science 322:1674–78 [Google Scholar]
  210. Song TRA, Helmberger DV, Brudzinski MR, Clayton RW, Davis P. et al. 2009. Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico. Science 324:502–6 [Google Scholar]
  211. Sugawara D, Goto K, Imamura F, Matsumoto H, Minoura K. 2012. Assessing the magnitude of the 869 Jogan tsunami using sedimentary deposits: prediction and consequence of the 2011 Tohoku-oki tsunami. Sediment. Geol. 282:14–26 [Google Scholar]
  212. Sylvester A, Bilham R, Jackson M, Barrientos S. 1993. Aseismic growth of Durmid Hill, southeasternmost San Andreas Fault, California. J. Geophys. Res. 98:B814233–43 [Google Scholar]
  213. Szeliga W, Bilham R, Kakar DM, Lodi SH. 2012. Interseismic strain accumulation along the western boundary of the Indian subcontinent. J. Geophys. Res. 117:B08404 [Google Scholar]
  214. Thatcher W. 1990. Order and diversity in the modes of circum-Pacific earthquake recurrence. J. Geophys. Res. 95:2609–23 [Google Scholar]
  215. Thomas MY, Avouac JP, Champenois J, Lee JC. 2014a. Spatio-temporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan. J. Geophys. Res. Solid Earth 119:5114–39 [Google Scholar]
  216. Thomas MY, Avouac JP, Gratier JP, Lee JC. 2014b. Lithological control on the deformation mechanism and the mode of fault slip on the Longitudinal Valley Fault, Taiwan. Tectonophysics 632:48–63 [Google Scholar]
  217. Thomas MY, Lapusta N, Avouac JP, Noda H. 2014c. Quasi-dynamic versus fully dynamic simulations of earthquakes and aseismic slip with and without enhanced coseismic weakening. 1191986–2004
  218. Tichelaar BW, Ruff JL. 1993. Seismic coupling along subduction zone. J. Geophys. Res. 98:2017–37 [Google Scholar]
  219. Titus SJ, DeMets C, Tikoff B. 2005. New slip rate estimates for the creeping segment of the San Andreas fault, California. Geology 33:205–8 [Google Scholar]
  220. Tocher D. 1960. Creep on the San Andreas fault: creep rate and related measurements at Vineyard, California. Bull. Seismol. Soc. Am. 50:396–404 [Google Scholar]
  221. Tse ST, Rice JR. 1986. Crustal earthquake instability in relation to the depth variation of frictional slip properties. J. Geophys. Res. 91:B99452–72 [Google Scholar]
  222. Uchida N, Matsuzawa T, Ellsworth WL, Imanishi K, Shimamura K, Hasegawa A. 2012. Source parameters of microearthquakes on an interplate asperity off Kamaishi, NE Japan over two earthquake cycles. Geophys. J. Int. 189:999–1014 [Google Scholar]
  223. Vergne J, Cattin R, Avouac JP. 2001. On the use of dislocations to model interseismic strain and stress build-up at intracontinental thrust faults. Geophys. J. Int. 147:155–62 [Google Scholar]
  224. Wallace LM, Beavan J. 2010. Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand. J. Geophys. Res. 115:B12402 [Google Scholar]
  225. Wallace LM, Beavan J, McCaffrey R, Darby D. 2004. Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. J. Geophys. Res. 109:B12406 [Google Scholar]
  226. Wallace LM, Reyners M, Cochran U, Bannister S, Barnes PM. et al. 2009. Characterizing the seismogenic zone of a major plate boundary subduction thrust: Hikurangi Margin, New Zealand. Geochem. Geophys. Geosyst. 10:Q10006 [Google Scholar]
  227. Wang K, Bilek SL. 2014. Fault creep caused by subduction of rough seafloor relief. Tectonophysics 610:1–24 [Google Scholar]
  228. Wang K, Hu Y, He JH. 2012a. Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature 484:327–32 [Google Scholar]
  229. Wang K, Mulder T, Rogers GC, Hyndman RD. 1995. Case for a very low coupling stress on the Cascadia subduction fault. J. Geophys. Res. 100:B712907–18 [Google Scholar]
  230. Wang LF, Hainzl S, Zoller G, Holschneider M. 2012b. Stress- and aftershock-constrained joint inversions for coseismic and postseismic slip applied to the 2004 M6.0 Parkfield earthquake. J. Geophys. Res. 117:B07406 [Google Scholar]
  231. Watts AB, Koppers AAP, Robinson DP. 2010. Seamount subduction and earthquakes. Oceanography 23:166–73 [Google Scholar]
  232. Wei M, Sandwell D, Fialko Y, Bilham R. 2011. Slip on faults in the Imperial Valley triggered by the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake revealed by InSAR. Geophys. Res. Lett. 38:L01308 [Google Scholar]
  233. Yoshioka S, Mikumo T, Kostoglodov V, Larson KM, Lowry AR, Singh SK. 2004. Interplate coupling and a recent aseismic slow slip event in the Guerrero seismic gap of the Mexican subduction zone, as deduced from GPS data inversion using a Bayesian information criterion. Phys. Earth Planet. Inter. 146:513–30 [Google Scholar]
  234. Yu SB, Kuo LC. 2001. Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics 333:199–217 [Google Scholar]
  235. Yu W, Song TA, Silver PG. 2013. Repeating aftershocks of the great 2004 Sumatra and 2005 Nias earthquakes. J. Asian Earth Sci. 67–68:153–70 [Google Scholar]
  236. Yue H, Lay T, Schwartz SY, Rivera L, Protti M. et al. 2013. The 5 September 2012 Nicoya, Costa Rica Mw 7.6 earthquake rupture process from joint inversion of high-rate GPS, strong-motion, and teleseismic P wave data and its relationship to adjacent plate boundary interface properties. J. Geophys. Res. Solid Earth 118:5453–66 [Google Scholar]
  237. Zigone D, Rivet D, Radiguet M, Campillo M, Voisin C. et al. 2012. Triggering of tremors and slow slip event in Guerrero, Mexico, by the 2010 Mw 8.8 Maule, Chile, earthquake. J. Geophys. Res. 117:B09304 [Google Scholar]
  238. Zweck C, Freymueller JT, Cohen SC. 2002. Three-dimensional elastic dislocation model of the postseismic response to the 1964 Alaska earthquake. J. Geophys. Res. 107:B4ECV1–11-11 [Google Scholar]
/content/journals/10.1146/annurev-earth-060614-105302
Loading
/content/journals/10.1146/annurev-earth-060614-105302
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error