1932

Abstract

Electrostatic gating of ultrathin films can be used to modify electronic and magnetic properties of materials by effecting controlled alterations of carrier concentration while, in principle, not changing the level of disorder. As such, electrostatic gating can facilitate the development of novel devices and can serve as a means of exploring the fundamental properties of materials in a manner far simpler than is possible with the conventional approach of chemical doping. The entire phase diagram of a compound can be traversed by changing the gate voltage. In this review, we survey results involving conventional field effect devices as well as more recent progress, which has involved structures that rely on electrochemical configurations such as electric double-layer transistors. We emphasize progress involving thin films of oxide materials such as high-temperature superconductors, magnetic oxides, and oxides that undergo metal-insulator transitions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070813-113407
2014-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/matsci/44/1/annurev-matsci-070813-113407.html?itemId=/content/journals/10.1146/annurev-matsci-070813-113407&mimeType=html&fmt=ahah

Literature Cited

  1. Ahn CH, Bhattacharya A, Di Ventra M, Eckstein JN, Frisbie CD. 1.  et al. 2006. Electrostatic modification of novel materials. Rev. Mod. Phys. 78:1185–212 [Google Scholar]
  2. Imada M, Fujiimori A, Tokura Y. 2.  1998. Metal-insulator transitions. Rev. Mod. Phys. 70:1039–263 [Google Scholar]
  3. Varma C.3.  2010. High-temperature superconductivity: Mind the pseudogap. Nature 468:184–85 [Google Scholar]
  4. Yuan H, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M, Iwasa Y. 4.  2009. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater. 19:1046–53 [Google Scholar]
  5. Mannhart J.5.  1996. High-Tc transistors. Supercond. Sci. Technol. 949–67
  6. Ahn CH, Gariglio S, Paruch P, Tybell T, Agtognazza L, Triscone J-M. 6.  1999. Electrostatic modulation of superconductivity in ultrathin GdBa2Cu3O7−x films. Science 284:1152–53 [Google Scholar]
  7. von Helmholtz HLF. 7.  1853. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Ann. Phys. 89:211–33 [Google Scholar]
  8. Hong X, Posadas A, Lin A, Ahn CH. 8.  2003. Ferroelectric-field-induced tuning of magnetism in the colossal magnetoresistive oxide La1−xSrxMnO3. Phys. Rev. B 68:134415 [Google Scholar]
  9. Vaz CAF, Hoffman J, Segal Y, Reiner JW, Grober RD. 9.  et al. 2010. Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures. Phys. Rev. Lett. 104:127202 [Google Scholar]
  10. Hajo J, Molegraaf A, Hoffman J, Vaz CAF, Gariglio S. 10.  et al. 2009. Magnetoelectric effects in complex oxides with competing ground states. Adv. Mater. 21:3470–74 [Google Scholar]
  11. Hong X, Posadas A, Ahn CH. 11.  2005. Examining the screening limit of field effect devices via the metal-insulator transition. Appl. Phys. Lett. 86:142501 [Google Scholar]
  12. Ramesh R, Spaldin NA. 12.  2007. Multiferroics: progress and prospects in thin films. Nat. Mater 6:21–29 [Google Scholar]
  13. Bozovic I, Matijasevic J. 13.  2000. COMBE: a powerful new tool for materials science. Mater. Sci. Forum 352:1–8 [Google Scholar]
  14. Xi XX, Doughty C, Walkenhorst A, Kwon C, Li Q, Venkatesan T. 14.  1992. Effects of field-induced hole-density modulation on normal-state and superconducting transport in YBa2Cu3O7−x. Phys. Rev. Lett. 68:1240–43 [Google Scholar]
  15. Nakamura T, Tokuda H, Tanaka S, Iiyama M. 15.  1996. Dielectric properties of SrTiO3 thin films grown by ozone-assisted molecular beam epitaxy. Jpn. J. Appl. Phys. 34:1906–10 [Google Scholar]
