1932

Abstract

The supply of oxygen and nutrients to tissues is performed by the blood system and involves a net leakage of fluid outward at the capillary level. One of the principal functions of the lymphatic system is to gather this fluid and return it to the blood system to maintain overall fluid balance. Fluid in the interstitial spaces is often at subatmospheric pressure, and the return points into the venous system are at pressures of approximately 20 cmHO. This adverse pressure difference is overcome by the active pumping of collecting lymphatic vessels, which feature closely spaced one-way valves and contractile muscle cells in their walls. Passive vessel squeezing causes further pumping. The dynamics of lymphatic pumping have been investigated experimentally and mathematically, revealing complex behaviors that indicate that the system performance is robust against minor perturbations in pressure and flow. More serious disruptions can lead to incurable swelling of tissues called lymphedema.

Keyword(s): canceredemaimmunologylymphphysiology
Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-122316-045259
2018-01-05
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/fluid/50/1/annurev-fluid-122316-045259.html?itemId=/content/journals/10.1146/annurev-fluid-122316-045259&mimeType=html&fmt=ahah

Literature Cited

  1. Adair TH, Guyton AC. 1983. Modification of lymph by lymph nodes. II. Effect of increased lymph node venous blood pressure. Am. J. Physiol. Heart Circ. Physiol. 245:H616–22 [Google Scholar]
  2. Adair TH, Guyton AC. 1985. Modification of lymph by lymph nodes III. Effect of increased lymph hydrostatic pressure. Am. J. Physiol. Heart Circ. Physiol. 249:H777–82 [Google Scholar]
  3. Allanson JE. 2005. Lymphatic system. Human Malformations and Related Anomalies RE Stevenson, JG Hall 145–82 New York: Oxford Univ. Press, 2nd ed.. [Google Scholar]
  4. Aukland K, Reed RK. 1993. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol. Rev. 73:1–78 [Google Scholar]
  5. Baish JW, Kunert C, Padera TP, Munn LL. 2016. Synchronization and random triggering of lymphatic vessel contractions. PLOS Comput. Biol. 12:e1005231 [Google Scholar]
  6. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E. et al. 2007. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204:2340–62 [Google Scholar]
  7. Bar Ad V, Cheville A, Solin LJ, Dutta P, Both S, Harris EER. 2010. Time course of mild arm lymphedema after breast conservation treatment for early-stage breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 76:85–90 [Google Scholar]
  8. Bazigou E, Makinen T. 2013. Flow control in our vessels: Vascular valves make sure there is no way back. Cell. Mol. Life Sci. 70:1055–66 [Google Scholar]
  9. Bazigou E, Wilson JT, Moore JE Jr. 2014. Primary and secondary lymphatic valve development: molecular, functional and mechanical insights. Microvasc. Res. 96:38–45 [Google Scholar]
  10. Bertram CD, Davis MJ. 2017. Effects of pressure applied to either end of isolated rat mesenteric collecting lymphatic segments on the propagation of contractions, with and without nitric oxide inhibition Presented at N. Am. Vasc. Biol. Org. (NAVBO) Lymphat. Forum, June 8–10, Northwest. Med. Sch Chicago, IL:
  11. Bertram CD, Macaskill C, Davis MJ, Moore JE Jr. 2014a. Development of a model of a multi-lymphangion lymphatic vessel incorporating realistic and measured parameter values. Biomech. Model. Mechanobiol. 13:401–16 [Google Scholar]
  12. Bertram CD, Macaskill C, Davis MJ, Moore JE Jr. 2016a. Consequences of intravascular lymphatic valve properties: a study of contraction timing in a multi-lymphangion model. Am. J. Physiol. Heart Circ. Physiol. 310:H847–60 [Google Scholar]
