1932

Abstract

This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010816-060221
2017-01-03
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/fluid/49/1/annurev-fluid-010816-060221.html?itemId=/content/journals/10.1146/annurev-fluid-010816-060221&mimeType=html&fmt=ahah

Literature Cited

  1. Abbasi T, Abbasi SA. 2007. The boiling liquid expanding vapor explosion (BLEVE): mechanism, consequence, assessment, management. J. Hazard. Mater. 141:489–519 [Google Scholar]
  2. Abdelmessih AH, Hooper FC, Nangia S. 1972. Flow effects on bubble growth and collapse in surface boiling. Int. J. Heat Mass Transf. 15:115–25 [Google Scholar]
  3. Akulichev VA. 1982. Acoustic cavitation in cryogenic and boiling liquids. Appl. Sci. Res. 38:55–67 [Google Scholar]
  4. Akulichev VA. 1986. Acoustic cavitation in low-temperature liquids. Ultrasonics 24:8–18 [Google Scholar]
  5. Al Issa S, Weisensee P, Macián-Juan R. 2014. Experimental investigation of steam bubble condensation in vertical large diameter geometry under atmospheric pressure and different flow conditions. Int. J. Heat Mass Transf. 70:918–29 [Google Scholar]
  6. Alekseev VN. 1975. Steady-state behavior of a vapor bubble in an ultrasonic field. Sov. Phys. Acoust. 21:311–13 [Google Scholar]
  7. Alekseev VN. 1976. Nonsteady behavior of a vapor bubble in an ultrasonic field. Sov. Phys. Acoust. 22:104–7 [Google Scholar]
  8. Anderson LJE, Lindsey JE, Hansen E, Lukianova-Hieb EY, Hafner JH, Lapotko DO. 2010. Optically guided release from liposomes with tunable plasmonic nanobubbles. J. Control. Release 144:151–58 [Google Scholar]
  9. Apfel RE. 1972. Water superheated to 279.5 degrees at atmospheric pressure. Nat. Phys. 238:63–64 [Google Scholar]
  10. Arlabosse P, Tadrist L, Tadrist H, Pantaloni J. 2000. Experimental analysis of heat transfer induced by thermocapillary convection around a bubble. ASME J. Heat Transf. 122:66–73 [Google Scholar]
  11. Arndt REA. 2002. Cavitation in vortical flows. Annu. Rev. Fluid Mech. 34:143–75 [Google Scholar]
  12. Atchley AA, Prosperetti A. 1989. The crevice model of bubble nucleation. J. Acoust. Soc. Am. 86:1065–84 [Google Scholar]
  13. Badam VK, Kumar V, Durst F, Danov K. 2007. Experimental and theoretical investigations on interfacial temperature jumps during evaporation. Exp. Thermal Fluid Sci. 32:276–92 [Google Scholar]
  14. Baltis CHM, van der Geld CWM. 2015. Heat transfer mechanisms of a vapour bubble growing at a wall in saturated upward flow. J. Fluid Mech. 771:264–302 [Google Scholar]
  15. Birk AM, Cunningham MH. 1994. The boiling liquid expanding vapor explosion. J. Loss Prevent. Proc. 7:474–80 [Google Scholar]
  16. Blazkova M, Schmoranzer D, Skrbek L. 2008. On cavitation in liquid helium in a flow due to a vibrating quartz fork. Low Temp. Phys. 34:298–307 [Google Scholar]
  17. Borkent B, Gekle S, Prosperetti A, Lohse D. 2009. Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei. Phys. Fluids 21:102003 [Google Scholar]
  18. Brennen CE. 2013. A review of the dynamics of cavitating pumps. ASME J. Fluids Eng. 135:061301 [Google Scholar]
  19. Brennen CE. 2014. Cavitation and Bubble Dynamics Cambridge, UK: Cambridge Univ. Press
  20. Brenner M, Hilgenfeldt S, Lohse D. 2002. Single-bubble sonoluminescence. Rev. Mod. Phys. 74:425–84 [Google Scholar]
