1932

Abstract

The three-dimensional (3D) genome structure is highly ordered by a hierarchy of organizing events ranging from enhancer–promoter or gene–gene contacts to chromosomal territorial arrangement. It is becoming clear that the cohesin and condensin complexes are key molecular machines that organize the 3D genome structure. These complexes are highly conserved from simple systems, e.g., yeast cells, to the much more complex human system. Therefore, knowledge from the budding and fission yeast systems illuminates highly conserved molecular mechanisms of how cohesin and condensin establish the functional 3D genome structures. Here I discuss how these complexes are recruited across the yeast genomes, mediate distinct genome-organizing events such as gene contacts and topological domain formation, and participate in important nuclear activities including transcriptional regulation and chromosomal dynamics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120116-023438
2017-11-27
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/genet/51/1/annurev-genet-120116-023438.html?itemId=/content/journals/10.1146/annurev-genet-120116-023438&mimeType=html&fmt=ahah

Literature Cited

  1. Andrulis ED, Neiman AM, Zappulla DC, Sternglanz R. 1.  1998. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394:592–95 [Google Scholar]
  2. Aono N, Sutani T, Tomonaga T, Mochida S, Yanagida M. 2.  2002. Cnd2 has dual roles in mitotic condensation and interphase. Nature 417:197–202 [Google Scholar]
  3. Belton JM, Lajoie BR, Audibert S, Cantaloube S, Lassadi I. 3.  et al. 2015. The conformation of yeast chromosome III is mating type dependent and controlled by the recombination enhancer. Cell Rep 13:1855–67 [Google Scholar]
  4. Berger AB, Cabal GG, Fabre E, Duong T, Buc H. 4.  et al. 2008. High-resolution statistical mapping reveals gene territories in live yeast. Nat. Methods 5:1031–37 [Google Scholar]
  5. Bernard P, Drogat J, Maure JF, Dheur S, Vaur S. 5.  et al. 2006. A screen for cohesion mutants uncovers Ssl3, the fission yeast counterpart of the cohesin loading factor Scc4. Curr. Biol. 16:875–81 [Google Scholar]
  6. Bertrand E, Houser-Scott F, Kendall A, Singer RH, Engelke DR. 6.  1998. Nucleolar localization of early tRNA processing. Genes Dev 12:2463–68 [Google Scholar]
  7. Birkenbihl RP, Subramani S. 7.  1992. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Res 20:6605–11 [Google Scholar]
  8. Boisvert FM, van Koningsbruggen S, Navascués J, Lamond AI. 8.  2007. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 8:574–85 [Google Scholar]
  9. Brickner JH, Walter P. 9.  2004. Gene recruitment of the activated INO1 locus to the nuclear membrane. PLOS Biol 2:e342 [Google Scholar]
  10. Bystricky K, Laroche T, van Houwe G, Blaszczyk M, Gasser SM. 10.  2005. Chromosome looping in yeast: Telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization. J. Cell Biol. 168:375–87 [Google Scholar]
  11. Cam HP, Sugiyama T, Chen ES, Chen X, FitzGerald PC, Grewal SI. 11.  2005. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat. Genet. 37:809–19 [Google Scholar]
  12. Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA. 12.  2004. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117:427–39 [Google Scholar]
  13. Chan KL, Roig MB, Hu B, Beckouët F, Metson J, Nasmyth K. 13.  2012. Cohesin's DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell 150:961–74 [Google Scholar]
  14. Chen CC, Carson JJ, Feser J, Tamburini B, Zabaronick S. 14.  et al. 2008. Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 134:231–43 [Google Scholar]