  16. Muller KA, Birkard J. 16.  1979. SrTiO3: an intrinsic quantum paraelectric below 4 K. Phys. Rev. B 19:3593–602 [Google Scholar]
  17. Matthey D, Gariglio S, Triscone J-M. 17.  2003. Field-effect experiments in NdBa2Cu3O7−δ ultrathin films using a SrTiO3 single-crystal gate insulator. Appl. Phys. Lett. 83:2758–3760 [Google Scholar]
  18. Koster G, Kropman BL, Rijnders GJHM, Blank DHA, Rogalla H. 18.  1998. Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl. Phys. Lett. 73:2920–22 [Google Scholar]
  19. Bhattacharya A, Eblen-Zayas M, Staley N, Huber WH, Goldman AM. 19.  2004. Micromachined SrTiO3 single crystals as dielectrics for electrostatic doping of thin films. Appl. Phys. Lett. 85:997–99 [Google Scholar]
  20. Robertson J.20.  2004. High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 28:265–91 [Google Scholar]
  21. Leng X, Garcia-Barriocanal J, Bose S, Lee Y, Goldman AM. 21.  2011. Electrostatic control of the evolution from a superconducting phase to an insulating phase in ultrathin YBa2Cu3O7−x films. Phys. Rev. Lett. 107:027001 [Google Scholar]
  22. Sato T, Masuda G, Takagi K. 22.  2004. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochem. Acta 49:3603–11 [Google Scholar]
  23. Zhang S, Sun N, He X, Lu X, Zhang X. 23.  2006. Physical properties of ionic liquids: database and evaluation. J. Phys. Chem. Ref. Data 35:1475–503 [Google Scholar]
  24. Fujimoto T, Awaga K. 24.  2013. Electric-double-layer field-effect transistors with ionic liquids. Phys. Chem. Chem. Phys. 15:8983–9006 [Google Scholar]
  25. Panzer MJ, Newman CR, Frisbie CD. 25.  2005. Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric. Appl. Phys. Lett. 86:103503 [Google Scholar]
  26. Panzer MJ, Frisbie CD. 26.  2005. Polymer electrolyte gate dielectric reveals finite windows of high conductivity in organic thin film transistors at high charge carrier densities. J. Am. Chem. Soc. 127:6960–61 [Google Scholar]
  27. Panzer MJ, Frisbie CD. 27.  2006. High charge carrier densities and conductance maxima in single-crystal organic field-effect transistors with a polymer electrolyte gate dielectric. Appl. Phys. Lett. 88:203504 [Google Scholar]
  28. Dhoot AS, Yuen JD, Heeney M, McCulloch I, Moses D, Heeger AJ. 28.  2006. Beyond the metal-insulator transition in polymer electrolyte gated polymer field-effect transistors. Proc. Natl. Acad. Sci. USA 103:11834–37 [Google Scholar]
  29. Lee J, Kaake LG, Cho JH, Zhu XY, Lodge TP, Frisbie CD. 29.  2009. Ion gel-gated thin-film transistors: operating mechanism and characterization of gate dielectric capacitance, switching speed, and stability. J. Phys. Chem. C 113:8972–81 [Google Scholar]
  30. Brattain WH, Garrett CGB. 30.  1955. Experiments on the interface between germanium and an electrolyte. Bell Syst. Tech. J. 34:129–76 [Google Scholar]
  31. Haupt SG, Riley DR, Zhau J, Zhou JP, Grassi JH, McDevitt JT. 31.  1994. Reversible modulation of superconductivity in YBa2Cu3O7−δ/polypyrrole sandwich structures. SPIE Symp. Ser. Supercond. Devices 1258:238–49 [Google Scholar]
  32. Ye JT, Inoue S, Kobayashi K, Kasahara Y, Yuan HT. 32.  et al. 2010. Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 9:125–28 [Google Scholar]
  33. Kasahara Y, Nishijima T, Sato T, Takeuchi Y, Ye J. 33.  et al. 2011. Electric-field-induced superconductivity detected by magnetization measurements of an electric-double-layer capacitor. J. Phys. Soc. Jpn. 80:023708 [Google Scholar]