  13. Bertram CD, Macaskill C, Moore JE Jr. 2014b. Incorporating measured valve properties into a numerical model of a lymphatic vessel. Comput. Methods Biomech. Biomed. Eng. 17:1519–34 [Google Scholar]
  14. Bertram CD, Macaskill C, Moore JE Jr. 2016b. Pump function curve shape for a model lymphatic vessel. Med. Eng. Phys. 38:656–63 [Google Scholar]
  15. Bohlen HG, Gasheva OY, Zawieja DC. 2011. Nitric oxide formation by lymphatic bulb and valves is a major regulatory component of lymphatic pumping. Am. J. Physiol. Heart Circ. Physiol. 301:H1897–906 [Google Scholar]
  16. Bohlen HG, Wang W, Gashev A, Gasheva O, Zawieja D. 2009. Phasic contractions of rat mesenteric lymphatics increase basal and phasic nitric oxide generation in vivo. Am. J. Physiol. Heart Circ. Physiol. 297:H1319–28 [Google Scholar]
  17. Bovill EG, van der Vliet A. 2011. Venous valvular stasis-associated hypoxia and thrombosis: What is the link. Annu. Rev. Physiol. 73:527–45 [Google Scholar]
  18. Burton-Opitz R, Nemser R. 1917. The viscosity of lymph. Am. J. Physiol. 45:25–29 [Google Scholar]
  19. Caulk AW, Dixon JB, Gleason RL Jr. 2016. A lumped parameter model of mechanically mediated acute and long-term adaptations of contractility and geometry in lymphatics for characterization of lymphedema. Biomech. Model. Mechanobiol. 15:1601–18 [Google Scholar]
  20. Caulk AW, Nepiyushchikh ZV, Shaw R, Dixon JB, Gleason RL Jr. 2015. Quantification of the passive and active biaxial mechanical behaviour and microstructural organization of rat thoracic ducts. J. R. Soc. Interface 12:20150280 [Google Scholar]
  21. Causey L, Cowin SC, Weinbaum S. 2012. Quantitative model for predicting lymph formation and muscle compressibility in skeletal muscle during contraction and stretch. PNAS 109:9185–90 [Google Scholar]
  22. Crowe MJ, von der Weid P-Y, Brock JA, Van Helden DF. 1997. Co-ordination of contractile activity in guinea-pig mesenteric lymphatics. J. Physiol. 500:Pt. 1235–44 [Google Scholar]
  23. Davis MJ, Davis AM, Ku CW, Gashev AA. 2009a. Myogenic constriction and dilation of isolated lymphatic vessels. Am. J. Physiol. Heart Circ. Physiol. 296:H293–302 [Google Scholar]
  24. Davis MJ, Davis AM, Lane MM, Ku CW, Gashev AA. 2009b. Rate-sensitive contractile responses of lymphatic vessels to circumferential stretch. J. Physiol. 587:165–82 [Google Scholar]
  25. Davis MJ, Rahbar E, Gashev AA, Zawieja DC, Moore JE Jr. 2011. Determinants of valve gating in collecting lymphatic vessels from rat mesentery. Am. J. Physiol. Heart Circ. Physiol. 301:H48–60 [Google Scholar]
  26. Davis MJ, Scallan JP, Wolpers JH, Muthuchamy M, Gashev AA, Zawieja DC. 2012. Intrinsic increase in lymphangion muscle contractility in response to elevated afterload. Am. J. Physiol. Heart Circ. Physiol. 303:H795–808 [Google Scholar]
  27. Dixon JB, Greiner ST, Gashev AA, Cote GL, Moore JE Jr., Zawieja DC. 2006. Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics. Microcirculation 13:597–610 [Google Scholar]
  28. Drake RE, Allen SJ, Katz J, Gabel JC, Laine GA. 1986. Equivalent circuit technique for lymph flow studies. Am. J. Physiol. Heart Circ. Physiol. 251:H1090–94 [Google Scholar]
  29. Elzinga G, Westerhof N. 1980. Pump function of the feline left heart: changes with heart rate and its bearing on the energy balance. Cardiovasc. Res. 14:81–92 [Google Scholar]
  30. Engeset A, Olszewski W, Jæger PM, Sokolowski J, Theodorsen L. 1977. Twenty-four hour variation in flow and composition of leg lymph in normal men. Acta Physiol. Scand. 99:140–48 [Google Scholar]
  31. Franklin KJ. 1927. Valves in veins: an historical survey. Proc. R. Soc. Med. 21:1–33 [Google Scholar]