  15. Cheng TM, Heeger S, Chaleil RA, Matthews N, Stewart A. 15.  et al. 2015. A simple biophysical model emulates budding yeast chromosome condensation. eLife 4:e05565 [Google Scholar]
  16. Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A. 16.  et al. 2000. Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol. Cell 5:243–54 [Google Scholar]
  17. Clarke L. 17.  1990. Centromeres of budding and fission yeasts. Trends Genet 6:150–54 [Google Scholar]
  18. Crane E, Bian Q, McCord RP, Lajoie BR, Wheeler BS. 18.  et al. 2015. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523:240–44 [Google Scholar]
  19. Cremer T, Cremer M. 19.  2010. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2:a003889 [Google Scholar]
  20. Cuylen S, Metz J, Haering CH. 20.  2011. Condensin structures chromosomal DNA through topological links. Nat. Struct. Mol. Biol. 18:894–901 [Google Scholar]
  21. D'Ambrosio C, Schmidt CK, Katou Y, Kelly G, Itoh T. 21.  et al. 2008. Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 22:2215–27 [Google Scholar]
  22. Dekker J, Misteli T. 22.  2015. Long-range chromatin interactions. Cold Spring Harb. Perspect. Biol. 7:a019356 [Google Scholar]
  23. Dekker J, Rippe K, Dekker M, Kleckner N. 23.  2002. Capturing chromosome conformation. Science 295:1306–11 [Google Scholar]
  24. DeMare LE, Leng J, Cotney J, Reilly SK, Yin J. 24.  et al. 2013. The genomic landscape of cohesin-associated chromatin interactions. Genome Res 23:1224–34 [Google Scholar]
  25. Dheur S, Saupe SJ, Genier S, Vazquez S, Javerzat JP. 25.  2011. Role for cohesin in the formation of a heterochromatic domain at fission yeast subtelomeres. Mol. Cell. Biol. 31:1088–97 [Google Scholar]
  26. Dileep V, Ay F, Sima J, Vera DL, Noble WS, Gilbert DM. 26.  2015. Topologically associating domains and their long-range contacts are established during early G1 coincident with the establishment of the replication-timing program. Genome Res 25:1104–13 [Google Scholar]
  27. Ding R, West RR, Morphew DM, Oakley BR, McIntosh JR. 27.  1997. The spindle pole body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell cycle proceeds. Mol. Biol. Cell 8:1461–79 [Google Scholar]
  28. Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando OJ. 28.  2007. Dynamics of replication-independent histone turnover in budding yeast. Science 315:1405–8 [Google Scholar]
  29. Dowen JM, Bilodeau S, Orlando DA, Hübner MR, Abraham BJ. 29.  et al. 2013. Multiple structural maintenance of chromosome complexes at transcriptional regulatory elements. Stem Cell Rep 1:371–78 [Google Scholar]
  30. Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ. 30.  et al. 2014. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159:374–87 [Google Scholar]
  31. Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ. 31.  et al. 2010. A three-dimensional model of the yeast genome. Nature 465:363–67 [Google Scholar]
  32. Fernius J, Nerusheva OO, Galander S, de Lima Alves F, Rappsilber J, Marston AL. 32.  2013. Cohesin-dependent association of Scc2/4 with the centromere initiates pericentromeric cohesion establishment. Curr. Biol. 23:599–606 [Google Scholar]
  33. Ferreira HC, Luke B, Schober H, Kalck V, Lingner J, Gasser SM. 33.  2011. The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast. Nat. Cell Biol. 13:867–74 [Google Scholar]
  34. Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS. 34.  et al. 2016. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:110–14 [Google Scholar]
  35. Freeman L, Aragon-Alcaide L, Strunnikov A. 35.  2000. The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J. Cell Biol. 149:811–24 [Google Scholar]
  36. Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. 36.  2016. Formation of chromosomal domains by loop extrusion. Cell Rep 15:2038–49 [Google Scholar]
