1932

Abstract

Paleogeography is the study of the changing surface of Earth through time. Driven by plate tectonics, the configuration of the continents and ocean basins has been in constant flux. Plate tectonics pushes the land surface upward or pulls it apart, causing its collapse. All the while, the unrelenting forces of climate and weather slowly reduce mountains to sand and mud and redistribute these sediments to the sea. This article reviews the changing paleogeography of the past 750 million years. It describes the broad patterns of Phanerozoic paleogeography as well as many of the specific paleogeographic events that have shaped the modern continents and ocean basins. The focus is on the changing latitudinal distribution of the continents, fluctuations in sea level, the opening and closing of oceanic seaways, mountain building, and how these paleogeographic changes have affected global climate, ocean circulation, and the evolution of life. This review presents an atlas of 114 paleogeographic maps that illustrate how Earth's surface has evolved during the past 750 million years. During that time interval, Earth has witnessed the formation and breakup of two supercontinents: Pannotia and Pangea. The continents have been transformed from low-lying flooded platforms to high-standing land areas crisscrossed by the scars of past continental collisions. Oceans have opened and closed, and then opened again in a seemingly never-ending cycle.

  • ▪   The changing configuration of the continents and ocean basins during the past 750 million years is illustrated in 114 paleogeographic maps.
  • ▪   These maps describe how the surface of Earth has been continually modified by mountain building and erosion.
  • ▪   The changing paleogeography has affected global climate, ocean circulation, and the evolution of life.
  • ▪   The data and methods used to produce the maps are described in detail.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-081320-064052
2021-05-30
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-081320-064052.html?itemId=/content/journals/10.1146/annurev-earth-081320-064052&mimeType=html&fmt=ahah

Literature Cited

  1. Algeo TJ, Seslavinsky KB. 1995. Reconstructing eustasy and epeirogenic trends from Paleozoic continental flooding records. Sequence Stratigraphy and Depositional Response to Eustatic, Tectonic and Climate Forcing BU Haq 209–46 Dordrecht, Neth: Kluwer
    [Google Scholar]
  2. Alroy J, Aberhan M, Bottjer DJ, Foote M, Fürsich FT et al. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97–100
    [Google Scholar]
  3. Baatsen M, van Hinsbergen DJJ, von der Heydt AS, Dijkstra HA, Sluijs A et al. 2015. A generalized approach for reconstructing geographical boundary conditions for palaeoclimate modeling. Clim. Past Discuss. 11:4917–42
    [Google Scholar]
  4. Barrier E, Vrielynck B. 2008. Palaeotectonic Maps of the Middle East, Middle Wasr Basins and Evolution Programme, Atlas of 14 maps, Tectono-Sedimentary-Palinspastic maps from the Late Norian to the Pliocene Maps, Commis. Geolog. Map World, Paris
  5. Blakey RC. 2002. Global Paleogeography, Rectilinear Projection (DVD) Flagstaff, AZ: Colo. Plateau Geosyst.
  6. Blakey RC. 2008. Gondwana paleogeography from assembly to breakup—a 500 m.y. odyssey. Geol. Soc. Am. Spec. Pap. 441:1–28
    [Google Scholar]
  7. Blakey RC, Ranney WD. 2018. Ancient Landscapes of Western North America Cham, Switz: Springer
  8. Boucot AJ. 1975. Evolution and Extinction Rate Controls: Developments in Palaeontology and Stratigraphy Amsterdam: Elsevier
  9. Boucot AJ, Gray J 1976. Epilogue: a Paleozoic Pangea?. Historical Biogeography, Plate Tectonics, and the Changing Environment J Gray, AJ Boucot 465–82 Corvallis, OR: Or. State Univ. Press
    [Google Scholar]
  10. Boucot AJ, Xu C, Scotese CR, Morley RJ 2013. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate Tulsa, OK: SEPM
  11. Bozhko NA, Khain VE. 1987. Gondwana Paleotectonic Maps. Maps, Geolog. Complex Cent Reg. USSR:
    [Google Scholar]
  12. Brenchley PJ, Marshall JD, Carden GAF, Robertson DBR, Long DG et al. 1994. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology 22:295–98
    [Google Scholar]
  13. Brownstein CD. 2018. The biology and ecology of non-avian dinosaurs of Appalachia. Palaeontol. Electron. 21:1–56
    [Google Scholar]
  14. Caputo MV, de Melo JHG, Streel M, Isbell JL. 2008. Late Devonian and Early Carboniferous glacial records of South America. Geol. Soc. Am. Spec. Pap. 441:161–74
    [Google Scholar]
  15. Chumakov NM. 1994. Evidence of Late Permian glaciation in the Kolyma River Basin: a repercussion of the Gondwana glaciations in northeast Asia?. Stratigr. Geol. Correl. 2:5426–44
    [Google Scholar]
  16. Chumakov NM, Zharkov MA. 2003. Climate during the Permian–Triassic biosphere reorganizations. Article 2. Climate of the Late Permian and Early Triassic: general inferences. Stratigr. Geol. Correl. 11:4361–75
    [Google Scholar]
  17. Colbert EH. 1982. The distribution of Lystrosaurus in Pangea and its implications. Geobios 15:375–83
    [Google Scholar]
  18. Cook PJ. 1990. Australia: Evolution of a Continent Canberra, Aust: Aust. Gov. Publ. Serv.
  19. Cook TD, Bally AW. 1975. Stratigraphic Atlas of North America and Central America Princeton, NJ: Princeton Univ. Press
