1932

Abstract

Carbon preservation in marine sediments, supplemented by that in large lakes, is the primary mechanism that moves carbon from the active surficial carbon cycle to the slower geologic carbon cycle. Preservation rates are low relative to the rates at which carbon moves between surface pools, which has led to the preservation term largely being ignored when evaluating anthropogenic forcing of the global carbon cycle. However, a variety of anthropogenic drivers—including ocean warming, deoxygenation, and acidification, as well as human-induced changes in sediment delivery to the ocean and mixing and irrigation of continental margin sediments—all work to decrease the already small carbon preservation term. These drivers affect the cycling of both carbonate and organic carbon in the ocean. The overall effect of anthropogenic forcing in the modern ocean is to decrease delivery of carbon to sediments, increase sedimentary dissolution and remineralization, and subsequently decrease overall carbon preservation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010816-060724
2017-01-03
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/marine/9/1/annurev-marine-010816-060724.html?itemId=/content/journals/10.1146/annurev-marine-010816-060724&mimeType=html&fmt=ahah

Literature Cited

  1. Abramson L, Lee C, Liu ZF, Wakeham SG, Szlosek J. 2010. Exchange between suspended and sinking particles in the northwest Mediterranean as inferred from the organic composition of in situ pump and sediment trap samples. Limnol. Oceanogr. 55:725–39 [Google Scholar]
  2. Adams RS, Bustin RM. 2001. The effects of surface area, grain size and mineralogy on organic matter sedimentation and preservation across the modern Squamish Delta, British Columbia: the potential role of sediment surface area in the formation of petroleum source rocks. Int. J. Coal Geol. 46:93–112 [Google Scholar]
  3. Aller RC. 1982. Carbonate dissolution in nearshore terrigenous muds: the role of physical and biological reworking. J. Geol. 90:79–95 [Google Scholar]
  4. Aller RC, Blair NE, Brunskill GJ. 2008. Early diagenetic cycling, incineration, and burial of sedimentary organic carbon in the central Gulf of Papua (Papua New Guinea). J. Geophys. Res. Earth Surf. 113:F01S09 [Google Scholar]
  5. Archer DE. 1996. An atlas of the distribution of calcium carbonate in sediments of the deep sea. Glob. Biogeochem. Cycles 10:159–74 [Google Scholar]
  6. Archer DE, Kheshgi H, Maier-Reimer E. 1998. Dynamics of fossil fuel CO2 neutralization by marine CaCO3. Glob. Biogeochem. Cycles 12:259–76 [Google Scholar]
  7. Archer DE, Morford JL, Emerson SR. 2002. A model of suboxic sedimentary diagenesis suitable for automatic tuning and gridded global domains. Glob. Biogeochem. Cycles 16:17–121 [Google Scholar]
  8. Armstrong RA, Lee C, Hedges JI, Honjo S, Wakeham SG. 2002. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res. II 49:219–36 [Google Scholar]
  9. Arnarson TS, Keil RG. 2005. Influence of organic-mineral aggregates on microbial degradation of the dinoflagellate Scrippsiella trochoidea. Geochim. Cosmochim. Acta 69:2111–17 [Google Scholar]
  10. Arnarson TS, Keil RG. 2007. Changes in organic matter-mineral interactions for marine sediments with varying oxygen exposure times. Geochim. Cosmochim. Acta 71:3545–56 [Google Scholar]
  11. Arndt S, Jorgensen BB, LaRowe DE, Middelburg JJ, Pancost RD, Regnier P. 2013. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci. Rev. 123:53–86 [Google Scholar]
  12. Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC. et al. 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9:53–60 [Google Scholar]
  13. Beaulieu E, Godderis Y, Labat D, Roelandt C, Oliva P, Guerrero B. 2010. Impact of atmospheric CO2 levels on continental silicate weathering. Geochem. Geophys. Geosyst. 11:Q07007 [Google Scholar]