  37. Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H. 37.  et al. 2009. An oestrogen receptor α-bound human chromatin interactome. Nature 462:58–64 [Google Scholar]
  38. Funabiki H, Hagan I, Uzawa S, Yanagida M. 38.  1993. Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J. Cell Biol. 121:961–76 [Google Scholar]
  39. Furuya K, Takahashi K, Yanagida M. 39.  1998. Faithful anaphase is ensured by Mis4, a sister chromatid cohesion molecule required in S phase and not destroyed in G1 phase. Genes Dev 12:3408–18 [Google Scholar]
  40. Grand RS, Pichugina T, Gehlen LR, Jones MB, Tsai P. 40.  et al. 2014. Chromosome conformation maps in fission yeast reveal cell cycle dependent sub nuclear structure. Nucleic Acids Res 42:12585–99 [Google Scholar]
  41. Gruber S, Arumugam P, Katou Y, Kuglitsch D, Helmhart W. 41.  et al. 2006. Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. Cell 127:523–37 [Google Scholar]
  42. Guacci V, Koshland D, Strunnikov A. 42.  1997. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91:47–57 [Google Scholar]
  43. Gullerova M, Proudfoot NJ. 43.  2008. Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132:983–95 [Google Scholar]
  44. Haering CH, Farcas AM, Arumugam P, Metson J, Nasmyth K. 44.  2008. The cohesin ring concatenates sister DNA molecules. Nature 454:297–301 [Google Scholar]
  45. Haeusler RA, Engelke DR. 45.  2006. Spatial organization of transcription by RNA polymerase III. Nucleic Acids Res 34:4826–36 [Google Scholar]
  46. Haeusler RA, Pratt-Hyatt M, Good PD, Gipson TA, Engelke DR. 46.  2008. Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev 22:2204–14 [Google Scholar]
  47. Hagan I, Yanagida M. 47.  1995. The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability. J. Cell Biol. 129:1033–47 [Google Scholar]
  48. Hagstrom KA, Meyer BJ. 48.  2003. Condensin and cohesin: more than chromosome compactor and glue. Nat. Rev. Genet. 4:520–34 [Google Scholar]
  49. Heidari N, Phanstiel DH, He C, Grubert F, Jahanbani F. 49.  et al. 2014. Genome-wide map of regulatory interactions in the human genome. Genome Res 24:1905–17 [Google Scholar]
  50. Hernandez N. 50.  1993. TBP, a universal eukaryotic transcription factor?. Genes Dev 7:1291–308 [Google Scholar]
  51. Heun P, Laroche T, Shimada K, Furrer P, Gasser SM. 51.  2001. Chromosome dynamics in the yeast interphase nucleus. Science 294:2181–86 [Google Scholar]
  52. Hirano T. 52.  2000. Chromosome cohesion, condensation, and separation. Annu. Rev. Biochem. 69:115–44 [Google Scholar]
  53. Hirano T. 53.  2006. At the heart of the chromosome: SMC proteins in action. Nat. Rev. Mol. Cell Biol. 7:311–22 [Google Scholar]
  54. Hirano T. 54.  2012. Condensins: universal organizers of chromosomes with diverse functions. Genes Dev 26:1659–78 [Google Scholar]
  55. Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO. 55.  et al. 2016. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351:1454–58 [Google Scholar]
  56. Hochstrasser M, Mathog D, Gruenbaum Y, Saumweber H, Sedat JW. 56.  1986. Spatial organization of chromosomes in the salivary gland nuclei of Drosophila melanogaster. J. Cell Biol. 102:112–23 [Google Scholar]
  57. Hou H, Zhou Z, Wang Y, Wang J, Kallgren SP. 57.  et al. 2012. Csi1 links centromeres to the nuclear envelope for centromere clustering. J. Cell Biol. 199:735–44 [Google Scholar]
  58. Hu B, Itoh T, Mishra A, Katoh Y, Chan KL. 58.  et al. 2011. ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex. Curr. Biol. 21:12–24 [Google Scholar]