  20. Cope JCW, Ingham JK, Rawson F. 1992. Atlas of Paleogeography and Lithofacies London: Geol. Soc.
  21. Copper P. 2002. Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages. SEPM Spec. Publ. 72:181–238
    [Google Scholar]
  22. Copper P, Scotese CR. 2003. Megareefs in Middle Devonian supergreenhouse climates. Geol. Soc. Am. Spec. Pap. 370:209–30
    [Google Scholar]
  23. Crowley TJ. 1994. Pangean climates. Geol Soc. Am. Spec. Pap. 288:25–39
    [Google Scholar]
  24. Crowley TJ, Baum SK. 1991. Toward reconciliation of Late Ordovician (∼440 Ma) glaciation with very high CO2 levels. J. Geophys. Res. 96:D1222597–610
    [Google Scholar]
  25. Dalziel IWD. 1991. Pacific margins of Laurentia and East Antarctica as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent. Geology 19:598–601
    [Google Scholar]
  26. Demaison GJ, Moore GT. 1980. Anoxic environments and oil source bed genesis. AAPG Bull. 64:1179–209
    [Google Scholar]
  27. Dercourt J, Gaettani M, Vrielynck B, Barrier E, Biju-Duval B et al. 2000. Atlas Peri-Tethys: Palaeogeographical Maps Paris: Comm. Geol. Map World
  28. Dercourt J, Ricou LE, Vrielynick B. 1993. Atlas Tethys: Palaeoenvironmental Maps Paris: Gauthier-Villars
  29. Dercourt J, Zonenshain L, Ricou L, Kazmin VG, Le Pichon X et al. 1985. Presentation de 9 cartes paleogeographiques au 1/20.000.000 s'etendant de l'Atlantique au Pamir pour la periode du Lias a l'Actuel. Bull. Soc. Geo. Fr. 8:5637–52
    [Google Scholar]
  30. DiMichele WA, Montañez IP, Poulsen CJ, Tabor NJ. 2009. Climate and vegetational regime shifts in the late Paleozoic ice age Earth. Geobiology 7:200–26
    [Google Scholar]
  31. Domeier M. 2016. A plate tectonic scenario for the Iapetus and Rheic oceans. Gondwana Res 36:275–95
    [Google Scholar]
  32. Domeier M. 2018. Early Paleozoic tectonics of Asia: towards a full-plate model. Geosci. Front. 9:789–862
    [Google Scholar]
  33. Domeier M, Torsvik TH. 2014. Plate tectonics in the late Paleozoic. Geosci. Front. 5:303–50
    [Google Scholar]
  34. Domeier M, Torsvik TH. 2017. Full-plate modelling in pre-Jurassic time. Geol. Mag. 156:2261–80
    [Google Scholar]
  35. Erba E, Duncan RA, Bottini C, Tiraboschi D, Weissert H et al. 2015. Environmental consequences of Ontong Java Plateau and Kerguelen Plateau volcanism. Geol. Soc. Am. Spec. Pap. 511:271–303
    [Google Scholar]
  36. Ernst RE. 2014. Large Igneous Provinces Cambridge, UK: Cambridge Univ. Press
  37. Evans D, Graham C, Armour A, Bathurst P. 2003. The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea London: Geol. Soc.
  38. Fensome RA, Williams GL. 2001. The Last Billion Years: The Geological History of the Maritime Provinces of Canada Halifax, Can: Nimbus
  39. Finnegan S, Bergmann K, Eiler JM, Jones DS, Fike DA et al. 2011. The magnitude and duration of Late Ordovician–Early Silurian glaciation. Science 331:6019903–6
    [Google Scholar]
  40. Godderis Y, Donnadieu Y, Carretier S, Aretz M, Dera G et al. 2017. Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering. Nat. Geosci. 10:5382–85
    [Google Scholar]
  41. Godderis Y, Donnadieu Y, Le Hir G, LeFebvre V, Nardin E 2014. The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth-Sci. Rev. 128:122–38
    [Google Scholar]
  42. Golonka J. 2000. Cambrian-Neogene Plate Tectonic Maps Krakow, Pol: Druk. Uniw. Jagiell.
  43. Golonka J. 2007. Late Triassic and Early Jurassic paleogeography of the world. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244:297–307
    [Google Scholar]
  44. Grabau A. 1924. Principles of Stratigraphy 1 & 2 New York: Dover
  45. Hallam A. 1984. Pre-Quaternary sea-level changes. Annu. Rev. Earth Planet. Sci. 12:205–43
    [Google Scholar]
  46. Haq BU, Hardenbol J, Vail PR. 1987. Chronology of fluctuating sea levels since the Triassic. . Science 235:1156–67
    [Google Scholar]
  47. Haq BU, Schutter SR. 2009. A chronology of Paleozoic sea-level changes. Science 322:64–68
    [Google Scholar]
  48. Hay WW. 2017. Toward understanding Cretaceous climate—an updated review. Sci. China Earth Sci. 60:5–19
    [Google Scholar]
  49. Haywood AM, Valdes PJ, Aze T, Barlow NA, Dolan AM et al. 2019. What can palaeoclimate modelling do for you?. Earth Syst. Environ. 3:11–18
    [Google Scholar]
  50. Herman Y, Hopkins DM. 1980. Arctic oceanic climate in late Cenozoic times. Science 209:4456557–62
    [Google Scholar]
  51. Herrle JO, Schröder-Adams CJ, Davis W, Pugh AT, Galloway JM, Fath J. 2015. Mid-Cretaceous High Arctic stratigraphy, climate, and oceanic anoxic events. Geology 43:5403–6
    [Google Scholar]
  52. Hoffman PF. 1991. Did the breakout of Laurentia turn Gondwanaland inside out?. Science 252:1409–12
    [Google Scholar]
  53. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP 1998. A Neoproterozoic snowball Earth. Science 281:1342–46
    [Google Scholar]
  54. Hotinski RM, Toggweiler JR. 2003. Impact of a Tethyan circumglobal passage on ocean heat transport and “equable” climates. Paleoceanography 18:1007–15
    [Google Scholar]
  55. Hsü KJ, Montadert L, Bernoulli D, Cita MB, Erickson A et al. 1977. History of the Mediterranean salinity crisis. Nature 267:399–403
    [Google Scholar]
  56. Isozaki Y. 1997. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276:235–38
    [Google Scholar]
  57. Jakobsson M, MacNab R, Cherkis N, Schenke H-W. 2004. The International Bathymetric Chart of the Arctic Ocean (IBCAO) Boulder, CO: Natl. Geophys. Data Cent.
