1932

Abstract

This work reviews present knowledge of double-diffusive convection at low Prandtl number obtained using direct numerical simulations, in both the fingering regime and the oscillatory regime. Particular emphasis is given to modeling the induced turbulent mixing and its impact in various astrophysical applications. The nonlinear saturation of fingering convection at low Prandtl number usually drives small-scale turbulent motions whose transport properties can be predicted reasonably accurately using a simple semi-analytical model. In some instances, large-scale internal gravity waves can be excited by a collective instability and eventually cause layering. The nonlinear saturation of oscillatory double-diffusive convection exhibits much more complex behavior. Weakly stratified systems always spontaneously transition into layered convection associated with very efficient mixing. More strongly stratified systems remain dominated by weak wave turbulence unless they are initialized into a layered state. The effects of rotation, shear, lateral gradients, and magnetic fields are briefly discussed.

Associated Article

There are media items related to this article:
Double-Diffusive Convection at Low Prandtl Number: Supplemental Video
Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-122316-045234
2018-01-05
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/fluid/50/1/annurev-fluid-122316-045234.html?itemId=/content/journals/10.1146/annurev-fluid-122316-045234&mimeType=html&fmt=ahah

Literature Cited

  1. Baines P, Gill A. 1969. On thermohaline convection with linear gradients. J. Fluid Mech. 37:289–306 [Google Scholar]
  2. Brown JM, Garaud P, Stellmach S. 2013. Chemical transport and spontaneous layer formation in fingering convection in astrophysics. Astrophys. J. 768:34 [Google Scholar]
  3. Chabrier G, Baraffe I. 2007. Heat transport in giant (exo)planets: a new perspective. Astrophys. J. Lett. 661:L81–84 [Google Scholar]
  4. Charbonnel C, Zahn JP. 2007. Thermohaline mixing: a physical mechanism governing the photospheric composition of low-mass giants. Astron. Astrophys. 467:L15–18 [Google Scholar]
  5. Copley SM, Giamei AF, Johnson SM, Hornbecker MF. 1970. The origin of freckles in unidirectionally solidified castings. Metall. Trans. 1:82193–204 [Google Scholar]
  6. Deheuvels S, Brandão I, Silva Aguirre V, Ballot J, Michel E et al. 2016. Measuring the extent of convective cores in low-mass stars using Kepler data: toward a calibration of core overshooting. Astron. Astrophys. 589:A93 [Google Scholar]
  7. Denissenkov PA. 2010. Numerical simulations of thermohaline convection: implications for extra-mixing in low-mass RGB stars. Astrophys. J. 723:563–79 [Google Scholar]
  8. Fischer DA, Valenti J. 2005. The planet-metallicity correlation. Astrophys. J. 622:1102–17 [Google Scholar]
  9. Fortney JJ, Hubbard WB. 2003. Phase separation in giant planets: inhomogeneous evolution of Saturn. Icarus 164:228–43 [Google Scholar]
  10. Garaud P. 2011. What happened to the other Mohicans? The case for a primordial origin to the planet–metallicity connection. Astrophys. J. Lett. 728:L30 [Google Scholar]
  11. Garaud P, Brummell N. 2015. 2D or not 2D: the effect of dimensionality on the dynamics of fingering convection at low Prandtl number. Astrophys. J. 815:42 [Google Scholar]
  12. Garaud P, Medrano M, Brown JM, Mankovich C, Moore K. 2015. Excitation of gravity waves by fingering convection, and the formation of compositional staircases in stellar interiors. Astrophys. J. 808:89 [Google Scholar]