  32. Galie P, Spilker RL. 2009. A two-dimensional computational model of lymph transport across primary lymphatic valves. ASME J. Biomech. Eng. 131:111004 [Google Scholar]
  33. Gashev AA. 2008. Lymphatic vessels: pressure- and flow-dependent regulatory reactions. Ann. N. Y. Acad. Sci. 1131:100–9 [Google Scholar]
  34. Gashev AA, Davis MJ, Delp MD, Zawieja DC. 2004. Regional variations of contractile activity in isolated rat lymphatics. Microcirculation 11:477–92 [Google Scholar]
  35. Gashev AA, Davis MJ, Zawieja DC. 2002. Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. J. Physiol. 540:1023–37 [Google Scholar]
  36. Gasheva OY, Zawieja DC, Gashev AA. 2006. Contraction-initiated NO-dependent lymphatic relaxation: a self-regulatory mechanism in rat thoracic duct. J. Physiol. 575:Pt. 3821–32 [Google Scholar]
  37. Guyton AC, Coleman TG. 1968. Regulation on interstitial fluid volume and pressure. Ann. N. Y. Acad. Sci. 150:537–47 [Google Scholar]
  38. Guyton AC, Granger HJ, Taylor AE. 1971. Interstitial fluid pressure. Physiol. Rev. 51:527–63 [Google Scholar]
  39. Hahn C, Schwartz MA. 2009. Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. 10:53–62 [Google Scholar]
  40. Hansen KC, D'Alessandro A, Clement CC, Santambrogio L. 2015. Lymph formation, composition and circulation: a proteomics perspective. Int. Immunol. 27:219–27 [Google Scholar]
  41. Haynes FW. 1932. Factors which influence the flow and protein content of subcutaneous lymph in the dog. I. Hemorrhage and hyperemia. Am. J. Physiol. 101:223–31 [Google Scholar]
  42. Heppell C, Richardson G, Roose T. 2013. A model for fluid drainage by the lymphatic system. Bull. Math. Biol. 75:49–81 [Google Scholar]
  43. Heppell C, Roose T, Richardson G. 2015. A model for interstitial drainage through a sliding lymphatic valve. Bull. Math. Biol. 77:1101–31 [Google Scholar]
  44. Ikomi F, Hunt J, Hanna G, Schmid-Schönbein GW. 1996. Interstitial fluid, plasma protein, colloid, and leukocyte uptake into initial lymphatics. J. Appl. Physiol. 81:2060–67 [Google Scholar]
  45. Int. Soc. Lymphol. 2013. The diagnosis and treatment of peripheral lymphedema: 2013 consensus document of the International Society of Lymphology. Lymphology 46:1–11 [Google Scholar]
  46. Jafarnejad M, Zawieja DC, Brook BS, Nibbs RJB, Moore JE Jr. 2017. A novel computational model predicts key regulators of chemokine gradient formation in lymph nodes and site-specific roles for CCL19 and ACKR4. J. Immunol. 199:2291–2304 [Google Scholar]
  47. Jamalian S, Bertram CD, Richardson WJ, Moore JE Jr. 2013. Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series. Am. J. Physiol. Heart Circ. Physiol. 305:H1709–17 [Google Scholar]
  48. Jamalian S, Davis MJ, Zawieja DC, Moore JE Jr. 2016. Network scale modeling of lymph transport and its effective pumping parameters. PLOS ONE 11:e0148384 [Google Scholar]
  49. Jamalian S, Jafarnajad M, Zawieja SD, Bertram CD, Gashev AA. et al. 2017. Demonstration and analysis of the suction effect for pumping lymph from tissue beds at subatmospheric pressure. Sci. Rep. 7:12080 [Google Scholar]
  50. Kampmeier OF. 1928. The genetic history of the valves in the lymphatic system of man. Am. J. Anat. 40:413–57 [Google Scholar]
  51. Kazenwadel J, Betterman KL, Chong CE, Stokes PH, Lee YK. et al. 2015. GATA2 is required for lymphatic vessel valve development and maintenance. J. Clin. Invest. 125:2979–94 [Google Scholar]
  52. Knox P, Pflug JJ. 1983. The effect of the canine popliteal node on the composition of lymph. J. Physiol. 345:1–14 [Google Scholar]
  53. Kornuta JA, Nepiyushchikh ZV, Gasheva OY, Mukherjee A, Zawieja DC, Dixon JB. 2015. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309:R1122–34 [Google Scholar]
