1932

Abstract

The past decade has seen a surge in the scientific literature investigating the potential food-related applications of plasma. A multidisciplinary scientific effort has started to demonstrate process efficacy for a range of plasma applications, including antimicrobial, pesticidal, food functionalization, and waste treatment. Insights into the interactions of plasma species with food and the mechanisms of action are also emerging. This review examines the current status of cold plasma technology within the food sector with a particular emphasis on emerging applications. Opportunities and current challenges that need to be addressed for successful adoption of the approach by industry are detailed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-030117-012517
2018-03-25
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/food/9/1/annurev-food-030117-012517.html?itemId=/content/journals/10.1146/annurev-food-030117-012517&mimeType=html&fmt=ahah

Literature Cited

  1. Abd El-Aziz MF, Mahmoud EA, Elaragi GM. 2014. Non thermal plasma for control of the Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae). J. Stored Prod. Res. 59:215–21 [Google Scholar]
  2. Andersen KB, Beukes JA, Feilberg A. 2013. Non-thermal plasma for odour reduction from pig houses: a pilot scale investigation. Chem. Eng. J. 223:638–46 [Google Scholar]
  3. Attri P, Kumar N, Park JH, Yadav DK, Choi S. et al. 2015. Influence of reactive species on the modification of biomolecules generated from the soft plasma. Sci. Rep. 5:8221 [Google Scholar]
  4. Bai Y, Chen J, Mu H, Zhang C, Li B. 2009. Reduction of dichlorvos and omethoate residues by O2 plasma treatment. J. Agric. Food Chem. 57:6238–45 [Google Scholar]
  5. Basaran P, Basaran-Akgul N, Oksuz L. 2008. Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiol 25:626–32 [Google Scholar]
  6. Berardinelli A, Pasquali F, Cevoli C, Trevisani M, Ragni L. et al. 2016. Sanitisation of fresh-cut celery and radicchio by gas plasma treatments in water medium. Postharvest Biol. Technol. 111:297–304 [Google Scholar]
  7. Boehm D, Heslin C, Cullen PJ, Bourke P. 2016. Cytotoxic and mutagenic potential of solutions exposed to cold atmospheric plasma. Sci. Rep. 6:21464 [Google Scholar]
  8. Borges A, Simões L, Saavedra M, Simões M. 2014. The action of selected isothiocyanates on bacterial biofilm prevention and control. Int. Biodeterior. Biodegrad. 86:25–33 [Google Scholar]
  9. Both R. 2001. Directive on odour in ambient air: an established system of odour measurement and odour regulation in Germany. Water Sci. Technol. 44:119–26 [Google Scholar]
  10. Bourke P, Zuizina D, Han L, Cullen P, Gilmore BF. 2017. Microbiological interactions with cold plasma. J. Appl. Microbiol. 123:308–24 [Google Scholar]
  11. Boye JI. 2012. Food allergies in developing and emerging economies: need for comprehensive data on prevalence rates. Clin. Transl. Allergy 2:25 [Google Scholar]
  12. Bures BL, Donohue KV, Roe RM, Bourham MA. 2006. Nonchemical dielectric barrier discharge treatment as a method of insect control. IEEE Trans. Plasma Sci. 34:55–62 [Google Scholar]
  13. Bußler S, Steins V, Ehlbeck J, Schlüter O. 2015. Impact of thermal treatment versus cold atmospheric plasma processing on the techno-functional protein properties from Pisum sativum ‘Salamanca’. J. Food Eng. 167:166–74 [Google Scholar]