  21. Brucker GG, Sparrow EM. 1977. Direct contact condensation of steam bubbles in water at high pressure. Int. J. Heat Mass Transf. 20:371–81 [Google Scholar]
  22. Chen YM, Mayinger F. 1992. Measurement of heat transfer at the phase interface of condensing bubbles. Int. J. Multiphase Flow 18:877–90 [Google Scholar]
  23. Cho N, Kwon O, Kim Y, Jeong S. 2006. Investigation of helium injection cooling to liquid oxygen under pressurized condition. Cryogenics 46:778–93 [Google Scholar]
  24. Christopher DM, Wang H, Peng X. 2005. Dynamics of bubble motion and bubble top jet flows from moving bubbles on microwires. ASME J. Heat Transf. 127:1260–68 [Google Scholar]
  25. Commander KW, Prosperetti A. 1989. Linear pressure waves in bubbly liquids: comparison between theory and experiments. J. Acoust. Soc. Am. 85:732–46 [Google Scholar]
  26. Coste C, Laroche C. 1993. Acoustic behaviour of a liquid-vapour mixture in a standing wave tube. J. Fluid Mech. 246:67–89 [Google Scholar]
  27. Crum LA. 1984. Rectified diffusion. Ultrasonics 22:215–23 [Google Scholar]
  28. Dergarabedian P. 1953. The rate of growth of vapor bubbles in superheated water. ASME J. Appl. Mech. 20:537–45 [Google Scholar]
  29. Dhir VK. 1998. Boiling heat transfer. Annu. Rev. Fluid Mech. 30:365–401 [Google Scholar]
  30. Dhir VK, Warrier GR, Aktinol E. 2013. Numerical simulation of pool boiling: a review. ASME J. Heat Transf. 135:061502 [Google Scholar]
  31. Dhir VK, Warrier GR, Aktinol E, Eggers J, Sheredy W, Booth W. 2012. Nucleate pool boiling experiments (NPBX) on the International Space Station. Microgravity Sci. Technol. 24:307–25 [Google Scholar]
  32. di Marco P. 2012. Influence of force fields and flow patterns on boiling heat transfer performance: a review. ASME J. Heat Transf. 134:030801 [Google Scholar]
  33. Douglas Z, Boziuk TR, Smith MK, Glezer A. 2012. Acoustically enhanced boiling heat transfer. Phys. Fluids 24:052105 [Google Scholar]
  34. Eames IW, Marr NJ, Sabir H. 1997. The evaporation coefficient of water: a review. Int. J. Heat Mass Transf. 40:2963–73 [Google Scholar]
  35. Epstein PS, Plesset MS. 1950. On the stability of gas bubbles in liquid-gas solutions. J. Chem. Phys. 18:1505–9 [Google Scholar]
  36. Feldman CL, Nydick SE, Kokernak RP. 1972. The speed of sound in single-component two-phase fluids: theoretical and experimental. Progress in Heat and Mass Transfer 6 G Hetsroni, S Sideman, JP Hartnett 671–84 Oxford, UK: Pergamon [Google Scholar]
  37. Florschuetz LW, Chao BT. 1965. On the mechanics of vapor bubble collapse. ASME J. Heat Transf. 87:209–20 [Google Scholar]
  38. Florschuetz LW, Henry CL, Rashid Khan A. 1969. Growth rates of free vapor bubbles in liquids at uniform superheats under normal and zero gravity conditions. Int. J. Heat Mass Transf. 12:1465–89 [Google Scholar]
  39. Frost D, Sturtevant B. 1986. Effect of ambient pressure on the instability of a liquid boiling explosively at the superheat limit. ASME J. Heat Transf. 108:418–24 [Google Scholar]
  40. Fujikawa S, Akamatsu T, Yahara J, Fujioka H. 1982. Studies of liquid-vapour phase change by a shock tube. Appl. Sci. Res. 38:363–72 [Google Scholar]
  41. Fuster D, Hauke G, Dopazo C. 2010. Influence of the accommodation coefficient on nonlinear bubble oscillations. J. Acoust. Soc. Am. 128:5–10 [Google Scholar]