  59. Hull MW, Erickson J, Johnston M, Engelke DR. 59.  1994. tRNA genes as transcriptional repressor elements. Mol. Cell. Biol. 14:1266–77 [Google Scholar]
  60. Iwasaki O, Corcoran CJ, Noma K. 60.  2016. Involvement of condensin-directed gene associations in the organization and regulation of chromosome territories during the cell cycle. Nucleic Acids Res 44:3618–28 [Google Scholar]
  61. Iwasaki O, Noma KI. 61.  2016. Condensin-mediated chromosome organization in fission yeast. Curr. Genet. 62:739–43 [Google Scholar]
  62. Iwasaki O, Tanaka A, Tanizawa H, Grewal SI, Noma K. 62.  2010. Centromeric localization of dispersed Pol III genes in fission yeast. Mol. Biol. Cell 21:254–65 [Google Scholar]
  63. Iwasaki O, Tanizawa H, Kim KD, Yokoyama Y, Corcoran CJ. 63.  et al. 2015. Interaction between TBP and condensin drives the organization and faithful segregation of mitotic chromosomes. Mol. Cell 59:755–67 [Google Scholar]
  64. Ji X, Dadon DB, Powell BE, Fan ZP, Borges-Rivera D. 64.  et al. 2016. 3D chromosome regulatory landscape of human pluripotent cells. Cell Stem Cell 18:262–75 [Google Scholar]
  65. Johzuka K, Horiuchi T. 65.  2009. The cis element and factors required for condensin recruitment to chromosomes. Mol. Cell 34:26–35 [Google Scholar]
  66. Kim HS, Vanoosthuyse V, Fillingham J, Roguev A, Watt S. 66.  et al. 2009. An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe. Nat. Struct. Mol. Biol. 16:1286–93 [Google Scholar]
  67. Kim KD, Tanizawa H, Iwasaki O, Corcoran CJ, Capizzi JR. 67.  et al. 2013. Centromeric motion facilitates the mobility of interphase genomic regions in fission yeast. J. Cell Sci. 126:5271–83 [Google Scholar]
  68. Kim KD, Tanizawa H, Iwasaki O, Noma K. 68.  2016. Transcription factors mediate condensin recruitment and global chromosomal organization in fission yeast. Nat. Genet. 48:1242–52 [Google Scholar]
  69. Kimura A, Umehara T, Horikoshi M. 69.  2002. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat. Genet. 32:370–77 [Google Scholar]
  70. Kimura K, Rybenkov VV, Crisona NJ, Hirano T, Cozzarelli NR. 70.  1999. 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation. Cell 98:239–48 [Google Scholar]
  71. Kniola B, O'Toole E, McIntosh JR, Mellone B, Allshire R. 71.  et al. 2001. The domain structure of centromeres is conserved from fission yeast to humans. Mol. Biol. Cell 12:2767–75 [Google Scholar]
  72. Koshland D, Strunnikov A. 72.  1996. Mitotic chromosome condensation. Annu. Rev. Cell Dev. Biol. 12:305–33 [Google Scholar]
  73. Krantz ID, McCallum J, DeScipio C, Kaur M, Gillis LA. 73.  et al. 2004. Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat. Genet. 36:631–35 [Google Scholar]
  74. Lamond AI, Spector DL. 74.  2003. Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell Biol. 4:605–12 [Google Scholar]
  75. Lavoie BD, Tuffo KM, Oh S, Koshland D, Holm C. 75.  2000. Mitotic chromosome condensation requires Brn1p, the yeast homologue of Barren. Mol. Biol. Cell 11:1293–304 [Google Scholar]
  76. Leiserson MD, Vandin F, Wu HT, Dobson JR, Eldridge JV. 76.  et al. 2015. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet. 47:106–14 [Google Scholar]
  77. Lengronne A, Katou Y, Mori S, Yokobayashi S, Kelly GP. 77.  et al. 2004. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430:573–78 [Google Scholar]
  78. Li L, Lyu X, Hou C, Takenaka N, Nguyen HQ. 78.  et al. 2015. Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. Mol. Cell 58:216–31 [Google Scholar]
  79. Li Q, Zhou H, Wurtele H, Davies B, Horazdovsky B. 79.  et al. 2008. Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 134:244–55 [Google Scholar]
  80. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T. 80.  et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–93 [Google Scholar]