  14. Behrenfeld MJ, O'Malley RT, Siegel DA, McClain CR, Sarmiento JL. et al. 2006. Climate-driven trends in contemporary ocean productivity. Nature 444:752–55 [Google Scholar]
  15. Belcher A, Iversen M, Manno C, Henson SA, Tarling GA, Sanders R. 2016. The role of particle associated microbes in remineralization of fecal pellets in the upper mesopelagic of the Scotia Sea, Antarctica. Limnol. Oceanogr. 61:1049–64 [Google Scholar]
  16. Berelson WM. 2002. Particle settling rates increase with depth in the ocean. Deep-Sea Res. II 49:237–51 [Google Scholar]
  17. Berelson WM, Balch WM, Najjar R, Feely RA, Sabine C, Lee K. 2007. Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: a revised global carbonate budget. Glob. Biogeochem. Cycles 21:GB1024 [Google Scholar]
  18. Berner RA, Lasaga AC, Garrels RM. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283:641–83 [Google Scholar]
  19. Berrocoso AJ, Bodin S, Wood J, Calvert SE, Mutterlose J. et al. 2013. Dynamic sedimentary conditions during periods of enhanced sequestration of organic carbon in the central southern Tethys at the onset of the Cenozoic global cooling. Sediment. Geol. 290:60–84 [Google Scholar]
  20. Blair NE, Aller RC. 2012. The fate of terrestrial organic carbon in the marine environment. Annu. Rev. Mar. Sci. 4:401–23 [Google Scholar]
  21. Bock MJ, Mayer LM. 2000. Mesodensity organo-clay associations in a near-shore sediment. Mar. Geol. 163:65–75 [Google Scholar]
  22. Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP. et al. 2013. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10:6225–45 [Google Scholar]
  23. Boudreau BP, Middelburg JJ, Hofmann AF, Meysman FJR. 2010. Ongoing transients in carbonate compensation. Glob. Biogeochem. Cycles 24:GB4010 [Google Scholar]
  24. Boyd PW, McDonnell A, Valdez J, LeFevre D, Gall MP. 2015. RESPIRE: an in situ particle interceptor to conduct particle remineralization and microbial dynamics studies in the oceans' Twilight Zone. Limnol. Oceanogr. Methods 13:494–508 [Google Scholar]
  25. Bridoux MC, Ingalls AE. 2013. Diatom microfossils from cretaceous and eocene sediments contain native silica precipitating long-chain polyamines. Geobiology 11:215–23 [Google Scholar]
  26. Bridoux MC, Keil RG, Ingalls AE. 2012. Analysis of natural diatom communities reveals novel insights into the diversity of long chain polyamine (LCPA) structures involved in silica precipitation. Org. Geochem. 47:9–21 [Google Scholar]
  27. Buesseler KO, Antia AN, Chen M, Fowler SW, Gardner WD. et al. 2007a. An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J. Mar. Res. 65:345–416 [Google Scholar]
  28. Buesseler KO, Boyd PW. 2009. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54:1210–32 [Google Scholar]
  29. Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW. et al. 2007b. Revisiting carbon flux through the ocean's twilight zone. Science 316:567–70 [Google Scholar]
  30. Burd AB, Hansell DA, Steinberg DK, Anderson TR, Aristegui J. et al. 2010. Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What the @$#! is wrong with present calculations of carbon budgets?. Deep-Sea Res. II 57:1557–71 [Google Scholar]
  31. Burdige DJ. 2005. Burial of terrestrial organic matter in marine sediments: a re-assessment. Glob. Biogeochem. Cycles 19:GB4011 [Google Scholar]
  32. Burdige DJ. 2007. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets?. Chem. Rev. 107:467–85 [Google Scholar]
  33. Chavez FP, Messie M, Pennington JT. 2011. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3:227–60 [Google Scholar]
  34. Chikamoto MO, Matsumoto K, Yamanaka Y. 2009. Influence of export rain ratio changes on atmospheric CO2 and sedimentary calcite preservation. J. Oceanogr. 65:209–21 [Google Scholar]