  13. Gratton RG, Sneden C, Carretta E, Bragaglia A. 2000. Mixing along the red giant branch in metal-poor field stars. Astron. Astrophys. 354:169–87 [Google Scholar]
  14. Guillot T, Stevenson DJ, Hubbard WB, Saumon D. 2004. The interior of Jupiter. Jupiter: The Planet, Satellites, and Magnetosphere F Bagenal, T Dowling, W McKinnon 35–57 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  15. Holyer JY. 1981. On the collective instability of salt fingers. J. Fluid Mech. 110:195–207 [Google Scholar]
  16. Holyer JY. 1983. Double-diffusive interleaving due to horizontal gradients. J. Fluid Mech. 137:347–62 [Google Scholar]
  17. Hughes DW, Weiss NO. 1995. Double-diffusive convection with two stabilizing gradients: strange consequences of magnetic buoyancy. J. Fluid Mech. 301:383–406 [Google Scholar]
  18. Huppert HE, Moore DR. 1976. Nonlinear double-diffusive convection. J. Fluid Mech. 78:821–54 [Google Scholar]
  19. Kato S. 1966. Overstable convection in a medium stratified in mean molecular weight. Publ. Astron. Soc. Jpn. 18:374–83 [Google Scholar]
  20. Kippenhahn R, Ruschenplatt G, Thomas H. 1980. The time scale of thermohaline mixing in stars. Astron. Astrophys. 91:175–80 [Google Scholar]
  21. Krishnamurti R. 2003. Double-diffusive transport in laboratory thermohaline staircases. J. Fluid Mech. 483:287–314 [Google Scholar]
  22. Langer N, Fricke KJ, Sugimoto D. 1983. Semiconvective diffusion and energy transport. Astron. Astrophys. 126:207–8 [Google Scholar]
  23. Langer N, Maeder A. 1995. The problem of the blue-to-red supergiant ratio in galaxies. Astron. Astrophys. 295:685–92 [Google Scholar]
  24. Lauterborn D, Refsdal S, Weigert A. 1971. Stars with central helium burning and the occurrence of loops in the H-R diagram. Astron. Astrophys. 10:97–117 [Google Scholar]
  25. Leconte J, Chabrier G. 2012. A new vision of giant planet interiors: impact of double diffusive convection. Astron. Astrophys. 540:A20 [Google Scholar]
  26. Leconte J, Chabrier G. 2013. Layered convection as the origin of Saturn's luminosity anomaly. Nat. Geosci. 6:347–50 [Google Scholar]
  27. Linden PF. 1974. Salt fingers in a steady shear flow. Geophys. Astrophys. Fluid Dyn. 6:1–27 [Google Scholar]
  28. Linden PF, Shirtcliffe TGL. 1978. The diffusive interface in double-diffusive convection. J. Fluid Mech. 87:417–32 [Google Scholar]
  29. Medrano M, Garaud P, Stellmach S. 2014. Double-diffusive mixing in stellar interiors in the presence of horizontal gradients. Astrophys. J. Lett. 792:L30 [Google Scholar]
  30. Merryfield WJ. 1995. Hydrodynamics of semiconvection. Astrophys. J. 444:318–37 [Google Scholar]
  31. Mirouh GM, Garaud P, Stellmach S, Traxler AL, Wood TS. 2012. A new model for mixing by double-diffusive convection (semi-convection). I. The conditions for layer formation. Astrophys. J. 750:61 [Google Scholar]
  32. Moll R, Garaud P. 2017. The effect of rotation on oscillatory double-diffusive convection (semiconvection). Astrophys. J. 834:44 [Google Scholar]
  33. Moll R, Garaud P, Mankovitch C, Fortney JJ. 2018. Double-diffusive erosion of the core of Jupiter. Astrophys. J. In press
  34. Moll R, Garaud P, Stellmach S. 2016. A new model for mixing by double-diffusive convection (semi-convection). III. Thermal and compositional transport through non-layered ODDC. Astrophys. J. 823:33 [Google Scholar]