  14. Chen HH. 2014. Investigation of properties of long-grain brown rice treated by low-pressure plasma. Food Bioprocess Technol 7:2484–91 [Google Scholar]
  15. Chen HH, Chang HC, Chen YK, Hung CL, Lin SY, Chen YS. 2016.a An improved process for high nutrition of germinated brown rice production: low-pressure plasma. Food Chem 191:120–27 [Google Scholar]
  16. Chen Z, Lin L, Cheng X, Gjika E, Keidar M. 2016.b Effects of cold atmospheric plasma generated in deionized water in cell cancer therapy. Plasma Process. Polym. 13:1151–56 [Google Scholar]
  17. Cubas A, Machado M, Pinto C, Moecke E, Dutra A. 2016. Biodiesel production using fatty acids from food industry waste using corona discharge plasma technology. Waste Manag 47:149–54 [Google Scholar]
  18. Cullen PJ, Lalor J, Scally L, Boehm D, Milosavljević V. et al. 2017. Translation of plasma technology from the lab to the food industry. Plasma Process. Polym. 2017:1700085 [Google Scholar]
  19. Cullen PJ, Milosavljević V. 2015. Spectroscopic characterization of a radio-frequency argon plasma jet discharge in ambient air. Prog. Theor. Exp. Phys. 2015:063J01 [Google Scholar]
  20. Cullen PJ, Misra N, Han L, Bourke P, Keener K. et al. 2014. Inducing a dielectric barrier discharge plasma within a package. IEEE Trans. Plasma Sci. 42:2368–69 [Google Scholar]
  21. Dasan BG, Boyaci IH, Mutlu M. 2016. Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. Food Control 70:1–8 [Google Scholar]
  22. Deng X, Shi J, Kong MG. 2007. Protein destruction by a helium atmospheric pressure glow discharge: capability and mechanisms. J. Appl. Phys. 101:074701 [Google Scholar]
  23. Desmet T, Morent R, Geyter ND, Leys C, Schacht E, Dubruel P. 2009. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromolecules 10:2351–78 [Google Scholar]
  24. Devi Y, Thirumdas R, Sarangapani C, Deshmukh R, Annapure U. 2017. Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control 77:187–91 [Google Scholar]
  25. Dhayal M, Lee S-Y, Park S-U. 2006. Using low-pressure plasma for Carthamus tinctorium L. seed surface modification. Vacuum 80:499–506 [Google Scholar]
  26. Dobrynin D, Fridman G, Friedman G, Fridman A. 2009. Physical and biological mechanisms of direct plasma interaction with living tissue. New J. Phys. 11:115020 [Google Scholar]
  27. Donohue KV, Bures BL, Bourham MA, Roe RM. 2006. Mode of action of a novel nonchemical method of insect control: atmospheric pressure plasma discharge. J. Econ. Entomol. 99:38–47 [Google Scholar]
  28. Dorraki N, Mahdavi V, Ghomi H, Ghasempour A. 2016. Elimination of diazinon insecticide from cucumber surface by atmospheric pressure air-dielectric barrier discharge plasma. Biointerphases 11:041007 [Google Scholar]
  29. Doubla A, Laminsi S, Nzali S, Njoyim E, Kamsu-Kom J, Brisset J-L. 2007. Organic pollutants abatement and biodecontamination of brewery effluents by a non-thermal quenched plasma at atmospheric pressure. Chemosphere 69:332–37 [Google Scholar]
  30. Fröhling A, Durek J, Schnabel U, Ehlbeck J, Bolling J, Schlüter O. 2012. Indirect plasma treatment of fresh pork: decontamination efficiency and effects on quality attributes. Innov. Food Sci. Emerg. Technol. 16:381–90 [Google Scholar]
  31. Garofulić IE, Jambrak AR, Milošević S, Dragović-Uzelac V, Zorić Z, Herceg Z. 2015. The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca (Prunus cerasus var. Marasca) juice. LWT Food Sci. Technol. 62:894–900 [Google Scholar]