  34. Ueno K, Nakamura S, Shimmotani H, Ohtomo A, Kimura N. 34.  et al. 2008. Electric-field-induced superconductivity in an insulator. Nat. Mater. 7:855–58 [Google Scholar]
  35. Lee Y, Clement C, Hellerstedt J, Kinney J, Kinnischtzke L. 35.  et al. 2011. Phase diagram of electrostatically doped SrTiO3. Phys. Rev. Lett. 106:136809 [Google Scholar]
  36. Ueno K, Nakamura S, Shimotani H, Yuan HT, Kimura N. 36.  et al. 2011. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat. Nanotechnol. 6:408–12 [Google Scholar]
  37. Taniguchi K, Matsumoto A, Shimotani H, Takagi H. 37.  2012. Electric-field-induced superconductivity at 9.4 K in a layered transition metal disulphide MoS2. Appl. Phys. Lett. 101:042603 [Google Scholar]
  38. Ye JT, Zhang YJ, Akashi R, Bahramy MS, Arita R, Iwasa Y. 38.  2012. Superconducting dome in a gate-tuned band insulator. Science 338:1193–96 [Google Scholar]
  39. Bollinger AT, Dubuis G, Yoon J, Pavuna D, Misewich J, Bozovic I. 39.  2011. Superconductor-insulator transition in La2−xSrxCuO4 at the pair quantum resistance. Nature 472:458–60 [Google Scholar]
  40. Dubuis G, Bollinger AT, Pavuna D, Bozovic I. 40.  2012. Electric field effect on superconductivity in La2−xSrxCuO4. J. Appl. Phys. 111:112632 [Google Scholar]
  41. Leng X, Garcia-Barriocanal J, Yang B, Lee Y, Kinney J, Goldman AM. 41.  2012. Indications of an electronic phase transition in two-dimensional superconducting YBa2Cu3O7−x thin films induced by electrostatic doping. Phys. Rev. Lett. 108:067004 [Google Scholar]
  42. Garcia-Barriocanal J, Kobrinskii A, Leng X, Kinney J, Yang B. 42.  et al. 2013. Electronically driven superconductor-insulator transition in electrostatically doped La2CuO4+δ films. Phys. Rev. B 87:024509 [Google Scholar]
  43. Lee Y, Frydman A, Chen T, Skinner B, Goldman AM. 43.  2013. Electrostatic tuning of the properties of disordered indium-oxide films near the superconductor-insulator transition. Phys. Rev. B 88:024509 [Google Scholar]
  44. Dhoot AS, Israel C, Moya X, Mathur ND, Friend RH. 44.  2009. Large electric field effect in electrolyte-gated manganites. Phys. Rev. Lett. 102:136502 [Google Scholar]
  45. Yuan H, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M, Iwasa Y. 45.  2009. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater. 19:1046–53 [Google Scholar]
  46. Asanuma S, Xiang P-H, Yamada H, Sato H, Inoue IH. 46.  et al. 2010. Tuning of the metal-insulator transition in electrolyte-gated NdNiO3. Appl. Phys. Lett. 97:142110 [Google Scholar]
  47. Hormoz S, Ramanathan S. 47.  2010. Limits on vanadium oxide Mott metal-insulator transition field-effect transistors. Solid State Electron. 54:654–59 [Google Scholar]
  48. Ruzmetov D, Gopalakrishnan G, Ko C, Narayanamurti V, Ramanathan S. 48.  2010. Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer. J. Appl. Phys. 107:114516 [Google Scholar]
  49. Zhang Y, Ye J, Matsuhashi Y, Iwasa Y. 49.  2012. Ambipolar MoS2 thin flake transistors. Nano Lett. 12:1136–40 [Google Scholar]
  50. Zhou Y, Ramanathan S. 50.  2012. Relaxation dynamics of ionic liquid–VO2 interfaces and influence of electric double-layer transistors. J. Appl. Phys. 111:084508 [Google Scholar]
  51. Yang Z, Zhou Y, Ramanathan S. 51.  2012. Studies on room-temperature electric-field effect in ionic-liquid gated VO2 three-terminal devices. J. Appl. Phys. 111:014506 [Google Scholar]
  52. Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S. 52.  et al. 2012. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 487:459–62 [Google Scholar]
