1932

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system, a versatile RNA-guided DNA targeting platform, has been revolutionizing our ability to modify, manipulate, and visualize the human genome, which greatly advances both biological research and therapeutics development. Here, we review the current development of CRISPR/Cas9 technologies for gene editing, transcription regulation, genome imaging, and epigenetic modification. We discuss the broad application of this system to the study of functional genomics, especially genome-wide genetic screening, and to therapeutics development, including establishing disease models, correcting defective genetic mutations, and treating diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-083115-022258
2016-08-31
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/genom/17/1/annurev-genom-083115-022258.html?itemId=/content/journals/10.1146/annurev-genom-083115-022258&mimeType=html&fmt=ahah

Literature Cited

  1. Anton T, Bultmann S, Leonhardt H, Markaki Y. 1.  2014. Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus 5:163–72 [Google Scholar]
  2. Aubrey BJ, Kelly GL, Kueh AJ, Brennan MS, O'Connor L. 2.  et al. 2015. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep. 10:1422–32 [Google Scholar]
  3. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P. 3.  et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–12 [Google Scholar]
  4. Bassik MC, Kampmann M, Lebbink RJ, Wang S, Hein MY. 4.  et al. 2013. A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell 152:909–22 [Google Scholar]
  5. Beerli RR, Barbas CF III. 5.  2002. Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20:135–41 [Google Scholar]
  6. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 6.  2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41:7429–37 [Google Scholar]
  7. Carroll KJ, Makarewich CA, McAnally J, Anderson DM, Zentilin L. 7.  et al. 2016. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. PNAS 113:338–43 [Google Scholar]
  8. Chang N, Sun C, Gao L, Zhu D, Xu X. 8.  et al. 2013. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 23:465–72 [Google Scholar]
  9. Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M. 9.  et al. 2015. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12:326–28 [Google Scholar]
  10. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W. 10.  et al. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–91 [Google Scholar]
  11. Chen S, Sanjana NE, Zheng K, Shalem O, Lee K. 11.  et al. 2015. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160:1246–60 [Google Scholar]
  12. Cheng AW, Wang H, Yang H, Shi L, Katz Y. 12.  et al. 2013. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23:1163–71 [Google Scholar]
  13. Cho SW, Kim S, Kim Y, Kweon J, Kim HS. 13.  et al. 2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24:132–41 [Google Scholar]
  14. Choi PS, Meyerson M. 14.  2014. Targeted genomic rearrangements using CRISPR/Cas technology. Nat. Commun. 5:3728 [Google Scholar]
  15. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F. 15.  et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–61 [Google Scholar]
  16. Chu VT, Weber T, Wefers B, Wurst W, Sander S. 16.  et al. 2015. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33:543–48 [Google Scholar]
  17. Cong L, Ran FA, Cox D, Lin S, Barretto R. 17.  et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23 [Google Scholar]
  18. Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F. 18.  et al. 2015. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLOS ONE 10e0136690
  19. Crosetto N, Mitra A, Silva MJ, Bienko M, Dojer N. 19.  et al. 2013. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods 10:361–65 [Google Scholar]
  20. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y. 20.  et al. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–7 [Google Scholar]
  21. Dong C, Qu L, Wang H, Wei L, Dong Y, Xiong S. 21.  2015. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antivir. Res. 118:110–17 [Google Scholar]
  22. Dow LE, Fisher J, O'Rourke KP, Muley A, Kastenhuber ER. 22.  et al. 2015. Inducible in vivo genome editing with CRISPR-Cas9. Nat. Biotechnol. 33:390–94 [Google Scholar]
  23. Ebina H, Misawa N, Kanemura Y, Koyanagi Y. 23.  2013. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep. 3:2510 [Google Scholar]
  24. Frock RL, Hu J, Meyers RM, Ho YJ, Kii E, Alt FW. 24.  2015. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 33:179–86 [Google Scholar]
  25. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D. 25.  et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31:822–26 [Google Scholar]
  26. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. 26.  2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32:279–84 [Google Scholar]
  27. Fujita T, Fujii H. 27.  2013. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochem. Biophys. Res. Commun. 439:132–36 [Google Scholar]
  28. Gasiunas G, Barrangou R, Horvath P, Siksnys V. 28.  2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:E2579–86 [Google Scholar]
  29. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y. 29.  et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–61 [Google Scholar]
  30. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA. 30.  et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–51 [Google Scholar]
  31. Gonzalez F, Zhu Z, Shi ZD, Lelli K, Verma N. 31.  et al. 2014. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15:215–26 [Google Scholar]