  35. Collins JR, Edwards BR, Thamatrakoln K, Ossolinski JE, DiTullio GR. et al. 2015. The multiple fates of sinking particles in the North Atlantic Ocean. Glob. Biogeochem. Cycles 29:1471–94 [Google Scholar]
  36. Collins MJ, Bishop AN, Farrimond P. 1995. Sorption by mineral surfaces—rebirth of the classical condensation pathway for kerogen formation. Geochim. Cosmochim. Acta 59:2387–91 [Google Scholar]
  37. Daskalov GM. 2002. Overfishing drives atrophic cascade in the Black Sea. Mar. Ecol. Prog. Ser. 225:53–63 [Google Scholar]
  38. Dave AC, Lozier MS. 2013. Examining the global record of interannual variability in stratification and marine productivity in the low-latitude and mid-latitude ocean. J. Geophys. Res. Oceans 118:3114–27 [Google Scholar]
  39. De La Rocha CL, Passow U. 2007. Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep-Sea Res. II 54:639–58 [Google Scholar]
  40. de Leeuw JW, Versteegh GJM, van Bergen PF. 2006. Biomacromolecules of algae and plants and their fossil analogues. Plant Ecol 182:209–33 [Google Scholar]
  41. Dean WE, Gorham E. 1998. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26:535–38 [Google Scholar]
  42. Derenne S, Largeau C. 2001. A review of some important families of refractory macromolecules: composition, origin, and fate in soils and sediments. Soil Sci 166:833–47 [Google Scholar]
  43. DeVries T, Deutsch C. 2014. Large-scale variations in the stoichiometry of marine organic matter respiration. Nat. Geosci. 7:890–94 [Google Scholar]
  44. DeVries T, Primeau F, Deutsch C. 2012. The sequestration efficiency of the biological pump. Geophys. Res. Lett. 39:L13601 [Google Scholar]
  45. Dickens AF, Gelinas Y, Masiello CA, Wakeham S, Hedges JI. 2004. Reburial of fossil organic carbon in marine sediments. Nature 427:336–39 [Google Scholar]
  46. Doney SC, Bopp L, Long MC. 2014. Historical and future trends in ocean climate and biogeochemistry. Oceanography 27:1108–19 [Google Scholar]
  47. Doney SC, Fabry VJ, Feely RA, Kleypas JA. 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1:169–92 [Google Scholar]
  48. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F. et al. 2012. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4:11–37 [Google Scholar]
  49. Dunne JP, Sarmiento JL, Gnanadesikan A. 2007. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob. Biogeochem. Cycles 21:GB4006 [Google Scholar]
  50. Emerson SR, Hedges JI. 2008. Chemical Oceanography and the Marine Carbon Cycle Cambridge, UK: Cambridge Univ. Press
  51. Fabry VJ, Seibel BA, Feely RA, Orr JC. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65:414–32 [Google Scholar]
  52. Feely RA, Doney SC, Cooley SR. 2009. Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22:436–47 [Google Scholar]
  53. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J. et al. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–66 [Google Scholar]
  54. Feely RA, Sabine CL, Lee K, Millero FJ, Lamb MF. et al. 2002. In situ calcium carbonate dissolution in the Pacific Ocean. Glob. Biogeochem. Cycles 16:1144 [Google Scholar]
  55. Ganesh S, Parris DJ, De Long EF, Stewart FJ. 2014. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. ISME J. 8:187–211 [Google Scholar]
  56. Gattuso JP, Frankignoulle M, Wollast R. 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu. Rev. Ecol. Syst. 29:405–34 [Google Scholar]
  57. Gelin F, Boogers I, Noordeloos AAM, Damste JSS, Hatcher PG, de Leeuw JW. 1996. Novel, resistant microalgal polyethers: an important sink of organic carbon in the marine environment?. Geochim. Cosmochim. Acta 60:1275–80 [Google Scholar]
  58. Gelin F, Boogers I, Noordeloos AAM, Damste JSS, Riegman R, de Leeuw JW. 1997. Resistant biomacromolecules in marine microalgae of the classes Eustigmatophyceae and Chlorophyceae: geochemical implications. Org. Geochem. 26:659–75 [Google Scholar]