  53. Jeong J, Aetukuri N, Graf T, Schladt TD, Smant MG, Parkin SSP. 53.  2013. Suppression of metal-insulator transition in VO2 by electric field–induced oxygen vacancy formation. Science 339:1402–5 [Google Scholar]
  54. Xia Y, Xie W, Ruden PP, Frisbie CD. 54.  2010. Carrier localization on surfaces of organic semiconductors gated with electrolytes. Phys. Rev. Lett. 105:036802 [Google Scholar]
  55. Sato T, Masuda G, Takagi K. 55.  2004. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochem. Acta 49:3603–11 [Google Scholar]
  56. Bier M, Dietrich S. 56.  2010. Vapour pressure of ionic liquids. Mol. Phys. 108:211–14 [Google Scholar]
  57. Oldham KB.57.  2008. A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface. J. Electroanal. Chem. 612:131–38 [Google Scholar]
  58. Glover RE III, Sherrill MD. 58.  1960. Changes in superconducting critical temperature produced by electrostatic charging. Phys. Rev. Lett. 5:248–50 [Google Scholar]
  59. Stadler HL.59.  1965. Changing properties of metals by ferroelectric polarization charging. Phys. Rev. Lett. 14:979–81 [Google Scholar]
  60. Fiory AT, Hebard AF. 60.  1985. Field-effect and electron density modulation of the superconducting transition in composite In/InOx thin films. Physica B 135:124–27 [Google Scholar]
  61. Misra R, McCarthy M, Hebard AF. 61.  2007. Electric field gating with ionic liquids. Appl. Phys. Lett. 90:052905 [Google Scholar]
  62. Lee Y, Frydman A, Chen T, Skinner B, Goldman AM. 62.  2013. Electrostatic tuning of the properties of disordered indium-oxide films near the superconductor-insulator transition. Phys. Rev. B 88:024509 [Google Scholar]
  63. Parendo KA, Tan KHSB, Bhattacharya A, Eblen-Zayas M, Staley NE, Goldman AM. 63.  2005. Electrostatic tuning of the superconductor-insulator transition in two dimensions. Phys. Rev. Lett. 94:197004 [Google Scholar]
  64. Millis AJ.64.  2003. Towards a classification of the effects of disorder on materials properties. Solid State Commun. 126:3–8 [Google Scholar]
  65. Matijasevic VC, Boogers S, Chen NY, Appleboom HM, Hadley P, Mooij JE. 65.  1994. Electric field induced superconductivity in an overdoped cuprate superconductor. Physica C 235–240:2097–98 [Google Scholar]
  66. Cassinese A, De Luca GM, Prigiobbo A, Salluzzo M, Vaglio R. 66.  2004. Field-effect tuning of carrier density in Nd1.2Ba1.8Cu3Oy thin films. Appl. Phys. Lett. 84:3933–35 [Google Scholar]
  67. Rufenacht A, Locquet JP, Fompeyrine J, Caimi D, Martinoli P. 67.  2006. Electrostatic modulation of the superfluid density in an ultrathin La2−xSrxCuO4 film. Phys. Rev. Lett. 96:227002 [Google Scholar]
  68. Matthey D, Reyren N, Triscone J-M. 68.  2007. Electric-field-effect modulation of the transition temperature mobile carrier density and in-plane penetration depth of NdBa2Cu3O7−δ thin films. Phys. Rev. Lett. 98:057002 [Google Scholar]
  69. Salluzzo M, Ghiringhelli G, Cezar JC, Brookes NB, De Luca GM. 69.  et al. 2008. Indirect electric field doping of the CuO2 planes of the cuprate NdBa2Cu3O7 superconductor. Phys. Rev. Lett. 100:056810 [Google Scholar]
  70. Brookes NB, Ghiringhelli G, Cezar JC, De Luca GM, Salluzzo M. 70.  2009. An X-ray absorption study of the electric field effect mechanism in “123” cuprates. Eur. Phys. J. B 70:153–56 [Google Scholar]
  71. Dhoot AS, Wimbush SC, Benseman T, MacManus-Driscol JL, Cooper JR, Friend RH. 71.  2010. Increased Tc in electrolyte-gated cuprates. Adv. Mater. 22:2529–33 [Google Scholar]
  72. Chandrasekhar N, Valls OT, Goldman AM. 72.  1993. Mechanism for electric-field effects observed in YBa2Cu3O7−x films. Phys. Rev. Lett. 71:1079–82 [Google Scholar]