  35. Moore K, Garaud P. 2016. Main sequence evolution with layered semiconvection. Astrophys. J. 817:54 [Google Scholar]
  36. Nield DA. 1968. Onset of thermohaline convection in a porous medium. Water Resour. Res. 4:553–60 [Google Scholar]
  37. Paparella F, Spiegel EA, Talon S. 2002. Shear and mixing in oscillatory doubly diffusive convection. Geophys. Astrophys. Fluid Dyn. 96:271–89 [Google Scholar]
  38. Pearlstein AJ. 1981. Effect of rotation on the stability of a doubly diffusive fluid layer. J. Fluid Mech. 103:389–412 [Google Scholar]
  39. Proctor MRE. 1981. Steady subcritical thermohaline convection. J. Fluid Mech. 105:507–21 [Google Scholar]
  40. Radko T. 2003. A mechanism for layer formation in a double-diffusive fluid. J. Fluid Mech. 497:365–80 [Google Scholar]
  41. Radko T. 2013. Double-Diffusive Convection Cambridge, UK: Cambridge Univ. Press
  42. Radko T. 2016. Thermohaline layering in dynamically and diffusively stable shear flows. J. Fluid Mech. 805:147–70 [Google Scholar]
  43. Radko T, Smith DP. 2012. Equilibrium transport in double-diffusive convection. J. Fluid Mech. 692:5–27 [Google Scholar]
  44. Rosenblum E, Garaud P, Traxler A, Stellmach S. 2011. Turbulent mixing and layer formation in double-diffusive convection: three-dimensional numerical simulations and theory. Astrophys. J. 731:66 [Google Scholar]
  45. Schmitt RW. 1979. The growth rate of super-critical salt fingers. Deep Sea Res. A 26:23–40 [Google Scholar]
  46. Schmitt RW. 1983. The characteristics of salt fingers in a variety of fluid systems, including stellar interiors, liquid metals, oceans, and magmas. Phys. Fluids 26:2373–77 [Google Scholar]
  47. Schmitt RW, Ledwell J, Montgomery E, Polzin K, Toole J. 2005. Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical atlantic. Science 308:685–88 [Google Scholar]
  48. Schwarzschild M, Härm R. 1958. Evolution of very massive stars. Astrophys. J. 128:348–60 [Google Scholar]
  49. Shen CY. 1995. Equilibrium salt-fingering convection. Phys. Fluids 7:706–17 [Google Scholar]
  50. Spiegel EA. 1969. Semiconvection. Comments Astrophys. Space Phys. 1:57 [Google Scholar]
  51. Spiegel EA, Veronis G. 1960. On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131:442 [Google Scholar]
  52. Spruit HC. 1992. The rate of mixing in semiconvective zones. Astron. Astrophys. 253:131–38 [Google Scholar]
  53. Spruit HC. 2013. Semiconvection: theory. Astron. Astrophys. 552:A76 [Google Scholar]
  54. Stancliffe RJ, Glebbeek E, Izzard RG, Pols OR. 2007. Carbon-enhanced metal-poor stars and thermohaline mixing. Astron. Astrophys. 464:L57–60 [Google Scholar]
  55. Stellmach S, Traxler A, Garaud P, Brummell N, Radko T. 2011. Dynamics of fingering convection. Part 2. The formation of thermohaline staircases. J. Fluid Mech. 677:554–71 [Google Scholar]
  56. Stern ME. 1960. The salt fountain and thermohaline convection. Tellus 12:172–75 [Google Scholar]
  57. Stern ME. 1969. Collective instability of salt fingers. J. Fluid Mech. 35:209–18 [Google Scholar]
  58. Stern ME, Radko T, Simeonov J. 2001. Salt fingers in an unbounded thermocline. J. Mar. Res. 59:355–90 [Google Scholar]
  59. Stern ME, Simeonov JA. 2002. Internal wave overturns produced by salt fingers. J. Phys. Oceanogr. 32:3638–56 [Google Scholar]
  60. Stern ME, Turner JS. 1969. Salt fingers and convecting layers. Deep Sea Res. 16:97–511 [Google Scholar]
  61. Stevenson DJ. 1977. A semitheory for semiconvection. Proc. Astron. Soc. Aust. 3:165–66 [Google Scholar]