  59. Gelin F, Volkman JK, Largeau C, Derenne S, Damste JSS, de Leeuw JW. 1999. Distribution of aliphatic, nonhydrolyzable biopolymers in marine microalgae. Org. Geochem. 30:147–59 [Google Scholar]
  60. Goni MA, Aceves H, Benitez-Nelson B, Tappa E, Thunell R. et al. 2009. Oceanographic and climatologic controls on the compositions and fluxes of biogenic materials in the water column and sediments of the Cariaco Basin over the Late Holocene. Deep-Sea Res. I 56:614–40 [Google Scholar]
  61. Green MA, Aller RC, Aller JY. 1993. Carbonate dissolution and temporal abundances of foraminifera in long-island sound sediments. Limnol. Oceanogr. 38:331–45 [Google Scholar]
  62. Gruber N, Gloor M, Fletcher SEM, Doney SC, Dutkiewicz S. et al. 2009. Oceanic sources, sinks, and transport of atmospheric CO2. Glob. Biogeochem. Cycles 23:GB1005 [Google Scholar]
  63. Hales B. 2003. Respiration, dissolution, and the lysocline. Paleoceanography 18:1099 [Google Scholar]
  64. Hartnett HE, Devol AH. 2003. Role of a strong oxygen-deficient zone in the preservation and degradation of organic matter: a carbon budget for the continental margins of northwest Mexico and Washington State. Geochim. Cosmochim. Acta 67:247–64 [Google Scholar]
  65. Hartnett HE, Keil RG, Hedges JI, Devol AH. 1998. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391:572–74 [Google Scholar]
  66. Hays GC, Richardson AJ, Robinson C. 2005. Climate change and marine plankton. Trends Ecol. Evol. 20:337–44 [Google Scholar]
  67. Hedges JI, Baldock JA, Gelinas Y, Lee C, Peterson ML, Wakeham SG. 2002. The biochemical and elemental compositions of marine plankton: a NMR perspective. Mar. Chem. 78:47–63 [Google Scholar]
  68. Hedges JI, Hu FS, Devol AH, Hartnett HE, Tsamakis E, Keil RG. 1999. Sedimentary organic matter preservation: a test for selective degradation under oxic conditions. Am. J. Sci. 299:529–55 [Google Scholar]
  69. Hedges JI, Keil RG. 1995. Sedimentary organic-matter preservation: an assessment and speculative synthesis. Mar. Chem. 49:81–115 [Google Scholar]
  70. Hedges JI, Keil RG, Benner R. 1997. What happens to terrestrial organic matter in the ocean?. Org. Geochem. 27:195–212 [Google Scholar]
  71. Heinze C, Meyer S, Goris N, Anderson L, Steinfeldt R. et al. 2015. The ocean carbon sink—impacts, vulnerabilities and challenges. Earth Syst. Dyn. 6:327–58 [Google Scholar]
  72. Henson SA, Cole H, Beaulieu C, Yool A. 2013. The impact of global warming on seasonality of ocean primary production. Biogeosciences 10:4357–69 [Google Scholar]
  73. Henson SA, Sanders R, Madsen E, Morris PJ, Le Moigne F, Quartly GD. 2011. A reduced estimate of the strength of the ocean's biological carbon pump. Geophys. Res. Lett. 38:L04606 [Google Scholar]
  74. Hoegh-Guldberg O, Bruno JF. 2010. The impact of climate change on the world's marine ecosystems. Science 328:1523–28 [Google Scholar]
  75. Honisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ. et al. 2012. The geological record of ocean acidification. Science 335:1058–63 [Google Scholar]
  76. Honjo S, Eglinton TI, Taylor CD, Ulmer KM, Sievert SM. et al. 2014. Understanding the role of the biological pump in the global carbon cycle: an imperative for ocean science. Oceanography 27:310–16 [Google Scholar]
  77. Huettel M, Berg P, Kostka JE. 2014. Benthic exchange and biogeochemical cycling in permeable sediments. Annu. Rev. Mar. Sci. 6:23–51 [Google Scholar]
  78. Hulthe G, Hulth S, Hall POJ. 1998. Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochim. Cosmochim. Acta 62:1319–28 [Google Scholar]
  79. Ingalls AE, Aller RC, Lee C, Wakeham SG. 2004. Organic matter diagenesis in shallow water carbonate sediments. Geochim. Cosmochim. Acta 68:4363–79 [Google Scholar]
  80. Iversen MH, Ploug H. 2013. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates—potential implications for deep ocean export processes. Biogeosciences 10:4073–85 [Google Scholar]