  42. Fuster D, Montel F. 2015. Mass transfer effects on linear wave propagation in diluted bubbly liquids. J. Fluid Mech. 779:598–621 [Google Scholar]
  43. Fyrillas MM, Szeri AJ. 1994. Dissolution or growth of soluble spherical oscillating bubbles. J. Fluid Mech. 277:381–407 [Google Scholar]
  44. Gubaidullin DA, Fedorov YV. 2015. Sound waves in liquids with polydisperse vapor-gas and gas bubbles. Fluid Dyn. 50:61–70 [Google Scholar]
  45. Gubaidullin DA, Nikiforov AA. 2010. Acoustic disturbances in a mixture of liquid with vapor-gas bubbles. High Temp. 48:170–75 [Google Scholar]
  46. Gubaidullin DA, Nikiforov AA, Gafiyatov RN. 2015. Acoustic waves in multifractional bubbly liquids. High Temp. 53:240–45 [Google Scholar]
  47. Gumerov NA. 1991. Weakly linear oscillations of the radius of a vapour bubble in an acoustic field. J. Appl. Math. Mech. 55:205–11 [Google Scholar]
  48. Gumerov NA. 1996. The heat and mass transfer of a vapor bubble with translatory motion at high Nusselt numbers. Int. J. Multiphase Flow 22:259–72 [Google Scholar]
  49. Gumerov NA. 2000. Dynamics of vapor bubbles with non-equilibrium phase transitions in isotropic acoustic fields. Phys. Fluids 12:71–88 [Google Scholar]
  50. Hamilton CW, Thordarson T, Fagents SA. 2010. Explosive lava-water interactions. I: Architecture and emplacement chronology of volcanic rootless cone groups in the 1783–1784 Laki lava flow, Iceland. Bull. Volcanol. 72:449–67 [Google Scholar]
  51. Hao Y, Ouz HN, Prosperetti A. 2001. The action of pressure-radiation forces on pulsating vapor bubbles. Phys. Fluids 13:1167–77 [Google Scholar]
  52. Hao Y, Prosperetti A. 1999. The dynamics of vapor bubbles in acoustic pressure fields. Phys. Fluids 11:2008–19 [Google Scholar]
  53. Hao Y, Prosperetti A. 2000. The collapse of vapor bubbles in a spatially non-uniform flow. Int. J. Heat Mass Transf. 43:3539–50 [Google Scholar]
  54. Hao Y, Prosperetti A. 2002. Rectified heat transfer into translating and pulsating vapor bubbles. J. Acoust. Soc. Am. 112:1787–96 [Google Scholar]
  55. Haustein HD, Gany A, Dietze GF. 2013. The dynamics of bubble growth at medium-high superheat: boiling in an infinite medium and on a wall. ASME J. Heat Transf. 135:071501 [Google Scholar]
  56. Henry CD, Kim J, McQuillen J. 2006. Dissolved gas effects on thermocapillary convection during boiling in reduced gravity environments. Heat Mass Transf. 42:919–28 [Google Scholar]
  57. Hou L, Yorulmaz M, Verhart NR, Orrit M. 2015. Explosive formation and dynamics of vapor nanobubbles around a continuouslly heated gold nanosphere. New J. Phys. 17:013050 [Google Scholar]
  58. Jung Y, Cho N, Baek S, Jeong S. 2014. Heat and mass transfer of submerged helium injection in liquid oxygen vessel. Cryogenics 64:272–82 [Google Scholar]
  59. Kalman H, Mori YH. 2002. Experimental analysis of a single vapor bubble condensing in subcooled liquid. Chem. Eng. J. 85:197–206 [Google Scholar]
  60. Khabeev NS. 1976. Heat transfer and phase transition effects in the oscillation of vapor bubbles. Sov. Phys. Acoust. 21:501–5 [Google Scholar]
  61. Khabeev NS. 1982. Resonance properties of vapor bubbles. J. Appl. Math. Mech. 45:512–17 [Google Scholar]
  62. Kim J. 2009. Review of nucleate pool boiling heat transfer mechanisms. Int. J. Multiphase Flow 35:1067–76 [Google Scholar]