  73. Sondhi SL, Girvin SM, Carini JP, Shahar D. 73.  1997. Continuous quantum phase transitions. Rev. Mod. Phys. 69:315–33 [Google Scholar]
  74. Nojima R, Tada H, Nakamura S, Kobayashi N, Shimotani H, Iwasa Y. 74.  2011. Hole reduction and electron accumulation in YBa2Cu3Oy thin films using an electrochemical technique: evidence for an n-type metallic state. Phys. Rev. B 84:020502(R) [Google Scholar]
  75. Leng X, Garcia-Barriocanal J, Kinney J, Yang B, Lee Y, Goldman AM. 75.  2013. Electrostatic tuning of the superconductor to insulator transition of YBa2Cu3O7−x using ionic liquids. J. Phys. Conf. Ser. 449:012009 [Google Scholar]
  76. Salamon MB, Jaime M. 76.  2001. The physics of manganites: structure and transport. Rev. Mod. Phys. 73:583–628 [Google Scholar]
  77. Ogale SB, Talyansky V, Chen CH, Ramesh R, Greene RL, Benkatesan T. 77.  1996. Unusual electric field effects in Nd0.7Sr0.3MnO3. Phys. Rev. Lett. 77:1159–62 [Google Scholar]
  78. Hong X, Posadas A, Lin A, Ahn CH. 78.  2003. Ferroelectric-field-induced tuning of magnetism in the colossal magnetoresistive oxide La1−xSrxMnO3. Phys. Rev. B 68:134415 [Google Scholar]
  79. Eblen-Zayas M, Bhattacharya A, Staley NE, Kobrinskii AL, Goldman AM. 79.  2005. Ambipolar gate effect and low temperature magnetoresistance of ultrathin La0.8Ca0.2MnO3 films. Phys. Rev. Lett. 94:037204 [Google Scholar]
  80. Chiba D, Yamanouchi M, Matsukura F, Ohno H. 80.  2003. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301:943–45 [Google Scholar]
  81. Nakayama H, Ye J, Ohtani T, Fujikawa Y, Ando K. 81.  et al. 2012. Electroresistance effect in gold thin film induced by ionic-liquid-gated electric double layer. Appl. Phys. Express 5:023002 [Google Scholar]
  82. Scherwitzl R, Zubko P, Lichtensteiger C, Triscone J-M. 82.  2009. Electric-field tuning of the metal-insulator transition in ultrathin films of LaNiO3. Appl. Phys. Lett. 95:222114 [Google Scholar]
  83. Scherwitzl R, Zubko P, Lezama G, Ono S, Morpurgo AF. 83.  et al. 2010. Electric-field control of the metal-insulator transition in ultrathin NdNiO3 films. Adv. Mater. 22:5527–20 [Google Scholar]
  84. Asanuma S, Xiang P-H, Yamada H, Sato H, Inoue IH. 84.  et al. 2010. Tuning of the metal-insulator transition in electrolyte-gated NdNiO3. Appl. Phys. Lett. 97:142110 [Google Scholar]
  85. Kim H-T, Lee YW, Kim BJ, Chae BG, Yun SJ. 85.  et al. 2006. Monoclinic and correlated metal phase in VO2 as evidence of the Mott transition: correlated photon analysis. Phys. Rev. Lett. 97:266401 [Google Scholar]
  86. Chen C, Wang R, Lang S, Guo C. 86.  2008. Gate-field-induced phase transitions in VO2: monoclinic metal phase separation and switchable infrared reflections. Appl. Phys. Lett. 93:171101 [Google Scholar]
  87. Hormoz S, Ramanathan S. 87.  2010. Limits on vanadium oxide Mott metal-insulator transition field-effect transistors. Solid State Electron. 54:654–59 [Google Scholar]
  88. Ruzmetov D, Gopalakrishnan G, Ko C, Narayanamurti V, Ramanathan S. 88.  2010. Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer. J. Appl. Phys. 107:114516 [Google Scholar]
  89. Ji H, Wei J, Natelson D. 89.  2012. Modulation of the electrical properties of VO2 nanobeams using an ionic liquid as a gating medium. Nano Lett. 12:2988–92 [Google Scholar]
  90. Yang Z, Zhou Y, Ramanathan S. 90.  2012. Studies on room-temperature electric-field effect in ionic-liquid gated VO2 three-terminal devices. J. Appl. Phys. 111:014506 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070813-113407
Loading
/content/journals/10.1146/annurev-matsci-070813-113407
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error