  54. Kunert C, Baish JW, Liao S, Padera TP, Munn LL. 2015. Mechanobiological oscillators control lymph flow. PNAS 112:10938–43 [Google Scholar]
  55. Kurtz KH, Moor AN, Souza-Smith FM, Breslin JW. 2014. Involvement of H1 and H2 receptors and soluble guanylate cyclase in histamine-induced relaxation of rat mesenteric collecting lymphatics. Microcirculation 21:593–605 [Google Scholar]
  56. Leak LV. 1971. Studies on the permeability of lymphatic capillaries. J. Cell Biol. 50:300–23 [Google Scholar]
  57. Leak LV, Burke JF. 1968. Ultrastructural studies on the lymphatic anchoring filaments. J. Cell Biol. 36:129–49 [Google Scholar]
  58. Levick JR. 2010. Circulation of fluid between plasma, interstitium and lymph. An Introduction to Cardiovascular Physiology188–219 London: Hodder Arnold [Google Scholar]
  59. Lubopitko Encyc. Corp. 2016. Lymphatic circulation. Lubopitko Encyclopedia http://encyclopedia.lubopitko-bg.com/Lymphatic_Circulation.html
  60. Macdonald AJ, Arkill KP, Tabor GR, McHale NG, Winlove CP. 2008. Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements. Am. J. Physiol. Heart Circ. Physiol. 295:H305–13 [Google Scholar]
  61. Mansour S, Brice GW, Jeffery S, Mortimer P. 2012. Lymphedema-distichiasis syndrome. GeneReviews RA Pagon, MP Adam, HH Ardinger, SE Wallace, A Amemiya et al. Seattle: Univ. Washington https://www.ncbi.nlm.nih.gov/books/NBK1457/ [Google Scholar]
  62. Mazzoni MC, Skalak TC, Schmid-Schönbein GW. 1987. Structure of lymphatic valves in the spinotrapezius muscle of the rat. Blood Vessels 24:304–12 [Google Scholar]
  63. McGeown JG, McHale NG, Thornbury KD. 1987. The role of external compression and movement in lymph propulsion in the sheep hind limb. J. Physiol. 387:83–93 [Google Scholar]
  64. Mendoza E, Schmid-Schönbein GW. 2003. A model for mechanics of primary lymphatic valves. J. Biomech. Eng. 125:407–14 [Google Scholar]
  65. Moriondo A, Boschetti F, Bianchin F, Lattanzio S, Marcozzi C, Negrini D. 2010. Tissue contribution to the mechanical features of diaphragmatic initial lymphatics. J. Physiol. 588:3957–69 [Google Scholar]
  66. Moriondo A, Mukenge S, Negrini D. 2005. Transmural pressure in rat initial subpleural lymphatics during spontaneous or mechanical ventilation. Am. J. Physiol. Heart Circ. Physiol. 289:H263–69 [Google Scholar]
  67. Moriondo A, Solari E, Marcozzi C, Negrini D. 2013. Spontaneous activity in peripheral diaphragmatic lymphatic loops. Am. J. Physiol. Heart Circ. Physiol. 305:H987–95 [Google Scholar]
  68. Mortimer PS, Rockson SG. 2014. New developments in clinical aspects of lymphatic disease. J. Clin. Invest. 124:915–21 [Google Scholar]
  69. Murfee WL, Rappleye JW, Ceballos M, Schmid-Schönbein GW. 2007. Discontinuous expression of endothelial cell adhesion molecules along initial lymphatic vessels in mesentery: the primary valve structure. Lymphat. Res. Biol. 5:81–89 [Google Scholar]
  70. Natl. Cancer Inst. 2015. Lymphatic circulation. NCI Dictionary of Cancer Terms Rockville, MD: Natl. Cancer Inst https://www.cancer.gov/publications/dictionaries/cancer-terms?cdrid=45764 [Google Scholar]
  71. Negrini D, Del Fabbro M. 1999. Subatmospheric pressure in the rabbit pleural lymphatic network. J. Physiol. 520:761–69 [Google Scholar]
  72. Negrini D, Moriondo A, Mukenge S. 2004. Transmural pressure during cardiogenic oscillations in rodent diaphragmatic lymphatic vessels. Lymphat. Res. Biol. 2:69–81 [Google Scholar]
  73. Nizamutdinova IT, Maejima D, Nagai T, Bridenbaugh E, Thangaswamy S. et al. 2014. Involvement of histamine in endothelium-dependent relaxation of mesenteric lymphatic vessels. Microcirculation 21:640–48 [Google Scholar]