  81. Jones DOB, Yool A, Wei CL, Henson SA, Ruhl HA. et al. 2014. Global reductions in seafloor biomass in response to climate change. Glob. Change Biol. 20:1861–72 [Google Scholar]
  82. Keeling RF, Kortzinger A, Gruber N. 2010. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2:199–229 [Google Scholar]
  83. Keeling RF, Piper SC, Heimann M. 1996. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381:218–21 [Google Scholar]
  84. Keil RG, Mayer LM. 2014. Mineral matrices and organic matter. Treatise on Geochemistry 12 Organic Geochemistry HD Holland, KK Turekian 337–59 Oxford, UK: Elsevier, 2nd ed.. [Google Scholar]
  85. Keil RG, Mayer LM, Quay PD, Richey JE, Hedges JI. 1997. Loss of organic matter from riverine particles in deltas. Geochim. Cosmochim. Acta 61:1507–11 [Google Scholar]
  86. Keil RG, Neibauer JA, Biladeau C, van der Elst K, Devol AH. 2016. A multiproxy approach to understanding the “enhanced” flux of organic matter through the oxygen-deficient waters of the Arabian Sea. Biogeosciences 13:2077–92 [Google Scholar]
  87. Keil RG, Tsamakis E, Fuh CB, Giddings JC, Hedges JI. 1994. Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using SPLITT-fractionation. Geochim. Cosmochim. Acta 58:879–93 [Google Scholar]
  88. Kennedy MJ, Droser M, Mayer LM, Pevear D, Mrofka D. 2006. Late Precambrian oxygenation: inception of the clay mineral factory. Science 311:1446–49 [Google Scholar]
  89. Kennedy MJ, Wagner T. 2011. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean. PNAS 108:9776–81 [Google Scholar]
  90. Kim IN, Lee K, Gruber N, Karl DM, Bullister JL. et al. 2014. Increasing anthropogenic nitrogen in the North Pacific Ocean. Science 346:1102–6 [Google Scholar]
  91. Klaas C, Archer DE. 2002. Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio. Glob. Biogeochem. Cycles 16:1116 [Google Scholar]
  92. Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–20 [Google Scholar]
  93. Knicker H, Hatcher PG. 1997. Survival of protein in an organic-rich sediment: possible protection by encapsulation in organic matter. Naturwissenschaften 84:231–34 [Google Scholar]
  94. Kortzinger A, Hedges JI, Quay PD. 2001. Redfield ratios revisited: removing the biasing effect of anthropogenic CO2. Limnol. Oceanogr. 46:964–70 [Google Scholar]
  95. Kriest I, Oschlies A. 2008. On the treatment of particulate organic matter sinking in large-scale models of marine biogeochemical cycles. Biogeosciences 5:55–72 [Google Scholar]
  96. Kriest I, Oschlies A. 2013. Swept under the carpet: Organic matter burial decreases global ocean biogeochemical model sensitivity to remineralization length scale. Biogeosciences 10:8401–22 [Google Scholar]
  97. Lalonde K, Mucci A, Ouellet A, Gelinas Y. 2012. Preservation of organic matter in sediments promoted by iron. Nature 483:198–200 [Google Scholar]
  98. Lam PJ, Marchal O. 2015. Insights into particle cycling from thorium and particle data. Annu. Rev. Mar. Sci. 7:159–84 [Google Scholar]
  99. Lamborg CH, Buesseler KO, Valdes J, Bertrand CH, Bidigare R. et al. 2008. The flux of bio- and lithogenic material associated with sinking particles in the mesopelagic “twilight zone” of the northwest and North Central Pacific Ocean. Deep-Sea Res. II 55:1540–63 [Google Scholar]
  100. Laufkotter C, Vogt M, Gruber N, Aita-Noguchi M, Aumont O. et al. 2015. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12:6955–84 [Google Scholar]
  101. Le Quéré C, Andres RJ, Boden T, Conway T, Houghton RA. et al. 2013. The global carbon budget 1959–2011. Earth Syst. Sci. Data 5:165–85 [Google Scholar]
  102. Lee C, Armstrong RA, Cochran JK, Engel A, Fowler SW. et al. 2009a. MedFlux: investigations of particle flux in the Twilight Zone. Deep-Sea Res. II 56:1363–68 [Google Scholar]