  32. Grissa I, Vergnaud G, Pourcel C. 32.  2007. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinform. 8:172 [Google Scholar]
  33. Guilinger JP, Thompson DB, Liu DR. 33.  2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32:577–82 [Google Scholar]
  34. Hemphill J, Borchardt EK, Brown K, Asokan A, Deiters A. 34.  2015. Optical control of CRISPR/Cas9 gene editing. J. Am. Chem. Soc. 137:5642–45 [Google Scholar]
  35. Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE. 35.  et al. 2015. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33:510–17 [Google Scholar]
  36. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S. 36.  et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31:827–32 [Google Scholar]
  37. Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L. 37.  et al. 2014. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. PNAS 111:11461–66 [Google Scholar]
  38. Hu Z, Yu L, Zhu D, Ding W, Wang X. 38.  et al. 2014. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. Biomed. Res. Int. 2014:612823 [Google Scholar]
  39. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ. 39.  et al. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31:227–29 [Google Scholar]
  40. Jao L-E, Wente SR, Chen W. 40.  2013. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. PNAS 110:13904–9 [Google Scholar]
  41. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 41.  2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21 [Google Scholar]
  42. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. 42.  2013. RNA-programmed genome editing in human cells. eLife 2:e00471 [Google Scholar]
  43. Joung JK, Sander JD. 43.  2013. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14:49–55 [Google Scholar]
  44. Kang Y, Zheng B, Shen B, Chen Y, Wang L. 44.  et al. 2015. CRISPR/Cas9-mediated Dax1 knockout in the monkey recapitulates human AHC-HH. Hum. Mol. Genet. 24:7255–64 [Google Scholar]
  45. Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ. 45.  et al. 2015. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12:401–3 [Google Scholar]
  46. Kennedy EM, Bassit LC, Mueller H, Kornepati AV, Bogerd HP. 46.  et al. 2015. Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology 476:196–205 [Google Scholar]
  47. Kennedy EM, Kornepati AV, Goldstein M, Bogerd HP, Poling BC. 47.  et al. 2014. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J. Virol. 88:11965–72 [Google Scholar]
  48. Kiani S, Beal J, Ebrahimkhani MR, Huh J, Hall RN. 48.  et al. 2014. CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat. Methods 11:723–26 [Google Scholar]
  49. Kim D, Bae S, Park J, Kim E, Kim S. 49.  et al. 2015. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12:237–43, 1 p following 243 [Google Scholar]
  50. Kim S, Kim D, Cho SW, Kim J, Kim JS. 50.  2014. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24:1012–19 [Google Scholar]
  51. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT. 51.  et al. 2016. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–95 [Google Scholar]
  52. Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera MDC, Yusa K. 52.  2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32:267–73 [Google Scholar]
  53. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO. 53.  et al. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–88 [Google Scholar]
  54. Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. 54.  2014. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32:677–83 [Google Scholar]
  55. Li W, Teng F, Li T, Zhou Q. 55.  2013. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat. Biotechnol. 31:684–86 [Google Scholar]
  56. Lin S, Staahl B, Alla RK, Doudna JA. 56.  2014. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3:e04766 [Google Scholar]
  57. Lin S-R, Yang H-C, Kuo Y-T, Liu C-J, Yang T-Y. 57.  et al. 2014. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol. Ther. Nucleic Acids 3:e186 [Google Scholar]
  58. Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P. 58.  et al. 2014. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 42:7473–85 [Google Scholar]
  59. Liu Y, Zeng Y, Liu L, Zhuang C, Fu X. 59.  et al. 2014. Synthesizing and gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells. Nat. Commun. 5:5393 [Google Scholar]
  60. Long C, Amoasii L, Mireault AA, McAnally JR, Li H. 60.  et al. 2016. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351:400–3 [Google Scholar]
  61. Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. 61.  2014. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345:1184–88 [Google Scholar]
  62. Ma H, Dang Y, Wu Y, Jia G, Anaya E. 62.  et al. 2015. A CRISPR-based screen identifies genes essential for West-Nile-virus-induced cell death. Cell Rep. 12:673–83 [Google Scholar]
  63. Ma H, Naseri A, Reyes-Gutierrez P, Wolfe SA, Zhang S, Pederson T. 63.  2015. Multicolor CRISPR labeling of chromosomal loci in human cells. PNAS 112:3002–7 [Google Scholar]
  64. Ma H, Reyes-Gutierrez P, Pederson T. 64.  2013. Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors. PNAS 110:21048–53 [Google Scholar]
  65. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. 65.  2013. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10:977–79 [Google Scholar]
  66. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E. 66.  et al. 2011. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9:467–77 [Google Scholar]
  67. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M. 67.  et al. 2013. Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31:833–38 [Google Scholar]