  32. Gongwala J, Fotio D, Abba P, Payom G, Laminsi S, Njopwouo D. 2014. Application of the cold plasma of glidarc type to the treatment of wastewaters from slaughterhouses: abatement of phosphates and nitrates. Eur. Sci. J. 10:220–29 [Google Scholar]
  33. Goodrich P, Wang Y. 2002. Nonthermal plasma treatment of swine housinggases. Presented at ASAE Annu. Int. Meet./CIGR World Congr 15th, Chicago
  34. Groopman JD, Cain LG, Kensler TW, Harris CC. 1988. Aflatoxin exposure in human populations: measurements and relationship to cancer. Crit. Rev. Toxicol. 19:113–45 [Google Scholar]
  35. Grzegorzewski F, Ehlbeck J, Schlüter O, Kroh LW, Rohn S. 2011. Treating lamb's lettuce with a cold plasma: influence of atmospheric pressure Ar plasma immanent species on the phenolic profile of Valerianella locusta. LWT Food Sci. Technol. 44:2285–89 [Google Scholar]
  36. Gurol C, Ekinci F, Aslan N, Korachi M. 2012. Low temperature plasma for decontamination of E. coli in milk. Int. J. Food Microbiol. 157:1–5 [Google Scholar]
  37. Guzel-Seydim ZB, Greene AK, Seydim A. 2004. Use of ozone in the food industry. LWT Food Sci. Technol. 37:453–60 [Google Scholar]
  38. Han L, Boehm D, Amias E, Milosavljević V, Cullen P, Bourke P. 2016. Atmospheric cold plasma interactions with modified atmosphere packaging inducer gases for safe food preservation. Innov. Food Sci. Emerg. Technol. 38:384–92 [Google Scholar]
  39. Han L, Patil S, Boehm D, Milosavljević V, Cullen PJ, Bourke P. 2015. Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl. Environ. Microbiol. 82:2450–58 [Google Scholar]
  40. Hayashi N, Kawaguchi R, Liu H. 2009. Treatment of protein using oxygen plasma produced by RF discharge. J. Plasma Fusion Res. Ser. 8:552–55 [Google Scholar]
  41. Heo NS, Lee M-K, Kim GW, Lee SJ, Park JY, Park TJ. 2014. Microbial inactivation and pesticide removal by remote exposure of atmospheric air plasma in confined environments. J. Biosci. Bioeng. 117:81–85 [Google Scholar]
  42. Herceg Z, Kovačević DB, Kljusurić JG, Jambrak AR, Zorić Z, Dragović-Uzelac V. 2016. Gas phase plasma impact on phenolic compounds in pomegranate juice. Food Chem 190:665–72 [Google Scholar]
  43. Hertwig C, Reineke K, Ehlbeck J, Knorr D, Schlüter O. 2015. Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control 55:221–29 [Google Scholar]
  44. Hojnik N, Cvelbar U, Tavčar-Kalcher G, Walsh JL, Križaj I. 2017. Mycotoxin decontamination of food: cold atmospheric pressure plasma versus “classic” decontamination. Toxins 9:151 [Google Scholar]
  45. Huang HW, Hsu CP, Yang BB, Wang CY. 2014. Potential utility of high‐pressure processing to address the risk of food allergen concerns. Compr. Rev. Food Sci. Food Saf. 13:78–90 [Google Scholar]
  46. Jablonowski H, Woedtke TV. 2015. Research on plasma medicine-relevant plasma-liquid interaction: What happened in the past five years. Clin. Plasma Med. 3:242–52 [Google Scholar]
  47. Jayasena DD, Kim HJ, Yong HI, Park S, Kim K. et al. 2015. Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: effects on pathogen inactivation and meat-quality attributes. Food Microbiol 46:51–57 [Google Scholar]
  48. Jiang B, Zheng J, Qiu S, Wu M, Zhang Q. et al. 2014. Review on electrical discharge plasma technology for wastewater remediation. Chem. Eng. J. 236:348–68 [Google Scholar]
  49. Karuppiah J, Reddy EL, Reddy PMK, Ramaraju B, Karvembu R, Subrahmanyam C. 2012. Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor. J. Hazard. Mater. 237:283–89 [Google Scholar]