  58. Johnson JG. 1974. Extinction of perched faunas. Geology 2:479–82
    [Google Scholar]
  59. Joshi MM, Mills BJW, Johnson M. 2019. A capacitor-discharge mechanism to explain the timing of orogeny-related global glaciations. Geophys. Res. Lett. 46:8347–54
    [Google Scholar]
  60. Jovane L, Coccioni R, Marsili A, Acton G. 2009. The late Eocene greenhouse–icehouse transition: observations from the Massignano global stratotype and point (GSSP). Geol. Soc. Am. Spec. Pap. 452:149–68
    [Google Scholar]
  61. Kazmin VG, Natapov LM. 1998. The Paleogeographic Atlas of Northern Eurasia: Paleogeographic Maps on the Palinspastic Reconstruction (Orthographic Projection) Moscow: Russ. Acad. Nat. Sci.
  62. Keller B, Husson JM, Mitchell RN, Bottke WF, Gernon TM et al. 2019. Neoproterozoic glacial origin of the Great Unconformity. PNAS 116:41136–45
    [Google Scholar]
  63. Kiessling W, Flügel E, Golonka J. 2002. Phanerozoic Reef Patterns Tulsa, OK: SEPM
  64. Kocsis AT, Scotese CR. 2020. Mapping paleocoastlines and continental flooding during the Phanerozoic. Earth-Sci. Rev. 213:103463
    [Google Scholar]
  65. Kump LR, Arthur MA. 1999. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol. 161:181–98
    [Google Scholar]
  66. Kump LR, Gibbs MT, Arthur MA, Patzkowsky ME, Sheehan PM 1995. Hirnantian glaciation and the carbon cycle. Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System, Las Vegas, Nevada, USA, June, 1995 JD Cooper, ML Droser, SC Finney 299–302 Fullerton, CA: SEPM
    [Google Scholar]
  67. Kump LR, Kasting JF, Crane RG. 1999. The Earth System Upper Saddle River, NJ: Prentice Hall
  68. Lawver LA, Gahagan LM. 2003. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 198:11–37
    [Google Scholar]
  69. Lawver LA, Scotese CR 1987. A revised reconstruction of Gondwanaland. Gondwana Six: Structure, Tectonics and Geophysics GD McKenzie 17–24 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  70. Lenton TM, Crouch M, Johnson M, Pires N, Dolan L. 2012. First plants cooled the Ordovician. Nat. Geosci. 5:86–89
    [Google Scholar]
  71. Ling M-X, Zhan R-B, Wang G-X, Wang Y, Amelin Y et al. 2019. An extremely brief end Ordovician mass extinction linked to abrupt onset of glaciation. Solid Earth Sci 4:4190–98
    [Google Scholar]
  72. Livermore R, Nankivell A, Eagles G, Morris P. 2005. Paleogene opening of the Drake Passage. Earth Planet. Sci. Lett. 236:459–70
    [Google Scholar]
  73. Lythe MB, Vaughan DG, BEDMAP Consort. 2000. BEDMAP: Bed Topography of the Antarctic, Misc. 9, scale 1:10,000,000 Cambridge, UK: Br. Antarct. Surv.
    [Google Scholar]
  74. Ma YS, Chen HD, Wang GL. 2009. Atlas of Tectonics: Sequence Lithofacies Paleogeography in South China Beijing: Science Press
  75. Mallory WW. 1972. Geological Atlas of the Rocky Mountain Region Denver, CO: Rocky Mt. Assoc. Geol.
  76. Markwick PJ. 2019. Palaeogeography in exploration. Geol. Mag. 156:2366–407
    [Google Scholar]
  77. Marshall LG, Webb DS, Sepkoski JJ, Raup DM. 1982. Mammalian evolution and the great American interchange. Science 215:1351–57
    [Google Scholar]
  78. Martin A, Petrova L. 2011. The Paleogeographer's Song Denton: Univ. N. Texas Dep. Radio Telev. Film https://www.youtube.com/watch?v=7qesJYbwKtY
  79. Matthews KJ, Maloney KT, Zahirovic S, Williams S, Seton M, Müller RD. 2016. Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Change 146:226–50
    [Google Scholar]
  80. McCrossan RG, Glaister RP, Austin GH, Nelson SJ. 1964. Geological History of Western Canada Calgary, Can: Alberta Soc. Pet. Geol.