  68. Mali P, Esvelt KM, Church GM. 68.  2013. Cas9 as a versatile tool for engineering biology. Nat. Methods 10:957–63 [Google Scholar]
  69. Mali P, Yang L, Esvelt KM, Aach J, Guell M. 69.  et al. 2013. RNA-guided human genome engineering via Cas9. Science 339:823–26 [Google Scholar]
  70. Marraffini LA, Sontheimer EJ. 70.  2010. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11:181–90 [Google Scholar]
  71. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. 71.  2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33:538–42 [Google Scholar]
  72. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL. 72.  et al. 2007. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25:778–85 [Google Scholar]
  73. Miyanari Y. 73.  2014. TAL effector-mediated genome visualization (TGV). Methods 69:1–7 [Google Scholar]
  74. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C. 74.  2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–40 [Google Scholar]
  75. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA. 75.  et al. 2016. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351:403–7 [Google Scholar]
  76. Nihongaki Y, Kawano F, Nakajima T, Sato M. 76.  2015. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat. Biotechnol. 33:755–60 [Google Scholar]
  77. Nihongaki Y, Yamamoto S, Kawano F, Suzuki H, Sato M. 77.  2015. CRISPR-Cas9-based photoactivatable transcription system. Chem. Biol. 22:169–74 [Google Scholar]
  78. Nissim L, Perli SD, Fridkin A, Perez-Pinera P, Lu TK. 78.  2014. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell 54:698–710 [Google Scholar]
  79. Niu Y, Shen B, Cui Y, Chen Y, Wang J. 79.  et al. 2014. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836–43 [Google Scholar]
  80. Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A. 80.  et al. 2015. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162:675–86 [Google Scholar]
  81. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. 81.  2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31:839–43 [Google Scholar]
  82. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA. 82.  et al. 2008. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 26:808–16 [Google Scholar]
  83. Perez-Pinera P, Ousterout DG, Brunger JM, Farin AM, Glass KA. 83.  et al. 2013. Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat. Methods 10:239–42 [Google Scholar]
  84. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L. 84.  et al. 2014. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–55 [Google Scholar]
  85. Polstein LR, Gersbach CA. 85.  2015. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11:198–200 [Google Scholar]
  86. Polstein LR, Perez-Pinera P, Kocak DD, Vockley CM, Bledsoe P. 86.  et al. 2015. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome Res. 25:1158–69 [Google Scholar]
  87. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS. 87.  et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–83 [Google Scholar]
  88. Ramanan V, Shlomai A, Cox DB, Schwartz RE, Michailidis E. 88.  et al. 2015. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci. Rep. 5:10833 [Google Scholar]
  89. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS. 89.  et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–91 [Google Scholar]
  90. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S. 90.  et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–89 [Google Scholar]
  91. Ratz M, Testa I, Hell SW, Jakobs S. 91.  2015. CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells. Sci. Rep. 5:9592 [Google Scholar]
  92. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F. 92.  et al. 2011. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat. Methods 8:67–69 [Google Scholar]
  93. Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. 93.  2011. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39:9275–82 [Google Scholar]
  94. Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M. 94.  et al. 2015. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. PNAS201512503
  95. Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I. 95.  et al. 2013. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–58 [Google Scholar]
  96. Seeger C, Sohn JA. 96.  2014. Targeting hepatitis B virus with CRISPR/Cas9. Mol. Ther. Nucleic Acids 3:e216 [Google Scholar]
  97. Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER. 97.  et al. 2011. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. PNAS 108:10098–103 [Google Scholar]
  98. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA. 98.  et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87 [Google Scholar]
  99. Shalem O, Sanjana NE, Zhang F. 99.  2015. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16:299–311 [Google Scholar]
  100. Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. 100.  2015. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat. Biotechnol. 33:661–67 [Google Scholar]
  101. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. 101.  2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88 [Google Scholar]
  102. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. 102.  2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67 [Google Scholar]
  103. Su S, Hu B, Shao J, Shen B, Du J. 103.  et al. 2016. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci. Rep. 6:20070 [Google Scholar]
