1932

Abstract

Antiretroviral therapy (ART) has rendered HIV-1 infection a treatable illness; however, ART is not curative owing to the persistence of replication-competent, latent proviruses in long-lived resting T cells. Strategies that target these latently infected cells and allow immune recognition and clearance of this reservoir will be necessary to eradicate HIV-1 in infected individuals. This review describes current pharmacologic approaches to reactivate the latent reservoir so that infected cells can be recognized and targeted, with the ultimate goal of achieving an HIV-1 cure.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-052716-031710
2018-01-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/med/69/1/annurev-med-052716-031710.html?itemId=/content/journals/10.1146/annurev-med-052716-031710&mimeType=html&fmt=ahah

Literature Cited

  1. Chun TW, Stuyver L, Mizell SB. 1.  et al. 1997. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. PNAS 94:13193–97 [Google Scholar]
  2. Finzi D, Hermankova M, Pierson T. 2.  et al. 1997. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278:1295–300 [Google Scholar]
  3. Wong JK, Hezareh M, Gunthard HF. 3.  et al. 1997. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278:1291–95 [Google Scholar]
  4. Finzi D, Blankson J, Siliciano JD. 4.  et al. 1999. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. 5:512–17 [Google Scholar]
  5. Siliciano JD, Kajdas J, Finzi D. 5.  et al. 2003. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 9:727–28 [Google Scholar]
  6. Whitney JB, Hill AL, Sanisetty S. 6.  et al. 2014. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 512:74–77 [Google Scholar]
  7. Strain MC, Little SJ, Daar ES. 7.  et al. 2005. Effect of treatment, during primary infection, on establishment and clearance of cellular reservoirs of HIV-1. J. Infect. Dis. 191:1410–18 [Google Scholar]
  8. Eriksson S, Graf EH, Dahl V. 8.  et al. 2013. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLOS Pathog 9:e1003174 [Google Scholar]
  9. Crooks AM, Bateson R, Cope AB. 9.  et al. 2015. Precise quantitation of the latent HIV-1 reservoir: implications for eradication strategies. J. Infect. Dis. 212:1361–65 [Google Scholar]
  10. Dinoso JB, Kim SY, Wiegand AM. 10.  et al. 2009. Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy. PNAS 106:9403–8 [Google Scholar]
  11. Gandhi RT, Coombs RW, Chan ES. 11.  et al. 2012. No effect of raltegravir intensification on viral replication markers in the blood of HIV-1-infected patients receiving antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 59:229–35 [Google Scholar]
  12. Gandhi RT, Zheng L, Bosch RJ. 12.  et al. 2010. The effect of raltegravir intensification on low-level residual viremia in HIV-infected patients on antiretroviral therapy: a randomized controlled trial. PLOS Med 7:8e1000321 [Google Scholar]
  13. Richman DD, Margolis DM, Delaney M. 13.  et al. 2009. The challenge of finding a cure for HIV infection. Science 323:1304–7 [Google Scholar]
  14. Choudhary SK, Margolis DM. 14.  2011. Curing HIV: pharmacologic approaches to target HIV-1 latency. Annu. Rev. Pharmacol. Toxicol. 51:397–418 [Google Scholar]
  15. Ruelas DS, Greene WC. 15.  2013. An integrated overview of HIV-1 latency. Cell 155:519–29 [Google Scholar]
  16. Xing S, Siliciano RF. 16.  2013. Targeting HIV latency: pharmacologic strategies toward eradication. Drug Discov. Today 18:541–51 [Google Scholar]
  17. Margolis DM. 17.  2014. How might we cure HIV?. Curr. Infect. Dis. Rep. 16:392 [Google Scholar]
  18. Martin AR, Siliciano RF. 18.  2016. Progress toward HIV eradication: case reports, current efforts, and the challenges associated with cure. Annu. Rev. Med. 67:215–28 [Google Scholar]
  19. Deeks SG. 19.  2012. HIV: shock and kill. Nature 487:439–40 [Google Scholar]
  20. Delagreverie HM, Delaugerre C, Lewin SR. 20.  et al. 2016. Ongoing clinical trials of human immunodeficiency virus latency-reversing and immunomodulatory agents. Open Forum Infect. Dis. 3:ofw189 [Google Scholar]