  50. Kelly S, Turner M. 2014. Generation of reactive species by an atmospheric pressure plasma jet. Plasma Sources Sci. Technol. 23:065013 [Google Scholar]
  51. Kim B, Yun H, Jung S, Jung Y, Jung H. et al. 2011. Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiol 28:9–13 [Google Scholar]
  52. Kim HH. 2004. Nonthermal plasma processing for air‐pollution control: a historical review, current issues, and future prospects. Plasma Process. Polym. 1:91–110 [Google Scholar]
  53. Kim H-J, Yong HI, Park S, Choe W, Jo C. 2013. Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin. Curr. Appl. Phys. 13:1420–25 [Google Scholar]
  54. Kim H-J, Yong HI, Park S, Kim K, Choe W, Jo C. 2015. Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control 47:451–56 [Google Scholar]
  55. Kinoshita K, Fujiyama Y, Kim H-H, Katsura S, Mizuno A. 1997. Control of tobacco smoke and odors using discharge plasma reactor. J. Electrost. 42:83–91 [Google Scholar]
  56. Knorr D, Froehling A, Jaeger H, Reineke K, Schlueter O, Schoessler K. 2011. Emerging technologies in food processing. Annu. Rev. Food Sci. Technol. 2:203–35 [Google Scholar]
  57. Korachi M, Ozen F, Aslan N, Vannini L, Guerzoni ME. et al. 2015. Biochemical changes to milk following treatment by a novel, cold atmospheric plasma system. Int. Dairy J. 42:64–69 [Google Scholar]
  58. Kovačević DB, Putnik P, Dragović-Uzelac V, Pedisić S, Jambrak AR, Herceg Z. 2016. Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chem 190:317–23 [Google Scholar]
  59. Lacombe A, Niemira BA, Gurtler JB, Fan X, Sites J. et al. 2015. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiol 46:479–84 [Google Scholar]
  60. Lee H, Yong HI, Kim H-J, Choe W, Yoo SJ. et al. 2016.a Evaluation of the microbiological safety, quality changes, and genotoxicity of chicken breast treated with flexible thin-layer dielectric barrier discharge plasma. Food Sci. Biotechnol. 25:1189–95 [Google Scholar]
  61. Lee H-J, Jung S, Jung H-S, Park S-H, Choe W-H. et al. 2012. Evaluation of a dielectric barrier discharge plasma system for inactivating pathogens on cheese slices. J. Anim. Sci. Technol. 54:191–98 [Google Scholar]
  62. Lee KH, Kim H-J, Woo KS, Jo C, Kim J-K. et al. 2016.b Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT Food Sci. Technol. 73:442–47 [Google Scholar]
  63. Lii C-Y, Liao C-D, Stobinski L, Tomasik P. 2002. Exposure of granular starches to low-pressure glow ethylene plasma. Eur. Polym. J. 38:1601–6 [Google Scholar]
  64. Mahendran R. 2016. Effect of cold plasma on mortality of Tribolium castaneum on refined wheat flour. Proc. Int. Conf. Control. Atmos. Fumigation Stored Prod., 10th, New Delhi Nov. 7–11 142–46 Winnipeg, Can: CAF [Google Scholar]
  65. Meinlschmidt P, Ueberham E, Lehmann J, Reineke K, Schlüter O. et al. 2016. The effects of pulsed ultraviolet light, cold atmospheric pressure plasma, and gamma-irradiation on the immunoreactivity of soy protein isolate. Innov. Food Sci. Emerg. Technol. 38:374–83 [Google Scholar]
  66. Misra N. 2015. The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trends Food Sci. Technol. 45:229–44 [Google Scholar]
  67. Misra N, Jo C. 2017. Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci. Technol. 64:74–86 [Google Scholar]
  68. Misra N, Kaur S, Tiwari BK, Kaur A, Singh N, Cullen P. 2015.a Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocoll 44:115–21 [Google Scholar]