  81. McKenna MC 1973. Sweepstakes, filters, corridors, Noah's arks, and beached Viking funeral ships and palaeogeography. Implications of Continental Drift to the Earth Sciences DH Tarling, SK Runcorn 293–308 New York: Academic
    [Google Scholar]
  82. Meert JG. 2003. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 362:1–40
    [Google Scholar]
  83. Meingold G, Şengör AMC. 2019. An historical account of how continental drift and plate tectonics provided the framework for our current understanding of palaeogeography. Geol. Mag. 156:2182–207
    [Google Scholar]
  84. Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS et al. 2005. The Phanerozoic record of global sea-level change. Science 310:1293–98
    [Google Scholar]
  85. Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science 189:419–26
    [Google Scholar]
  86. Montañez IP, McElwain JC, Poulsen CJ, White JD, Dimichele WA et al. 2016. Climate, pCO2 and terrestrial carbon cycle linkages during late Palaeozoic glacial–interglacial cycles. Nat. Geosci. 9:824–28
    [Google Scholar]
  87. Montañez IP, Poulsen JC. 2013. The Late Paleozoic ice age: an evolving paradigm. Annu. Rev. Earth Planet. Sci. 41:629–56
    [Google Scholar]
  88. Montañez IP, Tabor NJ, Niemeier D, DiMichele WA, Frank TD et al. 2007. CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science 315:87–91
    [Google Scholar]
  89. Moore TL, Scotese CR. 2010. The Paleoclimate Atlas (ArcGIS). Geol. Soc. Am. Abstr. Programs 42:598
    [Google Scholar]
  90. Moores EM. 1991. Southwest U.S.–East Antarctica (SWEAT) connection: a hypothesis. Geology 19:425–28
    [Google Scholar]
  91. Müller RD, Cannon J, Qin X, Watson RJ, Gurnis M et al. 2018. GPlates: building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19:2243–61
    [Google Scholar]
  92. Müller RD, Dutkiewicz A, Seton M, Gaina C. 2013. Seawater chemistry driven by supercontinent assembly, breakup, and dispersal. Geology 41:8907–10
    [Google Scholar]
  93. Müller RD, Roest WR, Royer JY, Gahagan LM, Sclater JG. 1993. A Digital Age Map of the Ocean Floor La Jolla, CA: Scripps Inst. Oceanogr.
  94. Müller RD, Roest WR, Royer JY, Gahagan LM, Sclater JG. 1997. Digital isochrons of the world's ocean floor. J. Geophys. Res. 102:B23211–14
    [Google Scholar]
  95. Müller RD, Sdrolias M, Gaina C, Roest WR. 2008a. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochem. Geophys. Geosyst. 9:4Q04006
    [Google Scholar]
  96. Müller RD, Sdrolias M, Gaina C, Steinberger B, Heine C. 2008b. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319:1357–62
    [Google Scholar]
  97. Müller RD, Seton M, Zahirovic S, Williams SE, Matthews K et al. 2016. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu. Rev. Earth Planet. Sci. 44:107–38
    [Google Scholar]
  98. Murphy JB, Strachan RA, Quesada C. 2021. Pannotia to Pangaea: Neoproterozoic and Paleozoic Orogenic cycles in the Circum-Atlantic region: a celebration of the career of Damian Nance. Geol. Soc. Lond. Spec. Publ. 503:1–11
    [Google Scholar]
  99. Osen AK, Winguth AME, Winguth C, Scotese CR. 2013. Sensitivity of Late Permian climate to bathymetric features and implications for the mass extinction. Glob. Planet. Change 105:171–79
    [Google Scholar]
  100. Overbye D. 1982. The shape of tomorrow: an imaginative Chicago geologist plots the wanderings of the continents to try to read the shape of the future. Discover 3:1120–25
    [Google Scholar]
  101. Parrish JT. 1993. Climate of the supercontinent Pangea. J. Geol. 101:217–35
    [Google Scholar]
  102. Parsons B, Sclater JG. 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res. 82:5803–27
    [Google Scholar]
  103. Peltier WR. 2004. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32:111–49
    [Google Scholar]
  104. Pindell J, Kennan L. 2009. Tectonic evolution of the Gulf of Mexico, Caribbean, and northern South America in the mantle reference frame: an update. Geol. Soc. Lond. Spec. Publ. 328:1–55
    [Google Scholar]
  105. Powell CM, Young GM. 1995. Are Neoproterozoic glacial deposits preserved on the margins of Laurentia related to the fragmentation of two supercontinents?. Geology 23:1053–55
    [Google Scholar]
  106. Rasmussen CMO, Kroger B, Nielsen ML, Colmenar J 2019. Cascading trend of early Paleozoic marine radiations paused by late Ordovician extinctions. PNAS 116:157207–13
    [Google Scholar]
  107. Raymo ME, Ruddiman WF. 1992. Tectonic forcing of late Cenozoic climate. Nature 359:117–22
    [Google Scholar]
  108. Rees M, Ziegler AM, Gibbs MT, Kutzbach JE, Behling PJ, Rowley DB. 2002. Permian phytogeographic patterns and climate data/model comparisons. J. Geol. 110:1–31
    [Google Scholar]