  81. Light WH, Brickner DG, Brand VR, Brickner JH. 81.  2010. Interaction of a DNA zip code with the nuclear pore complex promotes H2A.Z incorporation and INO1 transcriptional memory. Mol. Cell 40:112–25 [Google Scholar]
  82. Lopez-Serra L, Kelly G, Patel H, Stewart A, Uhlmann F. 82.  2014. The Scc2-Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions. Nat. Genet. 46:1147–51 [Google Scholar]
  83. Losada A, Hirano T. 83.  2005. Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev 19:1269–87 [Google Scholar]
  84. Lupiañez DG, Kraft K, Heinrich V, Krawitz P, Brancati F. 84.  et al. 2015. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–25 [Google Scholar]
  85. Martin CA, Murray JE, Carroll P, Leitch A, Mackenzie KJ. 85.  et al. 2016. Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis. Genes Dev 30:2158–72 [Google Scholar]
  86. Michaelis C, Ciosk R, Nasmyth K. 86.  1997. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35–45 [Google Scholar]
  87. Miki F, Kurabayashi A, Tange Y, Okazaki K, Shimanuki M, Niwa O. 87.  2004. Two-hybrid search for proteins that interact with Sad1 and Kms1, two membrane-bound components of the spindle pole body in fission yeast. Mol. Genet. Genom. 270:449–61 [Google Scholar]
  88. Mizuguchi T, Fudenberg G, Mehta S, Belton JM, Taneja N. 88.  et al. 2014. Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 516:432–35 [Google Scholar]
  89. Murayama Y, Uhlmann F. 89.  2015. DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism. Cell 163:1628–40 [Google Scholar]
  90. Nakagawa H, Lee JK, Hurwitz J, Allshire RC, Nakayama J. 90.  et al. 2002. Fission yeast CENP-B homologs nucleate centromeric heterochromatin by promoting heterochromatin-specific histone tail modifications. Genes Dev 16:1766–78 [Google Scholar]
  91. Nakazawa N, Nakamura T, Kokubu A, Ebe M, Nagao K, Yanagida M. 91.  2008. Dissection of the essential steps for condensin accumulation at kinetochores and rDNAs during fission yeast mitosis. J. Cell Biol. 180:1115–31 [Google Scholar]
  92. Nakazawa N, Sajiki K, Xu X, Villar-Briones A, Arakawa O, Yanagida M. 92.  2015. RNA pol II transcript abundance controls condensin accumulation at mitotically up-regulated and heat-shock-inducible genes in fission yeast. Genes Cells 20:481–99 [Google Scholar]
  93. Nasmyth K. 93.  2001. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35:673–745 [Google Scholar]
  94. Nasmyth K, Haering CH. 94.  2005. The structure and function of SMC and kleisin complexes. Annu. Rev. Biochem. 74:595–648 [Google Scholar]
  95. Natsume T, Müller CA, Katou Y, Retkute R, Gierliński M. 95.  et al. 2013. Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7-Dbf4 kinase recruitment. Mol. Cell 50:661–74 [Google Scholar]
  96. Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR. 96.  et al. 2013. Organization of the mitotic chromosome. Science 342:948–53 [Google Scholar]
  97. Noma K. 97.  2013. コンデンシンによるゲノムの組織化とエピジェネティクス [Genome organization through the condensin complex and its epigenetic regulation]. 実験医学 [Exp. Med.] 31:2561–67 [Google Scholar]
  98. Nonaka N, Kitajima T, Yokobayashi S, Xiao G, Yamamoto M. 98.  et al. 2002. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat. Cell Biol. 4:89–93 [Google Scholar]
  99. Ocampo-Hafalla MT, Uhlmann F. 99.  2011. Cohesin loading and sliding. J. Cell Sci. 124:685–91 [Google Scholar]
  100. Ouspenski II, Cabello OA, Brinkley BR. 100.  2000. Chromosome condensation factor Brn1p is required for chromatid separation in mitosis. Mol. Biol. Cell 11:1305–13 [Google Scholar]