  63. Kim SJ, Park GC. 2007. Development of an orthogonal double-image processing algorithm to measure bubble volume in a two-phase flow. Nucl. Eng. Technol. 39:313–26 [Google Scholar]
  64. Kim SJ, Park GC. 2011. Interfacial heat transfer of condensing bubble in subcooled flow boiling. Int. J. Heat Mass Transf. 54:2962–74 [Google Scholar]
  65. Konishi C, Mudawar I. 2015. Review of flow boiling and critical heat flux in microgravity. Int. J. Heat Mass Transf. 80:469–93 [Google Scholar]
  66. Kosky PG. 1968. Bubble growth measurements in uniformly superheated liquids. Chem. Eng. Sci. 23:695–706 [Google Scholar]
  67. Kosuge S. 2015. Cylindrical Couette flow of a rarefied gas: effect of boundary condition on the inverted velocity profile. Phys. Rev. E 92:013013 [Google Scholar]
  68. Krishnan S, Das SK, Chatterjee D. 2014. Physics of the interaction of ultrasonic excitation with nucleate boiling. ASME J. Heat Transf. 136:031501 [Google Scholar]
  69. Labuntsov DA, Kryukov AP. 1979. Analysis of intensive evaporation and condensation. Int. J. Heat Mass Transf. 22:989–1002 [Google Scholar]
  70. Landau DM, Lifshitz EM. 1969. Statistical Physics Oxford, UK: Pergamon, 2nd ed..
  71. Lapotko D. 2009. Optical excitation and detection of vapor bubbles around plasmonic nanoparticles. Opt. Express 17:2538–56 [Google Scholar]
  72. Lauer E, Hu XY, Hickel S, Adams NA. 2012. Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics. Comput. Fluids 69:1–19 [Google Scholar]
  73. Leal LG. 2010. Advanced Transport Phenomena Cambridge, UK: Cambridge Univ. Press, 2nd ed..
  74. Lee HS, Merte H. 1996. Spherical bubble growth in uniformly superheated liquids. Int. J. Heat Mass Transf. 39:2427–47 [Google Scholar]
  75. Lee J, Laoui T, Karnik R. 2014. Nanofluidic transport governed by the liquid/vapour interface. Nat. Nanotechnol. 9:317–23 [Google Scholar]
  76. Legendre D, Borée J, Magnaudet J. 1998. Thermal and dynamical evolution of a spherical bubble moving steadily in a superheated or subcooled liquid. Phys. Fluids 10:1256–72 [Google Scholar]
  77. Liu X, Lei B, Dipalo M, de Angelis F, Zhang X. 2015. Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays. Sci. Rep. 5:18515 [Google Scholar]
  78. Lockerby DA, Reese JM, Emerson D, Barber RW. 2004. Velocity boundary condition at solid walls in rarefied gas calculations. Phys. Rev. E 70:017303 [Google Scholar]
  79. Lu JF, Peng XF. 2007. Bubble jet flow formation during boiling of subcooled water on fine wires. Int. J. Heat Mass Transf. 50:3966–76 [Google Scholar]
  80. Lu YW, Kandlikar SG. 2011. Nanoscale surface modification techniques for pool boiling enhancement: a review and future directions. Heat Transf. Eng. 32:827–42 [Google Scholar]
  81. Magnaudet J, Eames I. 2000. The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid. Mech. 32:659–708 [Google Scholar]
  82. Marek R, Straub J. 2001a. Analysis of the evaporation coefficient and the condensation coefficient of water. Int. J. Heat Mass Transf. 44:39–53 [Google Scholar]
  83. Marek R, Straub J. 2001b. The origin of thermocapillary convection in subcooled nucleate pool boiling. Int. J. Heat Mass Transf. 44:619–32 [Google Scholar]
  84. Marston PL. 1976. Tensile strength and visible ultrasonic cavitation of superfluid 4He. J. Low-Temp. Phys. 25:383–407 [Google Scholar]
  85. Mikic BB, Rohsenow WM, Griffith P. 1970. On bubble growth rates. Int. J. Heat Mass Transf. 13:657–66 [Google Scholar]