  109. Rees M, Ziegler AM, Valdes J 2000. Jurassic phytogeography and climates: new data and model comparisons. Warm Climates in Earth History BT Huber, KG Macleod, SL Wing 297–318 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  110. Richey JD, Montañez IP, Godderis Y, Looy CV, Griffis NP, DiMichele WA. 2020. Influence of temporally varying weatherability on CO2–climate coupling and ecosystem change in the late Paleozoic. Clim. Past 16:51759–75
    [Google Scholar]
  111. Rong JY. 1984. Distribution of the Hirnantia fauna and its meaning. Aspects of the Ordovician System DL Bruton 101–12 Oslo, Nor: Universitetsforlaget
    [Google Scholar]
  112. Ronov AB, Khain YE, Balukhovsky A. 1989. Atlas of Lithological-Paleogeographical Maps of the World, Mesozoic and Cenozoic of the Continents Leningrad, Russ: Minist. Geol. USSR
  113. Ronov AB, Khain YE, Slavinsky K. 1984. Atlas of Lithological-Paleogeographical Maps of the World, Precambrian and Paleozoic of the Continents Leningrad, Russ: Minist. Geol. USSR
  114. Ross CA, Ross JR. 1985. Late Paleozoic depositional sequences are synchronous and worldwide. Geology 13:194–97
    [Google Scholar]
  115. Rowley DB. 1996. Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet. Sci. Lett. 145:1–13
    [Google Scholar]
  116. Rowley DB. 1998. Minimum age of initiation of collision between India and Asia north of Everest based on the subsidence history of the Zhepure Mountain section. J. Geol. 106:229–35
    [Google Scholar]
  117. Rowley DB. 2017. Earth's constant mean elevation: implication for long-term sea level controlled by oceanic lithosphere dynamics in a Pitman world. J. Geol. 125:141–53
    [Google Scholar]
  118. Rowley DB. 2018. Oceanic axial depth and age-depth distribution of oceanic lithosphere: comparison of magnetic anomaly picks versus age-grid models. Lithosphere 11:121–43
    [Google Scholar]
  119. Rowley DB, Currie BS. 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439:677–81
    [Google Scholar]
  120. Rowley DB, Garzione CN. 2007. Stable isotope-based paleoaltimetry. Annu. Rev. Earth Planet. Sci. 35:463–508
    [Google Scholar]
  121. Rowley DB, Pierrehumbert RT, Currie BS. 2001. A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth Planet. Sci. Lett. 188:253–68
    [Google Scholar]
  122. Schandelmeier H, Reynolds O. 1997. Palaeogeographic–Palaeotectonic Atlas of North-Eastern Africa, Arabia, and Adjacent Areas: Late Proterozoic to Holocene Rotterdam, Neth: A.A. Balkema
  123. Scher HD, Martin EE. 2006. Timing and climatic consequences of the opening of Drake Passage. Science 312:428–30
    [Google Scholar]
  124. Schlanger SO, Jenkyns HC. 1976. Cretaceous oceanic anoxic events: causes and consequences. Geol. Mijnb. 55:179–84
    [Google Scholar]
  125. Sclater JG, Jaupart C, Galson D. 1980. The heat flow through oceanic and continental crust and the heat loss of the Earth. Rev. Geophys. Space Phys. 18:269–311
    [Google Scholar]
  126. Scotese CR. 1990. Atlas of Phanerozoic plate tectonic reconstructions. . PALEOMAP Progress Rep. 01-1090a. Univ. Tex Arlington, TX:
  127. Scotese CR. 1998. Digital Paleogeographic map archive on CD-ROM. PALEOMAP Project, Univ. Tex Arlington, TX:
  128. Scotese CR. 2001. Animation of Plate Motions and Global Plate Boundary Evolution since the Late Precambrian. Geol. Soc. Am. Abstr. Programs 33:685
    [Google Scholar]
  129. Scotese CR. 2002. 3D paleogeographic and plate tectonic reconstructions: the PALEOMAP Project is back in town. Bull. Houston Geolog. Soc. 44:913–15
    [Google Scholar]
  130. Scotese CR 2004. Cenozoic and Mesozoic paleogeography: changing terrestrial biogeographic pathways. Frontiers of Biogeography: New Directions in the Geography of Nature MV Lomolino, LH Heaney 1–26 Sunderland, MA: Sinauer Assoc.
    [Google Scholar]
  131. Scotese CR. 2008a. The PALEOMAP Project PaleoAtlas for ArcGIS, version 1, Vol. 1, Cenozoic paleogeographic, paleoclimatic and plate tectonic reconstructions PALEOMAP Project, Univ. Tex Arlington, TX:
    [Google Scholar]
  132. Scotese CR. 2008b. The PALEOMAP Project PaleoAtlas for ArcGIS, version 1, Vol. 2, Cretaceous paleogeographic, paleoclimatic and plate tectonic reconstructions PALEOMAP Project, Univ. Tex Arlington, TX:
    [Google Scholar]
  133. Scotese CR. 2008c. The PALEOMAP Project PaleoAtlas for ArcGIS, version 1, Vol. 3, Jurassic paleogeographic, paleoclimatic and plate tectonic reconstructions PALEOMAP Project, Univ. Tex Arlington, TX:
    [Google Scholar]
  134. Scotese CR. 2008d. The PALEOMAP Project PaleoAtlas for ArcGIS, version 1, Vol. 4, Late Paleozoic paleogeographic, paleoclimatic and plate tectonic reconstructions PALEOMAP Project, Univ. Tex Arlington, TX:
  135. Scotese CR. 2008e. The PALEOMAP Project PaleoAtlas for ArcGIS, version 1, Vol. 5, Early Paleozoic paleogeographic, paleoclimatic and plate tectonic reconstructions PALEOMAP Project, Univ. Tex Arlington, TX:
  136. Scotese CR. 2008f. The PALEOMAP Project PaleoAtlas for ArcGIS, version 1, Vol. 6, Late Precambrian Paleozoic paleogeographic, paleoclimatic and plate tectonic reconstructions PALEOMAP Project, Univ. Tex Arlington, TX:
    [Google Scholar]
  137. Scotese CR. 2009. Late Proterozoic plate tectonics and paleogeography: a tale of two supercontinents, Rodinia and Pannotia, in global Neoproterozoic petroleum systems: the emerging potential in North Africa. Geol. Soc. Lond. Spec. Pap. 326:67–83
    [Google Scholar]
  138. Scotese CR. 2014a. Atlas of Phanerozoic Oceanic Anoxia (Mollweide Projection), Vol. 1–6: PALEOMAP Project PaleoAtlas for ArcGIS Evanston, IL: PALEOMAP Project
    [Google Scholar]
  139. Scotese CR. 2014b. Atlas of Plate Tectonic Reconstructions (Mollweide Projection), Vol. 1–6: PALEOMAP Project PaleoAtlas for ArcGIS Evanston, IL: PALEOMAP Project
    [Google Scholar]
  140. Scotese CR. 2016. Tutorial: PALEOMAP Paleoatlas for GPlates and the PaleoData Plotter Program. Tutor, PALEOMAP Project http://www.earthbyte.org/paleomap-paleoatlas-for-gplates/
    [Google Scholar]
  141. Scotese CR. 2017. Atlas of Oceans & Continents: Plate Tectonics, 1.5 Billion Years–Today PALEOMAP Proj. Rep. 112117A, PALEOMAP Project Evanston, IL: https://www.researchgate.net/publication/321197460_Atlas_of_Ancient_Oceans_Continents_15_billion_years_-_Today
  142. Scotese CR. 2018. Plate tectonic evolution during the last 1.5 billion years: the movie Paper presented at the Geological Society of America Annual Meeting Indianapolis, IN: Nov. 5
  143. Scotese CR, Bambach RJ, Barton C, van der Voo R, Ziegler AM. 1979. Paleozoic base maps. J. Geol. 87:3217–77
    [Google Scholar]
  144. Scotese CR, Boucot AJ, McKerrow WS. 1999. Gondwanan paleogeography and paleoclimatology. J. Afr. Earth Sci. 28:199–114
    [Google Scholar]
  145. Scotese CR, Dammrose R. 2008. Plate boundary evolution and mantle plume eruptions during the last billion years. Geol. Soc. Am. Abstr. Programs 40:6328
    [Google Scholar]
  146. Scotese CR, McKerrow WS. 1990. Revised world maps and introduction. Geol. Soc. Lond. Mem. 12:1–21
    [Google Scholar]
  147. Scotese CR, Moore TL. 2014a. Atlas of Phanerozoic Ocean Currents and Salinity (Mollweide Projection), Vol. 1–6: PALEOMAP Project PaleoAtlas for ArcGIS Evanston, IL: PALEOMAP Project
    [Google Scholar]
  148. Scotese CR, Moore TL. 2014b. Atlas of Phanerozoic Rainfall (Mollweide Projection), Vol. 1–6: PALEOMAP Project PaleoAtlas for ArcGIS Evanston, IL: PALEOMAP Project
    [Google Scholar]
  149. Scotese CR, Moore TL. 2014c. Atlas of Phanerozoic Temperatures (Mollweide Projection), Vol. 1–6: PALEOMAP Project PaleoAtlas for ArcGIS Evanston, IL: PALEOMAP Project
    [Google Scholar]
  150. Scotese CR, Moore TL. 2014d. Atlas of Phanerozoic Upwelling Zones (Mollweide Projection), Vol. 1–6: PALEOMAP Project PaleoAtlas for ArcGIS Evanston, IL: PALEOMAP Project
    [Google Scholar]
  151. Scotese CR, Moore TL. 2014e. Atlas of Phanerozoic Winds and Atmospheric Pressure (Mollweide Projection), Vol. 1–6: PALEOMAP Project PaleoAtlas for ArcGIS Evanston, IL: PALEOMAP Project
    [Google Scholar]
  152. Scotese CR, Sager WW 1989. Mesozoic and Cenozoic Plate Reconstructions Amsterdam: Elsevier
  153. Scotese CR, Schettino A 2017. Late Permian-Early Jurassic paleogeography of Western Tethys and the world. Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins JI Soto, J Flinch, G Tari 57–95 Amsterdam: Elsevier
    [Google Scholar]
  154. Scotese CR, Song H, Mills B, van der Meer D. 2021. Phanerozoic paleotemperatures: the earth's changing climate during the last 540 million years. Earth-Sci. Rev. 2021:103503
    [Google Scholar]
  155. Scotese CR, Wright N. 2018. PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic PaleoDEMs, PALEOMAP Project. https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/
  156. Şengör AMC, Atayman S. 2009.. The Permian Extinction and the Tethys: An Exercise in Global Geology Boulder, CO: Geol. Soc. Am.
  157. Şengör AMC, Cin A, Rowley DB, Nie SY. 1993. Space-time patterns of magmatism along the Tethysides: a preliminary study. J. Geol. 101:51–84
    [Google Scholar]
  158. Şengör AMC, Natal'in BA 1996. Paleotectonics of Asia: fragments of a synthesis. The Tectonic Evolution of Asia A Yin, TM Harrison 486–640 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  159. Şengör AMC, Natal'in BA, Sunal G, van der Voo R 2014a. A new look at the Altaids: a superorogenic complex in Northern and Central Asia as a factory of continental crust, Part I: geological data compilation (exclusive of paleomagnetic observations). Austrian J. Earth Sci. 107:1169–232
    [Google Scholar]