  101. Phanstiel DH, Boyle AP, Heidari N, Snyder MP. 101.  2015. Mango: a bias-correcting ChIA-PET analysis pipeline. Bioinformatics 31:3092–98 [Google Scholar]
  102. Renshaw MJ, Ward JJ, Kanemaki M, Natsume K, Nédélec FJ, Tanaka TU. 102.  2010. Condensins promote chromosome recoiling during early anaphase to complete sister chromatid separation. Dev. Cell 19:232–44 [Google Scholar]
  103. Rodley CDM, Bertels F, Jones B, O'Sullivan JM. 103.  2009. Global identification of yeast chromosome interactions using Genome conformation capture. Fungal Genet. Biol. 46:879–86 [Google Scholar]
  104. Rutledge MT, Russo M, Belton JM, Dekker J, Broach JR. 104.  2015. The yeast genome undergoes significant topological reorganization in quiescence. Nucleic Acids Res 43:8299–313 [Google Scholar]
  105. Saka Y, Sutani T, Yamashita Y, Saitoh S, Takeuchi M. 105.  et al. 1994. Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. EMBO J 13:4938–52 [Google Scholar]
  106. Sakai A, Hizume K, Sutani T, Takeyasu K, Yanagida M. 106.  2003. Condensin but not cohesin SMC heterodimer induces DNA reannealing through protein–protein assembly. EMBO J 22:2764–75 [Google Scholar]
  107. Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH. 107.  et al. 2015. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. PNAS 112:E6456–65 [Google Scholar]
  108. Santos-Pereira JM, Aguilera A. 108.  2015. R loops: new modulators of genome dynamics and function. Nat. Rev. Genet. 16:583–97 [Google Scholar]
  109. Scherthan H, Bähler J, Kohli J. 109.  1994. Dynamics of chromosome organization and pairing during meiotic prophase in fission yeast. J. Cell Biol. 127:273–85 [Google Scholar]
  110. Schmid M, Arib G, Laemmli C, Nishikawa J, Durussel T, Laemmli UK. 110.  2006. Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol. Cell 21:379–91 [Google Scholar]
  111. Schmidt CK, Brookes N, Uhlmann F. 111.  2009. Conserved features of cohesin binding along fission yeast chromosomes. Genome Biol 10:R52 [Google Scholar]
  112. Schober H, Ferreira H, Kalck V, Gehlen LR, Gasser SM. 112.  2009. Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev 23:928–38 [Google Scholar]
  113. Shaw PJ, Abranches R, Santos AP, Beven AF, Stoger E. 113.  et al. 2002. The architecture of interphase chromosomes and nucleolar transcription sites in plants. J. Struct. Biol. 140:31–38 [Google Scholar]
  114. Sjögren C, Nasmyth K. 114.  2001. Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11:991–95 [Google Scholar]
  115. Spector DL. 115.  2003. The dynamics of chromosome organization and gene regulation. Annu. Rev. Biochem. 72:573–608 [Google Scholar]
  116. Ström L, Lindroos HB, Shirahige K, Sjögren C. 116.  2004. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16:1003–15 [Google Scholar]
  117. Suka N, Luo K, Grunstein M. 117.  2002. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat. Genet. 32:378–83 [Google Scholar]
  118. Sutani T, Sakata T, Nakato R, Masuda K, Ishibashi M. 118.  et al. 2015. Condensin targets and reduces unwound DNA structures associated with transcription in mitotic chromosome condensation. Nat. Commun. 6:7815 [Google Scholar]
  119. Sutani T, Yanagida M. 119.  1997. DNA renaturation activity of the SMC complex implicated in chromosome condensation. Nature 388:798–801 [Google Scholar]
  120. Sutani T, Yuasa T, Tomonaga T, Dohmae N, Takio K, Yanagida M. 120.  1999. Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. Genes Dev 13:2271–83 [Google Scholar]
  121. Sutherland H, Bickmore WA. 121.  2009. Transcription factories: gene expression in unions?. Nat. Rev. Genet. 10:457–66 [Google Scholar]
  122. Tada K, Susumu H, Sakuno T, Watanabe Y. 122.  2011. Condensin association with histone H2A shapes mitotic chromosomes. Nature 474:477–83 [Google Scholar]