  69. Misra N, Keener K, Bourke P, Cullen P. 2015.b Generation of in-package cold plasma and efficacy assessment using methylene blue. Plasma Chem. Plasma Process. 35:1043–56 [Google Scholar]
  70. Misra N, Moiseev T, Patil S, Pankaj S, Bourke P. et al. 2014.a Cold plasma in modified atmospheres for post-harvest treatment of strawberries. Food Bioprocess Technol 7:3045–54 [Google Scholar]
  71. Misra N, Pankaj S, Frias J, Keener K, Cullen P. 2015.c The effects of nonthermal plasma on chemical quality of strawberries. Postharvest Biol. Technol. 110:197–202 [Google Scholar]
  72. Misra N, Pankaj S, Segat A, Ishikawa K. 2016. Cold plasma interactions with enzymes in foods and model systems. Trends Food Sci. Technol. 55:39–47 [Google Scholar]
  73. Misra N, Pankaj S, Walsh T, O'Regan F, Bourke P, Cullen P. 2014.b In-package nonthermal plasma degradation of pesticides on fresh produce. J. Hazard. Mater. 271:33–40 [Google Scholar]
  74. Misra N, Patil S, Moiseev T, Bourke P, Mosnier J. et al. 2014.c In-package atmospheric pressure cold plasma treatment of strawberries. J. Food Eng. 125:131–38 [Google Scholar]
  75. Misra NN, Keener KM, Bourke P, Mosnier J-P, Cullen PJ. 2014.d In-package atmospheric pressure cold plasma treatment of cherry tomatoes. J. Biosci. Bioeng. 118:177–82 [Google Scholar]
  76. Moon SY, Kim D, Gweon B, Choe W, Song H, Jo C. 2009. Feasibility study of the sterilization of pork and human skin surfaces by atmospheric pressure plasmas. Thin Solid Films 517:4272–75 [Google Scholar]
  77. Niemira BA. 2012. Cold plasma decontamination of foods. Annu. Rev. Food Sci. Technol. 3:125–42 [Google Scholar]
  78. Niemira B, Boyd G, Sites J. 2014. Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella biofilms. J. Food Sci. 79:5M917–22 [Google Scholar]
  79. NGFA. 2011. FDA Mycotoxin Guidance. A Guide for Grain Elevators, Feed Manufacturers, Grain Processors, and Exporters Washington, DC: Natl. Grain Feed Assoc [Google Scholar]
  80. Nooji JK. 2011. Reduction of wheat allergen potency by pulsed ultraviolet light, high hydrostatic pressure, and non-thermal plasma MS Thesis, Univ Fla., Gainesville:
  81. Nwaru BI, Hickstein L, Panesar S, Muraro A, Werfel T. et al. 2014. The epidemiology of food allergy in Europe: a systematic review and meta‐analysis. Allergy 69:62–75 [Google Scholar]
  82. Ohta T. 2016. Plasma in agriculture. Cold Plasma in Food and Agriculture: Fundamentals and Applications NN Misra, O Schlüter, PJ Cullen 205–19 Amsterdam, Neth: Elsevier [Google Scholar]
  83. Ouf SA, Basher AH, Mohamed AAH. 2015. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. J. Sci. Food Agric. 95:3204–10 [Google Scholar]
  84. Pal P, Kaur P, Singh N, Kaur A, Misra N. et al. 2016. Effect of nonthermal plasma on physico-chemical, amino acid composition, pasting and protein characteristics of short and long grain rice flour. Food Res. Int. 81:50–57 [Google Scholar]
  85. Pankaj SK, Bueno-Ferrer C, Misra N, O'Neill L, Tiwari B. et al. 2014. Physicochemical characterization of plasma-treated sodium caseinate film. Food Res. Int. 66:438–44 [Google Scholar]
  86. Pankaj SK, Misra NN, Cullen PJ. 2013. Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innov. Food Sci. Emerg. Technol. 19:153–57 [Google Scholar]