  160. Şengör AMC, Natal'in BA, van der Voo R, Sunal G 2014b. A new look at the Altaids: a superorogenic complex in Northern and Central Asia as a factory of continental crust, Part II: palaeomagnetic data, reconstructions, crustal growth, and global sea-level. Austrian J. Earth Sci. 107:2131–81
    [Google Scholar]
  161. Seton M, Müller RD, Zahirovic S, Gaina C, Torsvik TH et al. 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 113:212–70
    [Google Scholar]
  162. Sheehan PM. 2001. The late Ordovician mass extinction. Annu. Rev. Earth Planet. Sci. 29:331–64
    [Google Scholar]
  163. Sheehan PM, Coorough PJ. 1990. Brachiopod zoogeography across the Ordovician-Silurian extinction event. Geol. Soc. Lond. Mem. 12:181–87
    [Google Scholar]
  164. Shubin N. 2008. Your Inner Fish: A Journey into the 3.5 Billion Year History of the Human Body New York: Pantheon Books
  165. Simmons MD 2012. Sequence stratigraphy and sea-level change. The Geologic Time Scale 2012 FM Gradstein, JG Ogg, M Schmitz, G Ogg 239–67 Amsterdam: Elsevier
    [Google Scholar]
  166. Smith AG. 1999. Gondwana: its shape, size, position from Cambrian to Triassic times. J. Afr. Earth Sci. 28:71–98
    [Google Scholar]
  167. Smith AG, Smith DG, Funnell BM. 1994. Atlas of Mesozoic and Cenozoic Coastlines Cambridge, UK: Cambridge Univ. Press
  168. Smith W. 1815. A Delineation of the Strata of England and Wales and Part of Scotland London: J. Cary
  169. Smith WHF, Sandwell DT. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277:1956–62
    [Google Scholar]
  170. Snedden JW, Liu C. 2010. A compilation of Phanerozoic sea-level change, coastal onlaps and recommended sequence designations. AAPG Search Discov. Artic. 2010.40594
    [Google Scholar]
  171. Snedden JW, Liu C. 2011. Recommendations for a uniform chronostratigraphic designation system for Phanerozoic depositional sequences. AAPG Bull 95:1095–122
    [Google Scholar]
  172. Stampfli GM. 2000. Tethyan oceans. Geol. Soc. Lond. Spec. Publ 173:1–23
    [Google Scholar]
  173. Stampfli GM, Borel GD. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet. Sci. Lett. 196:17–33
    [Google Scholar]
  174. Stampfli GM, Borel GD 2004. The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain. The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle W Cavazza, FM Roure, W Spakman, GM Stampfli, PA Ziegler 53–80 Berlin: Springer
    [Google Scholar]
  175. Stampfli GM, Hochard C, Verard C, Wilhe C, von Raumer J 2013. The formation of Pangea. Tectonophysics 593:1–19
    [Google Scholar]
  176. Stampfli GM, Kozur HW 2006. Europe from the Variscan to the Alpine cycles. European Lithosphere Dynamics DG Gee, RA Stephenson 57–82 London: Geol. Soc. Lond.
    [Google Scholar]
  177. Stampfli GM, Mosar J, Favre PH, Pillevuit A, Vannay JC. 2001. Permo-Mesozoic evolution of the western Tethys realm: the Neo-Tethys East Mediterranean Basin connection. See Ziegler et al. 2001 51–108
  178. Stampfli GM, Pillevuit A. 1993. An alternative Permo-Triassic reconstruction of the kinematics of the Tethyan realm. See Dercourt et al. 1993 9–20
  179. Stein CA, Stein S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359:123–29
    [Google Scholar]
  180. Steininger FF, Wessley G. 2000. From the Tethyan Ocean to the Paratethys Sea: Oligocene to Neogene stratigraphy, paleogeography and paleobiogeography of the circum-Mediterranean region and the Oligocene to Neogene Basin evolution in Austria. Mitt. Osterr. Geol. Ges. 92:95–116
    [Google Scholar]
  181. Stern RJ. 1994. Arc assembly and continental collision in the Neoproterozoic East Africa Orogen: implications for the consolidation of Gondwanaland. Annu. Rev. Earth Planet. Sci. 33:319–51
    [Google Scholar]
  182. Swanson-Hysell NL, Macdonald FA. 2017. Tropical weathering of the Taconic Orogeny as a driver for Ordovician cooling. Geology 45:719–22
    [Google Scholar]
  183. Tabor NJ, DiMechele WA, Montañez IP, Chaney DS. 2013. Late Paleozoic continental warming of a cold tropical basin and floristic change in western Pangea. Int. J. Coal Geol. 119:177–86
    [Google Scholar]
  184. Toggweiler JR, Bjornsson H. 2000. Drake Passage and palaeoclimate. J. Quat. Sci. 15:319–28
    [Google Scholar]
  185. Torsvik TH, Cocks LRM. 2017. Earth History and Palaeogeography Cambridge, UK: Cambridge Univ. Press
  186. Trotter JA, Williams IS, Barnes CR, Lécuyer C, Nicoll RS. 2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321:5888550–54
    [Google Scholar]
  187. Ulmishek GF, Klemme HD. 1990. Depositional controls, distribution, and effectiveness of the world's petroleum source rocks. USGS Bull 1931 59
    [Google Scholar]
  188. Vail PR, Mitchum RM, Todd RG, Widmier JM, Thompson S III et al. 1977. Seismic stratigraphy and global changes in sea level. Seismic StratigraphyApplications to Hydrocarbon Exploration CE Payton 49–212 Tulsa, OK: Am. Assoc. Pet. Geol.