  86. Moehrel RE, Chung JN. 2016. Pool boiling heat transfer driven by an acoustic standing wave in terrestrial gravity. Int. J. Heat Mass Transf. 93:322–36 [Google Scholar]
  87. Nakoryakov VE, Pokusaev BG, Pribaturin NA, Schreiber IR. 1984. Acoustics of a liquid containing vapour bubbles. Sov. Phys. Acoust. 30:480–82 [Google Scholar]
  88. Nakoryakov VE, Pokusaev BG, Schreiber IR, Pribaturin NA. 1988. The wave dynamics of a vapour-liquid medium. Int. J. Multiphase Flow 14:655–77 [Google Scholar]
  89. Nigmatulin RI, Gubaidullin DA, Nikiforov AA. 2014. Dynamics of pulse waves in bubble liquids: comparison between theory and experiment. Dokl. Phys. 59:286–88 [Google Scholar]
  90. Nigmatulin RI, Khabeev NS. 1976. Dynamics of vapor bubbles. Fluid Dyn. Sov. Res. 10:415–21 [Google Scholar]
  91. Okhotsimskii AD. 1988. The thermal regime of vapour bubble collapse at different Jacob numbers. Int. J. Heat Mass Transf. 31:1569–76 [Google Scholar]
  92. Onuki A. 1991. Sound propagation in phase-separating fluids. Phys. Rev. A43:6740–55 [Google Scholar]
  93. Plesset MS, Prosperetti A. 1976. Flow of vapor in a liquid enclosure. J. Fluid Mech. 78:433–44 [Google Scholar]
  94. Plesset MS, Prosperetti A. 1977. Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9:145–85 [Google Scholar]
  95. Plesset MS, Sadhal SS. 1982. On the stability of gas bubbles in liquid-gas solutions. Appl. Sci. Res. 38:133–41 [Google Scholar]
  96. Plesset MS, Zwick SA. 1952. A nonsteady heat diffusion problem with spherical symmetry. J. Appl. Phys. 23:95–98 [Google Scholar]
  97. Plesset MS, Zwick SA. 1954. The growth of vapor bubbles in superheated liquids. J. Appl. Phys. 25:493–500 [Google Scholar]
  98. Prosperetti A. 2015. The speed of sound in a gas-vapor bubbly liquid. Interface Focus 5:20150024 [Google Scholar]
  99. Reznik N, Lajoinie G, Shpak O, Gelderblom EC, Williams R. et al. 2014. On the acoustic properties of vaporized submicron perfluorocarbon droplets. Ultrasound Med. Biol. 40:1379–84 [Google Scholar]
  100. Robinson AJ, Judd RL. 2004. The dynamics of spherical bubble growth. Int. J. Heat Mass Transf. 47:5101–13 [Google Scholar]
  101. Ruckenstein E. 1959. On heat transfer between vapour bubbles in motion and the boiling liquid from which they are generated. Chem. Eng. Sci. 10:22–30 [Google Scholar]
  102. Scriven LE. 1959. On the dynamics of phase growth. Chem. Eng. Sci. 10:1–13 [Google Scholar]
  103. Seo M, Matsuura N. 2012. Monodisperse, submicrometer droplets via condensation of microfluidic-generated gas bubbles. Small 8:2704–14 [Google Scholar]
  104. Shchukin DG, Skorb E, Belova V, Mohwald H. 2011. Ultrasonic cavitation at solid surfaces. Adv. Mater. 23:1922–34 [Google Scholar]
  105. Shebeko YN, Shebeko AY. 2015. On the mechanism of a BLEVE occurrence due to fire engulfment of tanks with overheated liquids. J. Loss Prevent. Proc. 36:167–70 [Google Scholar]
  106. Shen B, Suroto B, Hirabayashi S, Yamada M, Hidaka S. et al. 2015. Bubble activation from hydrophobic spot at “negative” surface superheats in subcooled boiling. Appl. Thermal Eng. 88:230–36 [Google Scholar]
  107. Shepherd JE, Sturtevant B. 1982. Rapid evaporation at the superheat limit. J. Fluid Mech. 121:379–402 [Google Scholar]