  62. Stevenson DJ. 1982. Formation of the giant planets. Planet. Space Sci. 30:755–64 [Google Scholar]
  63. Stevenson DJ. 1985. Cosmochemistry and structure of the giant planets and their satellites. Icarus 62:4–15 [Google Scholar]
  64. Stevenson DJ, Salpeter EE. 1977. The dynamics and helium distribution in hydrogen-helium fluid planets. Astrophys. J. Supp. Ser. 35:239–61 [Google Scholar]
  65. Stothers R, Chin CW. 1968. Evolution of massive helium-burning supergiants. Astrophys. J. 152:225–32 [Google Scholar]
  66. Stothers R, Simon NR. 1969. An explanation for the blue sequence of variable stars. Astrophys. J. 157:673–81 [Google Scholar]
  67. Straniero O, Domínguez I, Imbriani G, Piersanti L. 2003. The chemical composition of white dwarfs as a test of convective efficiency during core helium burning. Astrophys. J. 583:878–84 [Google Scholar]
  68. Sukhbold T, Woosley SE. 2014. The compactness of presupernova stellar cores. Astrophys. J. 783:10 [Google Scholar]
  69. Tait R, Howe M. 1968. Some observations of thermohaline stratification in the deep ocean. Deep Sea Res. 15:275–80 [Google Scholar]
  70. Tait R, Howe M. 1971. Thermohaline staircase. Nature 231:178–79 [Google Scholar]
  71. Timmermans ML, Toole J, Krishfield R, Winsor P. 2008. Ice-Tethered Profiler observations of the double-diffusive staircase in the Canada Basin thermocline. J. Geophys. Res. Oceans 113:C00A02 [Google Scholar]
  72. Traxler A, Garaud P, Stellmach S. 2011a. Numerically determined transport laws for fingering (“thermohaline”) convection in astrophysics. Astrophys. J. Lett. 728:L29 [Google Scholar]
  73. Traxler A, Stellmach S, Garaud P, Radko T, Brummell N. 2011b. Dynamics of fingering convection. Part 1. Small-scale fluxes and large-scale instabilities. J. Fluid Mech. 677:530–53 [Google Scholar]
  74. Turner J. 1965. The coupled turbulent transports of salt and and heat across a sharp density interface. Int. J. Heat Mass Transf. 8:759–67 [Google Scholar]
  75. Turner J. 1974. Double-diffusive phenomena. Annu. Rev. Fluid Mech. 6:37–54 [Google Scholar]
  76. Turner J. 1985. Multicomponent convection. Annu. Rev. Fluid Mech. 17:11–44 [Google Scholar]
  77. Ulrich RK. 1972. Thermohaline convection in stellar interiors. Astrophys. J. 172:165–77 [Google Scholar]
  78. Vauclair S. 2004. Metallic fingers and metallicity excess in exoplanets' host stars: the accretion hypothesis revisited. Astrophys. J. 605:874–79 [Google Scholar]
  79. Veronis G. 1965. On finite amplitude instability in thermohaline convection. J. Mar. Res. 233:1–17 [Google Scholar]
  80. Walin G. 1964. Note on the stability of water stratified by both salt and heat. Tellus 16:389 [Google Scholar]
  81. Wood TS, Garaud P, Stellmach S. 2013. A new model for mixing by double-diffusive convection (semi-convection). II. The transport of heat and composition through layers. Astrophys. J. 768:157 [Google Scholar]
  82. Worster MG. 1997. Convection in mushy layers. Annu. Rev. Fluid Mech. 29:91–122 [Google Scholar]
  83. Wüest A, Sommer T, Carpenter JR. 2012. Diffusive-type of double diffusion in lakes—a review. Environmental Fluid Mechanics: Memorial Volume in Honour of Prof. Gerhard H. Jirka W Rodi, M Uhlmann 271–84 Boca Raton, FL: CRC [Google Scholar]
  84. Zaussinger F, Spruit HC. 2013. Semiconvection: numerical simulations. Astron. Astrophys. 554:A119 [Google Scholar]
/content/journals/10.1146/annurev-fluid-122316-045234
Loading
/content/journals/10.1146/annurev-fluid-122316-045234
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error