  87. Paritosh K, Kushwaha SK, Yadav M, Pareek N, Chawade A, Vivekanand V. 2017. Food waste to energy: an overview of sustainable approaches for food waste management and nutrient recycling. BioMed Res. Int. 2017:2370927 [Google Scholar]
  88. Park BJ, Takatori K, Sugita-Konishi Y, Kim I-H, Lee M-H. et al. 2007. Degradation of mycotoxins using microwave-induced argon plasma at atmospheric pressure. Surf. Coat. Technol 201:5733–37 [Google Scholar]
  89. Pasquali F, Stratakos AC, Koidis A, Berardinelli A, Cevoli C. et al. 2016. Atmospheric cold plasma process for vegetable leaf decontamination: a feasibility study on radicchio (red chicory, Cichoriumintybus L.). Food Control 60:552–59 [Google Scholar]
  90. Patange A, Boehm D, Bueno-Ferrer C, Cullen P, Bourke P. 2017. Controlling Brochothrix thermosphacta as a spoilage risk using in-package atmospheric cold plasma. Food Microbiol 66:48–54 [Google Scholar]
  91. Pei X, Lu X, Liu J, Liu D, Yang Y. et al. 2012. Inactivation of a 25.5 μm Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet. J. Phys. D 45:16165205–10 [Google Scholar]
  92. Phan KTK, Phan HT, Brennan CS, Phimolsiripol Y. 2017. Nonthermal plasma for pesticide and microbial elimination on fruits and vegetables: an overview. Int. J. Food Sci. Technol. 52:2127–37 [Google Scholar]
  93. Pignata C, D'Angelo D, Fea E, Gilli G. 2017. A review on microbiological decontamination of fresh produce with nonthermal plasma. J. Appl. Microbiol. 122:1438–55 [Google Scholar]
  94. Puač N, Živković S, Selaković N, Milutinović M, Boljević J. et al. 2014. Long and short term effects of plasma treatment on meristematic plant cells. Appl. Phys. Lett. 104:214106 [Google Scholar]
  95. Ramazzina I, Berardinelli A, Rizzi F, Tappi S, Ragni L. et al. 2015. Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biol. Technol. 107:55–65 [Google Scholar]
  96. Ravindran R, Sarangapani C, Jaiswal S, Cullen P, Jaiswal AK. 2017. Ferric chloride assisted plasma pretreatment of lignocellulose. Bioresour. Technol. 243:327–34 [Google Scholar]
  97. Reddy PMK, Raju BR, Karuppiah J, Reddy EL, Subrahmanyam C. 2013. Degradation and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor. Chem. Eng. J. 217:41–47 [Google Scholar]
  98. Rød SK, Hansen F, Leipold F, Knøchel S. 2012. Cold atmospheric pressure plasma treatment of ready-to-eat meat: inactivation of Listeria innocua and changes in product quality. Food Microbiol 30:233–38 [Google Scholar]
  99. Sadhu S, Thirumdas R, Deshmukh R, Annapure U. 2017. Influence of cold plasma on the enzymatic activity in germinating mung beans (Vigna radiate). LWT Food Sci. Technol. 78:97–104 [Google Scholar]
  100. Sakudo A, Toyokawa Y, Misawa T, Imanishi Y. 2017. Degradation and detoxification of aflatoxin B1 using nitrogen gas plasma generated by a static induction thyristor as a pulsed power supply. Food Control 73:619–26 [Google Scholar]
  101. Sampson HA. 2003. 9. Food allergy. J. Allergy Clin. Immunol. 111:S540–47 [Google Scholar]
  102. Sarangapani C, Danaher M, Tiwari B, Lu P, Bourke P, Cullen PJ. 2017.a Efficacy and mechanistic insights into endocrine disruptor degradation using atmospheric air plasma Chem. Eng. J. 326:700–14 [Google Scholar]
  103. Sarangapani C, Devi RY, Thirumdas R, Trimukhe AM, Deshmukh RR, Annapure US. 2017.b Physico-chemical properties of low-pressure plasma treated black gram. LWT Food Sci. Technol. 79:102–10 [Google Scholar]