    [Google Scholar]
  189. Valdes PJ, Scotese CR, Lunt DJ. 2018. Modelling the Climate History of the Phanerozoic, Toward a Phanerozoic History of the Earth's Surface Temperature. Poster presented at the American Geophysical Union Centennial Meeting Washington, DC: Dec. 10
    [Google Scholar]
  190. van der Linden TJM, Dupont-Nivet G, van Hinsbergen DJJ. 2020. Towards a quantitative paleogeography calculator Presented at EGU General Assembly, online, May 8
  191. van der Meer DG, van den Berg X, van Saparoea APH, Hinsbergen DJJ, van de Weg RMB et al. 2017. Reconstructing first-order changes in sea level during the Phanerozoic and Neoproterozoic using strontium isotopes. Gondwana Res 44:22–34
    [Google Scholar]
  192. van der Voo R. 1993. Paleomagnetism of the Atlantic, Tethys, and Iapetus Oceans Cambridge, UK: Cambridge Univ. Press
  193. Veevers JJ. 1984. Phanerozoic Earth History of Australia New York: Oxford Univ. Press
  194. Veevers JJ. 2000. Billion-Year History of Australia and Neighbours in Gondwanaland Sydney: GEMOC
  195. Verard C. 2019. Panalesis: towards global synthetic paleogeographies using integration and coupling manifold models. Geol. Mag. 156:2320–30
    [Google Scholar]
  196. Verard C, Hochard C, Baumgartner O, Stampfli GM. 2015. 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations. J. Palaeogeogr. 4:164–84
    [Google Scholar]
  197. Vinogradov AP, Vereshchagin VN, Nalivkin VD, Ronov AB, Khabakov AV, Khain VE 1967. Atlas of Lithological-Paleogeographical Maps of the U.S.S.R. (1:7.500,00), Tome IV, Paleogene, Neogene, and Quaternary VA Grossheim, VE Khain Moscow: Acad. Sci. USSR
    [Google Scholar]
  198. Vinogradov AP, Vereshchagin VN, Nalivkin VD, Ronov AB, Khabakov AV, Khain VE 1968a. Atlas of Lithological-Paleogeographical Maps of the U.S.S.R. (1:7.500,00), Tome I, Precambrian, Cambrian, Ordovician, and Sillurian BM Keller, NN Predtechensky Moscow: Acad. Sci. USSR
    [Google Scholar]
  199. Vinogradov AP, Vereshchagin VN, Nalivkin VD, Ronov AB, Khabakov AV, Khain VE 1968b. Atlas of Lithological-Paleogeographical Maps of the U.S.S.R. (1:7.500,00), Tome III, Triassic, Jurassic, and Cretaceous, VN Vereshchagin, AB Ronov Moscow: Acad. Sci. USSR
    [Google Scholar]
  200. Vinogradov AP, Vereshchagin VN, Nalivkin VD, Ronov AB, Khabakov AV, Khain VE 1969. Atlas of Lithological-Paleogeographical Maps of the U.S.S.R. (1:7.500,00), Tome II, Devonian, Carboniferous, and Permian VD Nalivkin, VM Posner Moscow: Acad. Sci. USSR
    [Google Scholar]
  201. Wang H. 1985. Atlas of the Paleogeography of China Beijing: Cartogr. Publ. House
  202. Xiao W, Kroner A, Windley B. 2009. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. Int. J. Earth Sci. 98:1185–88
    [Google Scholar]
  203. Yilmaz O, Norton IO, Leary D, Chuchla RJ. 1996. Tectonic evolution and paleogeography of Europe. See Ziegler & Horvath 1996.47–60encl. 1–13
  204. Young A, Flament N, Maloney K, Williams S, Matthews K et al. 2019. Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geosci. Front. 10:989–1013
    [Google Scholar]
  205. Zheng HR, Hu ZQ 2010. Atlas of Pre-Mesozoic Tectonic Lithofacies Paleogeography in China Beijing: Geol. Publ. House
  206. Ziegler AM. 1975. A proposal to produce an atlas of paleogeographic maps Rep. Dep. Geophys. Sci., Univ. Chicago
  207. Ziegler AM, Hansen KS, Johnson ME, Kelly MA, Scotese CR, van der Voo R 1977. Silurian continental distributions, paleogeography, climatology, and biogeography. Tectonophysics 40:13–51
    [Google Scholar]
  208. Ziegler AM, Hulver ML, Rowley DB 1997. Permian world topography and climate. Late Glacial and Postglacial Environmental Changes: Quaternary, Carboniferous-Permian and Proterozoic I Martini 111–46 New York: Oxford Univ. Press
    [Google Scholar]
  209. Ziegler AM, Rowley DB, Lottes AL, Sahagian DL, Hulver ML, Gierlowski TC. 1985. Paleogeographic interpretation: with an example from the Mid-Cretaceous. Annu. Rev. Earth Planet. Sci. 13:385–425
    [Google Scholar]
  210. Ziegler AM, Scotese CR. 1977. Thoughts on format for the forthcoming “Atlas of Paleogeographic Maps.” Tech. Rep. Dep. Geophys. Sci., Univ. Chicago
  211. Ziegler AM, Scotese CR, Barrett SF 1983. Mesozoic and Cenozoic paleogeographic maps. Tidal Friction and the Earth's Rotation II P Broche, J Sundermann 241–52 Berlin: Springer-Verlag
    [Google Scholar]
  212. Ziegler AM, Scotese CR, McKerrow WS, Johnson ME, Bambach RK. 1979. Paleozoic paleogeography. Annu. Rev. Earth Planet. Sci. 7:473–502
    [Google Scholar]
  213. Ziegler PA. 1982. Geological Atlas of Western and Central Europe Den Haag: Shell Int. Pet. Maatsch.
  214. Ziegler PA. 1988. Evolution of Arctic-North Atlantic and Western Tethys Tulsa, OK: Am. Assoc. Pet. Geol.
  215. Ziegler PA. 1989. Evolution of Laurussia: A Study in Late Paleozoic Plate Tectonics Dordrecht, Neth: Kluwer
  216. Ziegler PA. 1990. Geological Atlas of Western and Central Europe Den Haag: Shell Int. Pet. Maatsch.
  217. Ziegler PA, Cavazza W, Robertson AHF, Crasquin-Soleau S 2001. Tethys Memoir, 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins Paris: Éd. Mus. Natl. Hist. Nat.
  218. Ziegler PA, Horvath F 1996. A Peri-Tethys Memoir, 2: Structure and Prospects of Alpine Basins and Forelands. Paris: Éd. Mus. Natl. Hist. Nat.
  219. Zonenshain LP, Kuzmin MI, Natapov LM. 1990. Geology of the USSR: A Plate Tectonic Synthesis Washington, DC: Am. Geophys. Union
/content/journals/10.1146/annurev-earth-081320-064052
Loading
/content/journals/10.1146/annurev-earth-081320-064052
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error