  123. Taddei A, Gasser SM. 123.  2012. Structure and function in the budding yeast nucleus. Genetics 192:107–29 [Google Scholar]
  124. Taddei A, Van Houwe G, Hediger F, Kalck V, Cubizolles F. 124.  et al. 2006. Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441:774–78 [Google Scholar]
  125. Taddei A, Van Houwe G, Nagai S, Erb I, van Nimwegen E, Gasser SM. 125.  2009. The functional importance of telomere clustering: Global changes in gene expression result from SIR factor dispersion. Genome Res 19:611–25 [Google Scholar]
  126. Tanaka A, Tanizawa H, Sriswasdi S, Iwasaki O, Chatterjee AG. 126.  et al. 2012. Epigenetic regulation of condensin-mediated genome organization during the cell cycle and upon DNA damage through histone H3 lysine 56 acetylation. Mol. Cell 48:532–46 [Google Scholar]
  127. Tanizawa H, Iwasaki O, Tanaka A, Capizzi JR, Wickramasinghe P. 127.  et al. 2010. Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nucleic Acids Res 38:8164–77 [Google Scholar]
  128. Thompson M, Haeusler RA, Good PD, Engelke DR. 128.  2003. Nucleolar clustering of dispersed tRNA genes. Science 302:1399–401 [Google Scholar]
  129. Tomonaga T, Nagao K, Kawasaki Y, Furuya K, Murakami A. 129.  et al. 2000. Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad21 phosphorylated in the S phase. Genes Dev 14:2757–70 [Google Scholar]
  130. Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T. 130.  2004. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat. Genet. 36:636–41 [Google Scholar]
  131. Toselli-Mollereau E, Robellet X, Fauque L, Lemaire S, Schiklenk C. 131.  et al. 2016. Nucleosome eviction in mitosis assists condensin loading and chromosome condensation. EMBO J 35:1565–81 [Google Scholar]
  132. Uhlmann F. 132.  2016. SMC complexes: from DNA to chromosomes. Nat. Rev. Mol. Cell Biol. 17:399–412 [Google Scholar]
  133. Ünal E, Heidinger-Pauli JM, Koshland D. 133.  2007. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317:245–48 [Google Scholar]
  134. Vannini A, Cramer P. 134.  2012. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol. Cell 45:439–46 [Google Scholar]
  135. Vega H, Waisfisz Q, Gordillo M, Sakai N, Yanagihara I. 135.  et al. 2005. Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat. Genet. 37:468–70 [Google Scholar]
  136. Wang BD, Eyre D, Basrai M, Lichten M, Strunnikov A. 136.  2005. Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome. Mol. Cell. Biol. 25:7216–25 [Google Scholar]
  137. Wang L, Haeusler RA, Good PD, Thompson M, Nagar S, Engelke DR. 137.  2005. Silencing near tRNA genes requires nucleolar localization. J. Biol. Chem. 280:8637–39 [Google Scholar]
  138. Wood AJ, Severson AF, Meyer BJ. 138.  2010. Condensin and cohesin complexity: the expanding repertoire of functions. Nat. Rev. Genet. 11:391–404 [Google Scholar]
  139. Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R. 139.  et al. 2002. The genome sequence of Schizosaccharomyces pombe. Nature 415:871–80 [Google Scholar]
  140. Yamashita D, Shintomi K, Ono T, Gavvovidis I, Schindler D. 140.  et al. 2011. MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II. J. Cell Biol. 194:841–54 [Google Scholar]
  141. Yanagida M. 141.  2005. Basic mechanism of eukaryotic chromosome segregation. Philos. Trans. R. Soc. B. 360:609–21 [Google Scholar]
  142. Yanagida M. 142.  2009. Clearing the way for mitosis: Is cohesin a target?. Nat. Rev. Mol. Cell Biol. 10:489–96 [Google Scholar]
/content/journals/10.1146/annurev-genet-120116-023438
Loading
/content/journals/10.1146/annurev-genet-120116-023438
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error