  104. Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y. 104.  et al. 2015. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat. Biotechnol. 33:102–6 [Google Scholar]
  105. Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ. 105.  et al. 2016. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351:407–11 [Google Scholar]
  106. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. 106.  2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–46 [Google Scholar]
  107. Thanisch K, Schneider K, Morbitzer R, Solovei I, Lahaye T. 107.  et al. 2014. Targeting and tracing of specific DNA sequences with dTALEs in living cells. Nucleic Acids Res. 42e38
  108. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V. 108.  et al. 2014. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32:569–76 [Google Scholar]
  109. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV. 109.  et al. 2015. Guide-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33:187–97 [Google Scholar]
  110. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. 110.  2010. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11:636–46 [Google Scholar]
  111. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW. 111.  et al. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–18 [Google Scholar]
  112. Wang J, Quake SR. 112.  2014. RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. PNAS 111:13157–62 [Google Scholar]
  113. Wang K, Ouyang H, Xie Z, Yao C, Guo N. 113.  et al. 2015. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci. Rep. 5:16623 [Google Scholar]
  114. Wang T, Wei JJ, Sabatini DM, Lander ES. 114.  2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84 [Google Scholar]
  115. Wang X, Yu H, Lei A, Zhou J, Zeng W. 115.  et al. 2015. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci. Rep. 5:13878 [Google Scholar]
  116. Weber J, Ollinger R, Friedrich M, Ehmer U, Barenboim M. 116.  et al. 2015. CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. PNAS 112:13982–87 [Google Scholar]
  117. Wiedenheft B, Sternberg SH, Doudna JA. 117.  2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–38 [Google Scholar]
  118. Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA. 118.  et al. 2015. Rational design of a split-Cas9 enzyme complex. PNAS 112:2984–89 [Google Scholar]
  119. Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD. 119.  et al. 2014. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32:670–76 [Google Scholar]
  120. Wu Y, Liang D, Wang Y, Bai M, Tang W. 120.  et al. 2013. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13:659–62 [Google Scholar]
  121. Wu Y, Zhou H, Fan X, Zhang Y, Zhang M. 121.  et al. 2015. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res. 25:67–79 [Google Scholar]
  122. Xiao A, Wang Z, Hu Y, Wu Y, Luo Z. 122.  et al. 2013. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. 41:1–11 [Google Scholar]
  123. Xie F, Ye L, Chang JC, Beyer AI, Wang J. 123.  et al. 2014. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 24:1526–33 [Google Scholar]
  124. Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T. 124.  et al. 2014. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514:3–7 [Google Scholar]
  125. Yan Q, Zhang Q, Yang H, Zou Q, Tang C. 125.  et al. 2014. Generation of multi-gene knockout rabbits using the Cas9/gRNA system. Cell Regen. 3:12 [Google Scholar]
  126. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. 126.  2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–79 [Google Scholar]
  127. Yang L, Güell M, Niu D, George H, Lesha E. 127.  et al. 2015. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350:1101–4 [Google Scholar]
  128. Yang Y, Wang L, Bell P, McMenamin D, He Z. 128.  et al. 2016. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat. Biotechnol. 34:334–38 [Google Scholar]
  129. Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y. 129.  et al. 2016. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34:328–33 [Google Scholar]
  130. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E. 130.  et al. 2014. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32:551–53 [Google Scholar]
  131. Yu C, Liu Y, Ma T, Liu K, Xu S. 131.  et al. 2015. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 16:142–47 [Google Scholar]
  132. Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH. 132.  et al. 2014. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160:339–50 [Google Scholar]
  133. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS. 133.  et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–71 [Google Scholar]
  134. Zetsche B, Volz SE, Zhang F. 134.  2015. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33:139–42 [Google Scholar]
  135. Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. 135.  2011. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29:149–53 [Google Scholar]
  136. Zhen S, Hua L, Takahashi Y, Narita S, Liu YH, Li Y. 136.  2014. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem. Biophys. Res. Commun. 450:1422–26 [Google Scholar]
  137. Zhong C, Yin Q, Xie Z, Bai M, Dong R. 137.  et al. 2015. CRISPR-Cas9-mediated genetic screening in mice with haploid embryonic stem cells carrying a guide RNA library. Cell Stem Cell 17:221–32 [Google Scholar]
  138. Zhou Y, Zhu S, Cai C, Yuan P, Li C. 138.  et al. 2014. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509:487–91 [Google Scholar]
/content/journals/10.1146/annurev-genom-083115-022258
Loading
/content/journals/10.1146/annurev-genom-083115-022258
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error