  104. Sarangapani C, Devi Y, Thirundas R, Annapure US, Deshmukh RR. 2015. Effect of low-pressure plasma on physico-chemical properties of parboiled rice. LWT Food Sci. Technol. 63:452–60 [Google Scholar]
  105. Sarangapani C, Dixit Y, Milosavljević V, Bourke P, Sullivan C, Cullen P. 2017.c Optimization of atmospheric air plasma for degradation of organic dyes in wastewater. Water Sci. Technol. 75:207–19 [Google Scholar]
  106. Sarangapani C, Keogh DR, Dunne J, Bourke P, Cullen P. 2017.d Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chem 235:324–33 [Google Scholar]
  107. Sarangapani C, Misra N, Milosavljević V, Bourke P, O'Regan F, Cullen P. 2016.a Pesticide degradation in water using atmospheric air cold plasma. J. Water Process Eng. 9:225–32 [Google Scholar]
  108. Sarangapani C, O'Toole G, Cullen P, Bourke P. 2017.e Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innov. Food Sci. Emerg. Technol. 44:235–41 [Google Scholar]
  109. Sarangapani C, Thirumdas R, Devi Y, Trimukhe A, Deshmukh RR, Annapure US. 2016.b Effect of low-pressure plasma on physico-chemical and functional properties of parboiled rice flour. LWT Food Sci. Technol. 69:482–89 [Google Scholar]
  110. Schultz-Jensen N, Kádár Z, Thomsen AB, Bindslev H, Leipold F. 2011. Plasma-assisted pretreatment of wheat straw for ethanol production. Appl. Biochem. Biotechnol. 165:1010–23 [Google Scholar]
  111. Segat A, Misra N, Fabbro A, Buchini F, Lippe G. et al. 2014. Effects of ozone processing on chemical, structural and functional properties of whey protein isolate. Food Res. Int. 66:365–72 [Google Scholar]
  112. Sera B, Spatenka P, Sery M, Vrchotova N, Hruskova I. 2010. Influence of plasma treatment on wheat and oat germination and early growth. IEEE Trans. Plasma Sci. 38:2963–68 [Google Scholar]
  113. Shi H, Ileleji K, Stroshine RL, Keener K, Jensen JL. 2017. Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food Bioprocess Technol 10:1042–52 [Google Scholar]
  114. Shriver S. 2011. Effect of selected emerging nonthermal processing methods on the allergen reactivity of Atlantic white shrimp (Litopenaeus setiferus) MS Thesis, Univ Fla., Gainesville: [Google Scholar]
  115. Shriver SK, Yang WW. 2011. Thermal and nonthermal methods for food allergen control. Food Eng. Rev. 3:26–43 [Google Scholar]
  116. Siciliano I, Spadaro D, Prelle A, Vallauri D, Cavallero MC. et al. 2016. Use of cold atmospheric plasma to detoxify hazelnuts from aflatoxins. Toxins 8:125 [Google Scholar]
  117. Song AY, Oh YJ, Kim JE, Song KB, Oh DH, Min SC. 2015. Cold plasma treatment for microbial safety and preservation of fresh lettuce. Food Sci. Biotechnol. 24:1717–24 [Google Scholar]
  118. Souza-Corrêa J, Oliveira C, Wolf L, Nascimento V, Rocha G, Amorim J. 2013. Atmospheric pressure plasma pretreatment of sugarcane bagasse: the influence of moisture in the ozonation process. Appl. Biochem. Biotechnol. 171:104–16 [Google Scholar]
  119. Surowsky B, Fischer A, Schlueter O, Knorr D. 2013. Cold plasma effects on enzyme activity in a model food system. Innov. Food Sci. Emerg. Technol. 19:146–52 [Google Scholar]
  120. Tammineedi CV, Choudhary R, Perez-Alvarado GC, Watson DG. 2013. Determining the effect of UV-C, high intensity ultrasound and nonthermal atmospheric plasma treatments on reducing the allergenicity of α-casein and whey proteins. LWT Food Sci. Technol. 54:35–41 [Google Scholar]