  103. Lee C, Peterson ML, Wakeham SG, Armstrong RA, Cochran JK. et al. 2009b. Particulate organic matter and ballast fluxes measured using time-series and settling velocity sediment traps in the northwestern Mediterranean Sea. Deep-Sea Res. II 56:1420–36 [Google Scholar]
  104. Lomstein BA, Langerhuus AT, D'Hondt S, Jorgensen BB, Spivack AJ. 2012. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Nature 484:101–4 [Google Scholar]
  105. Lowe RJ, Falter JL. 2015. Oceanic forcing of coral reefs. Annu. Rev. Mar. Sci. 7:43–66 [Google Scholar]
  106. Lutz M, Dunbar R, Caldeira K. 2002. Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Glob. Biogeochem. Cycles 16:11–118 [Google Scholar]
  107. Marsay CM, Sanders RJ, Henson SA, Pabortsava K, Achterberg EP, Lampitt RS. 2015. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. PNAS 112:1089–94 [Google Scholar]
  108. Martin JH, Knauer GA, Karl DM, Broenkow WW. 1987. VERTEX: carbon cycling in the northeast pacific. Deep-Sea Res. A 34:267–85 [Google Scholar]
  109. Mayer LM. 1994. Surface-area control of organic-carbon accumulation in continental-shelf sediments. Geochim. Cosmochim. Acta 58:1271–84 [Google Scholar]
  110. Mayer LM. 2004. The inertness of being organic. Mar. Chem. 92:135–40 [Google Scholar]
  111. Mayer LM, Schick LL, Hardy KR, Wagal R, McCarthy J. 2004. Organic matter in small mesopores in sediments and soils. Geochim. Cosmochim. Acta 68:3863–72 [Google Scholar]
  112. Mayer LM, Schick LL, Self RFL, Jumars PA, Findlay RH. et al. 1997. Digestive environments of benthic macroinvertebrate guts: enzymes, surfactants and dissolved organic matter. J. Mar. Res. 55:785–812 [Google Scholar]
  113. McDonnell AMP, Boyd PW, Buesseler KO. 2015. Effects of sinking velocities and microbial respiration rates on the attenuation of particulate carbon fluxes through the mesopelagic zone. Glob. Biogeochem. Cycles 29:175–93 [Google Scholar]
  114. McDonnell AMP, Buesseler KO. 2010. Variability in the average sinking velocity of marine particles. Limnol. Oceanogr. 55:2085–96 [Google Scholar]
  115. Mekik FA, Anderson RF, Loubere P, François R, Richaud M. 2012. The mystery of the missing deglacial carbonate preservation maximum. Quat. Sci. Rev. 39:60–72 [Google Scholar]
  116. Mekik FA, Loubere P, Richaud M. 2007. Rain ratio variation in the tropical ocean: tests with surface sediments in the eastern equatorial Pacific. Deep-Sea Res. II 54:706–21 [Google Scholar]
  117. Mekik FA, Noll N, Russo M. 2010. Progress toward a multi-basin calibration for quantifying deep sea calcite preservation in the tropical/subtropical world ocean. Earth Planet. Sci. Lett. 299:104–17 [Google Scholar]
  118. Middelburg JJ, Soetaert K, Herman PMJ. 1997. Empirical relationships for use in global diagenetic models. Deep-Sea Res. I 44:327–44 [Google Scholar]
  119. Moore EK, Nunn BL, Goodlett DR, Harvey HR. 2012. Identifying and tracking proteins through the marine water column: insights into the inputs and preservation mechanisms of protein in sediments. Geochim. Cosmochim. Acta 83:324–59 [Google Scholar]
  120. Morán XAG, López-Urrutia A, Calvo-Díaz A, Li WKW. 2010. Increasing importance of small phytoplankton in a warmer ocean. Glob. Change Biol. 16:1137–44 [Google Scholar]
  121. Morse JW, Mackenzie FT. 1990. Geochemistry of Sedimentary Carbonates New York: Elsevier
  122. Müller PJ, Suess E. 1979. Productivity, sedimentation rate, and sedimentary organic matter in the oceans. 1. Organic carbon preservation. Deep-Sea Res. A 26:1347–62 [Google Scholar]
  123. Murray JW, Grundmanis V. 1980. Oxygen consumption in pelagic marine sediments. Science 209:1527–30 [Google Scholar]
  124. Nuwer JM. 2008. Organic matter preservation along a dynamic continental margin: forms and fates of sedimentary organic matter PhD Thesis Univ. Wash. Seattle:
  125. Nuwer JM, Keil RG. 2005. Sedimentary organic matter geochemistry of Clayoquot Sound, Vancouver Island, British Columbia. Limnol. Oceanogr. 50:1119–28 [Google Scholar]
  126. O'Neil JM, Davis TW, Burford MA, Gobler CJ. 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–34 [Google Scholar]
  127. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC. et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–86 [Google Scholar]
  128. Parris DJ, Ganesh S, Edgcomb VP, DeLong EF, Stewart FJ. 2014. Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile. Front. Microbiol. 5:543 [Google Scholar]
  129. Piper DZ, Calvert SE. 2009. A marine biogeochemical perspective on black shale deposition. Earth Sci. Rev. 95:63–96 [Google Scholar]
  130. Polovina JJ, Howell EA, Abecassis M. 2008. Ocean's least productive waters are expanding. Geophys. Res. Lett. 35:L03618 [Google Scholar]
  131. Prahl FG, Dymond J, Sparrow MA. 2000. Annual biomarker record for export production in the central Arabian Sea. Deep-Sea Res. II 47:1581–604 [Google Scholar]
  132. Purcell JE, Uye S, Lo WT. 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar. Ecol. Prog. Ser. 350:153–74 [Google Scholar]
  133. Regnier P, Friedlingstein P, Ciais P, Mackenzie FT, Gruber N. et al. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6:597–607 [Google Scholar]
  134. Reimers CE, Alleau Y, Bauer JE, Delaney J, Girguis PR. et al. 2013. Redox effects on the microbial degradation of refractory organic matter in marine sediments. Geochim. Cosmochim. Acta 121:582–98 [Google Scholar]
  135. Richards F. 1965. Anoxic basins and fjords. Chemical Oceanography 1 JP Riley, G Skirrow 611–45 London: Academic [Google Scholar]
  136. Ridgwell A, Zeebe RE. 2005. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234:299–315 [Google Scholar]
  137. Roullier F, Berline L, Guidi L, De Madron XD, Picheral M. et al. 2014. Particle size distribution and estimated carbon flux across the Arabian Sea oxygen minimum zone. Biogeosciences 11:4541–57 [Google Scholar]
  138. Roy S, Gaillardet J, Allègre CJ. 1999. Geochemistry of dissolved and suspended loads of the Seine River, France: anthropogenic impact, carbonate and silicate weathering. Geochim. Cosmochim. Acta 63:1277–92 [Google Scholar]
  139. Sabine CL, Feely RA, Gruber N, Key RM, Lee K. et al. 2004. The oceanic sink for anthropogenic CO2. Science 305:367–71 [Google Scholar]
  140. Sánchez A, González-Yajimovich O, Balart E, López-Ortiz BE, Aguíñiga-Garcia S, Ortiz-Hernández MC. 2013. Accumulation of total organic carbon and calcium carbonate in the oxygen minimum zone of the northeastern Pacific of Mexico. Rev. Mex. Cienc. Geol. 30:222–32 [Google Scholar]
  141. Sanders R, Henson SA, Koski M, De La Rocha CL, Painter SC. et al. 2014. The biological carbon pump in the North Atlantic. Prog. Oceanogr. 129:200–18 [Google Scholar]
  142. Sarmiento JL, Gloor M, Gruber N, Beaulieu C, Jacobson AR. et al. 2010. Trends and regional distributions of land and ocean carbon sinks. Biogeosciences 7:2351–67 [Google Scholar]
  143. Sarmiento JL, Gruber N. 2002. Sinks for anthropogenic carbon. Phys. Today 55:30–36 [Google Scholar]
  144. Schneider B, Bopp L, Gehlen M. 2008. Assessing the sensitivity of modeled air-sea CO2 exchange to the remineralization depth of particulate organic and inorganic carbon. Glob. Biogeochem. Cycles 22:GB3021 [Google Scholar]
  145. Schneider MPW, Scheel T, Mikutta R, van Hees P, Kaiser K, Kalbitz K. 2010. Sorptive stabilization of organic matter by amorphous Al hydroxide. Geochim. Cosmochim. Acta 74:1606–19 [Google Scholar]
  146. Seiter K, Hensen C, Schröter E, Zabel M. 2004. Organic carbon content in surface sediments—defining regional provinces. Deep-Sea Res. I 51:2001–26 [Google Scholar]