  74. Noddeland H, Omvik P, Lund-Johansen P, Ofstad J, Aukland K. 1984. Interstitial colloid osmotic and hydrostatic pressures in human subcutaneous tissue during early stages of heart failure. Clin. Physiol. 4:283–97 [Google Scholar]
  75. Olszewski WL, Engeset A. 1980. Intrinsic contractility of prenodal lymph vessels and lymph flow in human leg. Am. J. Physiol. Heart Circ. Physiol. 239:H775–83 [Google Scholar]
  76. Padera TP, Meijer EFJ, Munn LL. 2016. The lymphatic system in disease processes and cancer progression. Annu. Rev. Biomed. Eng. 18:125–58 [Google Scholar]
  77. Petrek JA, Senie RT, Peters M, Rosen PP. 2001. Lymphedema in a cohort of breast carcinoma survivors 20 years after diagnosis. Cancer 92:61368–77 [Google Scholar]
  78. Pflicke H, Sixt M. 2009. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J. Exp. Med. 206:2925–35 [Google Scholar]
  79. Quick CM, Venugopal AM, Dongaonkar RM, Laine GA, Stewart RH. 2008. First-order approximation for the pressure-flow relationship of spontaneously contracting lymphangions. Am. J. Physiol. Heart Circ. Physiol. 294:H2144–49 [Google Scholar]
  80. Rahbar E, Akl T, Coté GL, Moore JE Jr., Zawieja DC. 2014. Lymph transport in rat mesenteric lymphatics experiencing edemagenic stress. Microcirculation 21:359–67 [Google Scholar]
  81. Rahbar E, Moore JE Jr. 2011. A model of a radially expanding and contracting lymphangion. J. Biomech. 44:1001–7 [Google Scholar]
  82. Rahbar E, Weimer J, Gibbs H, Yeh AT, Bertram CD. et al. 2012. Passive pressure-diameter relationship and structural composition of rat mesenteric lymphangions. Lymphat. Res. Biol. 10:152–63 [Google Scholar]
  83. Reddy NP. 1986. Lymph circulation: physiology, pharmacology, and biomechanics. Crit. Rev. Biomed. Eng. 14:45–91 [Google Scholar]
  84. Reddy NP, Krouskop TA, Newell PH Jr. 1977. A computer model of the lymphatic system. Comput. Biol. Med. 7:181–97 [Google Scholar]
  85. Renkin EM. 1986. Some consequences of capillary permeability to macromolecules: Starling's hypothesis reconsidered. Am. J. Physiol. Heart Circ. Physiol. 250:706–10 [Google Scholar]
  86. Rockson SG. 2013. The lymphatics and the inflammatory response: lessons learned from human lymphedema. Lymphat. Res. Biol. 11:117–20 [Google Scholar]
  87. Roose T, Swartz MA. 2012. Multiscale modeling of lymphatic drainage from tissues using homogenization theory. J. Biomech. 45:107–15 [Google Scholar]
  88. Sabine A, Bovay E, Demir CS, Kimura W, Jaquet M. et al. 2015. FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. J. Clin. Invest. 125:3861–77 [Google Scholar]
  89. Sabine A, Petrova TV. 2014. Interplay of mechanotransduction, FOXC2, connexins, and calcineurin signaling in lymphatic valve formation. Developmental Aspects of the Lymphatic Vascular System F Kiefer, S Schulte-Merker 67–80 Vienna: Springer-Verlag [Google Scholar]
  90. Sagawa K, Maughan L, Suga H, Sunagawa K. 1988. Cardiac Contraction and the Pressure-Volume Relationship New York: Oxford Univ. Press
  91. Scallan JP, Davis MJ. 2013. Genetic removal of basal nitric oxide enhances contractile activity in isolated murine collecting lymphatic vessels. J. Physiol. 591:2139–56 [Google Scholar]
  92. Scallan JP, Wolpers JH, Muthuchamy M, Zawieja DC, Gashev AA, Davis MJ. 2012. Independent and interactive effects of preload and afterload on the pump function of the isolated lymphangion. Am. J. Physiol. Heart Circ. Physiol. 303:H809–24 [Google Scholar]
  93. Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. 2016. Lymphatic pumping: mechanics, mechanisms and malfunction. J. Physiol. 594:5749–68 [Google Scholar]
  94. Schmid-Schönbein GW. 1990. Microlymphatics and lymph flow. Physiol. Rev. 70:987–1028 [Google Scholar]
  95. Schmid-Schönbein GW. 2003. The second valve system in lymphatics. Lymphat. Res. Biol. 1:25–29 [Google Scholar]