  121. Tappi S, Berardinelli A, Ragni L, Dalla Rosa M, Guarnieri A, Rocculi P. 2014. Atmospheric gas plasma treatment of fresh-cut apples. Innov. Food Sci. Emerg. Technol. 21:114–22 [Google Scholar]
  122. Tappi S, Gozzi G, Vannini L, Berardinelli A, Romani S. et al. 2016. Cold plasma treatment for fresh-cut melon stabilization. Innov. Food Sci. Emerg. Technol. 33:225–33 [Google Scholar]
  123. ten Bosch L, Pfohl K, Avramidis G, Wieneke S, Viöl W, Karlovsky P. 2017. Plasma-based degradation of mycotoxins produced by Fusarium, Aspergillus and Alternaria species. Toxins 9:97 [Google Scholar]
  124. Thirumdas R, Kadam D, Annapure U. 2017.a Cold plasma: an alternative technology for the starch modification. Food Biophys 12:129–39 [Google Scholar]
  125. Thirumdas R, Saragapani C, Ajinkya MT, Deshmukh RR, Annapure US. 2016. Influence of low pressure cold plasma on cooking and textural properties of brown rice. Innov. Food Sci. Emerg. Technol. 37:53–60 [Google Scholar]
  126. Thirumdas R, Trimukhe A, Deshmukh R, Annapure U. 2017.b Functional and rheological properties of cold plasma treated rice starch. Carbohydr. Polym. 157:1723–31 [Google Scholar]
  127. Virdi J, Tiwari R, Saxena M, Khanna V, Singh G. et al. 1989. Effects of aflatoxin on the immune system of the chick. J. Appl. Toxicol. 9:271–75 [Google Scholar]
  128. US Food Drug Admin. (FDA). 2017. Outbreak Investigations Washington, DC: FDA https://www.fda.gov/Food/RecallsOutbreaksEmergencies/Outbreaks/ucm272351.htm
  129. Vandenbroucke AM, Morent R, De Geyter N, Leys C. 2011. Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J. Hazard. Mater. 195:30–54 [Google Scholar]
  130. Wang J, Zhuang H, Hinton A, Zhang J. 2016. Influence of in-package cold plasma treatment on microbiological shelf life and appearance of fresh chicken breast fillets. Food Microbiol 60:142–46 [Google Scholar]
  131. Wang S-Q, Huang G-Q, Li Y-P, Xiao J-X, Zhang Y, Jiang W-L. 2015. Degradation of aflatoxin B1 by low-temperature radio frequency plasma and degradation product elucidation. Eur. Food Res. Technol. 241:103–13 [Google Scholar]
  132. Won MY, Lee SJ, Min SC. 2017. Mandarin preservation by microwave-powered cold plasma treatment. Innov. Food Sci. Emerg. Technol. 39:25–32 [Google Scholar]
  133. Wongsagonsup R, Deeyai P, Chaiwat W, Horrungsiwat S, Leejariensuk K. et al. 2014. Modification of tapioca starch by non-chemical route using jet atmospheric argon plasma. Carbohydr. Polym. 102:790–98 [Google Scholar]
  134. Wu Y, Liang Y, Wei K, Li W, Yao M, Zhang J. 2014. Rapid allergen inactivation using atmospheric pressure cold plasma. Environ. Sci. Technol. 48:2901–9 [Google Scholar]
  135. Zhang B, Chen L, Li X, Li L, Zhang H. 2015. Understanding the multi-scale structure and functional properties of starch modulated by glow-plasma: a structure-functionality relationship. Food Hydrocoll 50:228–36 [Google Scholar]
  136. Ziuzina D, Han L, Cullen PJ, Bourke P. 2015. Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli. Int. J. Food Microbiol 210:53–61 [Google Scholar]
  137. Ziuzina D, Patil S, Cullen P, Keener K, Bourke P. 2014. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol 42:109–16 [Google Scholar]
  138. Zou J-J, Liu C-J, Eliasson B. 2004. Modification of starch by glow discharge plasma. Carbohydr. Polym. 55:23–26 [Google Scholar]
/content/journals/10.1146/annurev-food-030117-012517
Loading
/content/journals/10.1146/annurev-food-030117-012517
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error