  108. Shimizu Y, Mori YH. 1988. Evaporation of single liquid drops in an immiscible liquid at elevated pressures: experimental study with n-pentane and R 113 drops in water. Int. J. Heat Mass Transf. 31:1843–51 [Google Scholar]
  109. Shpak O, Stricker L, Versluis M, Lohse D. 2013. The role of gas in ultrasonically driven vapor bubble growth. Phys. Med. Biol. 58:2523–35 [Google Scholar]
  110. Sitter JS, Snyder TJ, Chung JN, Marston PL. 1998. Acoustic field interaction with a boiling system under terrestrial gravity and microgravity. J. Acoust. Soc. Am. 104:2561–69 [Google Scholar]
  111. Suslick KS, Flannigan DJ. 2008. Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu. Rev. Phys. Chem. 59:659–83 [Google Scholar]
  112. Tang J, Yan C, Sun L. 2015a. A study visualizing the collapse of vapor bubbles in a subcooled pool. Int. J. Heat Mass Transf. 88:597–608 [Google Scholar]
  113. Tang J, Yan C, Sun L. 2016. Enhanced vapor bubble condensation and collapse with ultrasonic vibration. Exp. Thermal Fluid Sci. 70:115–24 [Google Scholar]
  114. Tang J, Yan C, Sun L, Li Y, Wang K. 2015b. Effect of liquid subcooling on acoustic characteristics during the condensation process of vapor bubbles in a subcooled pool. Nucl. Eng. Des. 293:492–502 [Google Scholar]
  115. Utturkar Y, Wu JY, Wang GY, Shyy W. 2005. Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion. Prog. Aerosp. Sci. 41:558–608 [Google Scholar]
  116. van der Geld CWM, Coli C, Segers QI, Pereira da Rosa VH, Yoshikawa HN. 2012. Forces on a boiling bubble in a developing boundary layer, in microgravity with g-jitter and in terrestrial conditions. Phys. Fluids 24:082104 [Google Scholar]
  117. van Limbeek MAJ, Lhuissier H, Prosperetti A, Sun C, Lohse D. 2013. Explosive boiling?. Phys. Fluids 25:091102 [Google Scholar]
  118. van Wijngaarden L. 1972. One-dimensional flow of liquids containing small gas bubbles. Annu. Rev. Fluid Mech. 4:369–96 [Google Scholar]
  119. Wagner E, Stephan P. 2009. High-resolution measurements at nucleate boiling of pure FC-84 and FC-3284 and its binary mixtures. ASME J. Heat Transf. 131:121008 [Google Scholar]
  120. Wang H, Peng X, Christopher DM, Garimella SV. 2005a. Jet flows around microbubbles in subcooled boiling. ASME J. Heat Transf. 127:802 [Google Scholar]
  121. Wang H, Peng XF, Christopher DM, Lin WK, Pan C. 2005b. Investigation of bubble-top jet flow during subcooled boiling on wires. Int. J. Heat Fluid Flow 26:485–94 [Google Scholar]
  122. Warrier GR, Dhir VK, Chao DF. 2015. Nucleate Pool Boiling Experiment (NPBX) in microgravity: International Space Station. Int. J. Heat Mass Transf. 83:781–98 [Google Scholar]
  123. Wittke DD, Chao BT. 1967. Collapse of vapor bubbles with translatory motion. ASME J. Heat Transf. 89:17–24 [Google Scholar]
  124. Yang B, Prosperetti A. 2008. Vapour bubble collapse in isothermal and non-isothermal liquids. J. Fluid Mech. 601:253–79 [Google Scholar]
  125. Zimanowski B, Frölich G, Lorenz V. 1991. Quantitative experiments in phreatomagmatic explosions. J. Volcanol. Geotherm. Res. 48:341–58 [Google Scholar]
  126. Zou A, Chanana A, Agrawal A, Wayner PC Jr., Maroo SC. 2016. Steady state vapor bubble in pool boiling. Sci. Rep. 6:20240 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010816-060221
Loading
/content/journals/10.1146/annurev-fluid-010816-060221
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error