  96. Soto-Miranda MA, Suami H, Chang DW. 2013. Mapping superficial lymphatic territories in the rabbit. Anat. Rec. 296:965–70 [Google Scholar]
  97. Stapor PC, Wang W, Murfee WL, Khismatullin DB. 2011. The distribution of fluid shear stresses in capillary sprouts. Cardiovasc. Eng. Technol. 2:124–36 [Google Scholar]
  98. Telinius N, Drewsen N, Pilegaard H, Kold-Petersen H, de Leval M. et al. 2010. Human thoracic duct in vitro: diameter-tension properties, spontaneous and evoked contractile activity. Am. J. Physiol. Heart Circ. Physiol. 299:H811–18 [Google Scholar]
  99. Tiwari P, Coriddi M, Salani R, Povoski SP. 2013. Breast and gynecologic cancer-related extremity lymphedema: a review of diagnostic modalities and management options. World J. Surg. Oncol. 11:237 [Google Scholar]
  100. Trzewik J, Mallipattu SK, Artmann GM, Delano FA, Schmid-Schönbein GW. 2001. Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J 15:1711–17 [Google Scholar]
  101. Ulvmar MH, Werth K, Braun A, Kelay P, Hub E. et al. 2014. The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nat. Immunol. 15:623–30 [Google Scholar]
  102. Unthank JL, Bohlen HG. 1988. Lymphatic pathways and role of valves in lymph propulsion from small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 254:G389–98 [Google Scholar]
  103. Venugopal AM, Quick CM, Laine GA, Stewart RH. 2009. Optimal post-nodal lymphatic network structure that maximizes active propulsion of lymph. Am. J. Physiol. Heart Circ. Physiol. 296:H303–9 [Google Scholar]
  104. Venugopal AM, Stewart RH, Laine GA, Dongaonkar RM, Quick CM. 2007. Lymphangion coordination minimally affects mean flow in lymphatic vessels. Am. J. Physiol. Heart Circ. Physiol. 293:H1183–89 [Google Scholar]
  105. von der Weid P-Y, Zawieja DC. 2004. Lymphatic smooth muscle: the motor unit of lymph drainage. Int. J. Biochem. Cell Biol. 36:1147–53 [Google Scholar]
  106. von der Weid P-Y, Zhao J, Van Helden DF. 2001. Nitric oxide decreases pacemaker activity in lymphatic vessels of guinea pig mesentery. Am. J. Physiol. Heart Circ. Physiol. 280:H2707–16 [Google Scholar]
  107. Warren LEG, Miller CL, Horick N, Skolny MN, Jammallo LS. et al. 2014. The impact of radiation therapy on the risk of lymphedema after treatment for breast cancer: a prospective cohort study. Int. J. Radiat. Oncol. Biol. Phys. 88:565–71 [Google Scholar]
  108. Wilson JT, van Loon R, Wang W, Zawieja DC, Moore JE Jr. 2015. Determining the combined effect of the lymphatic valve leaflets and sinus on resistance to forward flow. J. Biomech. 48:3584–90 [Google Scholar]
  109. Wilson JT, Wang W, Hellerstedt AH, Zawieja DC, Moore JE Jr. 2013. Confocal image-based computational modeling of nitric oxide transport in a rat mesenteric lymphatic vessel. J. Biomech. Eng. 135:051005 [Google Scholar]
  110. Zawieja DC. 2009. Contractile physiology of lymphatics. Lymphat. Res. Biol. 7:87–96 [Google Scholar]
  111. Zawieja DC, Davis KL, Schuster R, Hinds WM, Granger HJ. 1993. Distribution, propagation, and coordination of contractile activity in lymphatics. Am. J. Physiol. Heart Circ. Physiol. 264:H1283–91 [Google Scholar]
  112. Zhang R-Z, Gashev AA, Zawieja DC, Davis MJ. 2007. Length-tension relationships of small arteries, veins, and lymphatics from the rat mesenteric microcirculation. Am. J. Physiol. Heart Circ. Physiol. 292:H1943–52 [Google Scholar]
  113. Zweifach BW, Prather JW. 1975. Micromanipulation of pressure in terminal lymphatics in the mesentery. Am. J. Physiol. 228:1326–35 [Google Scholar]
/content/journals/10.1146/annurev-fluid-122316-045259
Loading
/content/journals/10.1146/annurev-fluid-122316-045259
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error