  147. Seiter K, Hensen C, Zabel M. 2010. Coupling of benthic oxygen uptake and silica release: implications for estimating biogenic particle fluxes to the seafloor. Geo-Mar. Lett. 30:493–509 [Google Scholar]
  148. Shields MR, Bianchi TS, Gelinas Y, Allison MA, Twilley RR. 2016. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments. Geophys. Res. Lett. 43:1149–57 [Google Scholar]
  149. Smith RW, Bianchi TS, Allison M, Savage C, Galy V. 2015. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8:450–53 [Google Scholar]
  150. Smith VH. 2003. Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environ. Sci. Pollut. Res. 10:126–39 [Google Scholar]
  151. Somero GN. 2012. The physiology of global change: linking patterns to mechanisms. Annu. Rev. Mar. Sci. 4:39–61 [Google Scholar]
  152. Syvitski JPM, Milliman JD. 2007. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol. 115:1–19 [Google Scholar]
  153. Syvitski JPM, Vorosmarty CJ, Kettner AJ, Green P. 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–80 [Google Scholar]
  154. Thrush SF, Dayton PK. 2002. Disturbance to marine benthic habitats by trawling and dredging: implications for marine biodiversity. Annu. Rev. Ecol. Syst. 33:449–73 [Google Scholar]
  155. Ulloa O, Canfield DE, DeLong EF, Letelier RM, Stewart FJ. 2012. Microbial oceanography of anoxic oxygen minimum zones. PNAS 109:15996–6003 [Google Scholar]
  156. Van Mooy BAS, Keil RG, Devol AH. 2002. Impact of suboxia on sinking particulate organic carbon: enhanced carbon flux and preferential degradation of amino acids via denitrification. Geochim. Cosmochim. Acta 66:457–65 [Google Scholar]
  157. Vidya PJ, Kumar SP, Gauns M, Verenkar A, Unger D, Ramaswamy V. 2013. Influence of physical and biological processes on the seasonal cycle of biogenic flux in the equatorial Indian Ocean. Biogeosciences 10:7493–507 [Google Scholar]
  158. Villa-Alfageme M, de Soto F, Le Moigne FAC, Giering SLC, Sanders R, García-Tenorio R. 2014. Observations and modeling of slow-sinking particles in the twilight zone. Glob. Biogeochem. Cycles 28:1327–42 [Google Scholar]
  159. Wakeham SG, Lee C, Hedges JI, Hernes PJ, Peterson ML. 1997. Molecular indicators of diagenetic status in marine organic matter. Geochim. Cosmochim. Acta 61:5363–69 [Google Scholar]
  160. Watling L, Norse EA. 1998. Disturbance of the seabed by mobile fishing gear: a comparison to forest clearcutting. Conserv. Biol. 12:1180–97 [Google Scholar]
  161. Wilson JD, Barker S, Ridgwell A. 2012. Assessment of the spatial variability in particulate organic matter and mineral sinking fluxes in the ocean interior: implications for the ballast hypothesis. Glob. Biogeochem. Cycles 26:GB4011 [Google Scholar]
  162. Wilson SE, Steinberg DK, Buesseler KO. 2008. Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean. Deep-Sea Res. II 55:1636–47 [Google Scholar]
  163. Wishner KF, Gelfman C, Gowing MM, Outram DM, Rapien M, Williams RL. 2008. Vertical zonation and distributions of calanoid copepods through the lower oxycline of the Arabian Sea oxygen minimum zone. Prog. Oceanogr. 78:163–91 [Google Scholar]
  164. Wishner KF, Outram DM, Seibel BA, Daly KL, Williams RL. 2013. Zooplankton in the eastern tropical north Pacific: boundary effects of oxygen minimum zone expansion. Deep-Sea Res. I 79:122–40 [Google Scholar]
  165. Yang SL, Zhang J, Xu XJ. 2007. Influence of the Three Gorges Dam on downstream delivery of sediment and its environmental implications, Yangtze River. Geophys. Res. Lett. 34:L10401 [Google Scholar]
  166. Zullig JJ, Morse JW. 1988. Interaction of organic acids with carbonate mineral surfaces in seawater and related solutions: I. Fatty acid adsorption. Geochim. Cosmochim. Acta 52:1667–78 [Google Scholar]
/content/journals/10.1146/annurev-marine-010816-060724
Loading
/content/journals/10.1146/annurev-marine-010816-060724
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error