  21. Spivak AM, Planelles V. 21.  2016. HIV-1 eradication: early trials (and tribulations). Trends Mol. Med. 22:10–27 [Google Scholar]
  22. Zack JA, Arrigo SJ, Weitsman SR. 22.  et al. 1990. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61:213–22 [Google Scholar]
  23. Perelson AS, Essunger P, Cao Y. 23.  et al. 1997. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387:188–91 [Google Scholar]
  24. Kulkosky J, Nunnari G, Otero M. 24.  et al. 2002. Intensification and stimulation therapy for human immunodeficiency virus type 1 reservoirs in infected persons receiving virally suppressive highly active antiretroviral therapy. J. Infect. Dis. 186:1403–11 [Google Scholar]
  25. Prins JM, Jurriaans S, van Praag RM. 25.  et al. 1999. Immuno-activation with anti-CD3 and recombinant human IL-2 in HIV-1-infected patients on potent antiretroviral therapy. AIDS 13:2405–10 [Google Scholar]
  26. Spina CA, Anderson J, Archin NM. 26.  et al. 2013. An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLOS Pathog 9:e1003834 [Google Scholar]
  27. Bullen CK, Laird GM, Durand CM. 27.  et al. 2014. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat. Med. 20:425–29 [Google Scholar]
  28. Laird GM, Bullen CK, Rosenbloom DI. 28.  et al. 2015. Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. J. Clin. Investig. 125:1901–12 [Google Scholar]
  29. McKernan LN, Momjian D, Kulkosky J. 29.  2012. Protein kinase C: one pathway towards the eradication of latent HIV-1 reservoirs. Adv. Virol. 2012:805347 [Google Scholar]
  30. Jiang G, Dandekar S. 30.  2015. Targeting NF-κB signaling with protein kinase C agonists as an emerging strategy for combating HIV latency. AIDS Res. Hum. Retrovir. 31:14–12 [Google Scholar]
  31. Castagna M, Takai Y, Kaibuchi K. 31.  et al. 1982. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem. 257:7847–51 [Google Scholar]
  32. Nishizuka Y. 32.  1984. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693–98 [Google Scholar]
  33. Zayed S, Hafez A, Adolf W, Hecker E. 33.  1977. New tigliane and daphnane derivatives from Pimelea prostrata and Pimelea simplex. Experientia 33:1554–55 [Google Scholar]
  34. Gustafson KR, Cardellina JH, McMahon JB. 34.  et al. 1992. A nonpromoting phorbol from the Samoan medicinal plant Homalanthus nutans inhibits cell killing by HIV-1. J. Med. Chem. 35:1978–86 [Google Scholar]
  35. Kulkosky J, Culnan DM, Roman J. 35.  et al. 2001. Prostratin: activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART. Blood 98:3006–15 [Google Scholar]
  36. Kulkosky J, Sullivan J, Xu Y. 36.  et al. 2004. Expression of latent HAART-persistent HIV type 1 induced by novel cellular activating agents. AIDS Res. Hum. Retrovir. 20:497–505 [Google Scholar]
  37. Williams SA, Chen LF, Kwon H. 37.  et al. 2004. Prostratin antagonizes HIV latency by activating NF-κB. J. Biol. Chem. 279:42008–17 [Google Scholar]
  38. Pettit GR, Kamano Y, Fujii Y. 38.  et al. 1981. Marine animal biosynthetic constituents for cancer chemotherapy. J. Nat. Prod. 44:482–85 [Google Scholar]
  39. Smith JB, Smith L, Pettit GR. 39.  1985. Bryostatins: potent, new mitogens that mimic phorbol ester tumor promoters. Biochem. Biophys. Res. Commun. 132:939–45 [Google Scholar]
  40. Kollar P, Rajchard J, Balounova Z, Pazourek J. 40.  2014. Marine natural products: bryostatins in preclinical and clinical studies. Pharm. Biol. 52:237–42 [Google Scholar]
  41. Philip PA, Rea D, Thavasu P. 41.  et al. 1993. Phase I study of bryostatin 1: assessment of interleukin 6 and tumor necrosis factor alpha induction in vivo. The Cancer Research Campaign Phase I Committee. J. Natl. Cancer Inst. 85:1812–18 [Google Scholar]
  42. Gutierrez C, Serrano-Villar S, Madrid-Elena N. 42.  et al. 2016. Bryostatin-1 for latent virus reactivation in HIV-infected patients on antiretroviral therapy. AIDS 30:1385–92 [Google Scholar]
  43. Ernst M, Grace OM, Saslis-Lagoudakis CH. 43.  et al. 2015. Global medicinal uses of Euphorbia L. (Euphorbiaceae). J. Ethnopharmacol. 176:90–101 [Google Scholar]
  44. Kupchan SM, Uchida I, Branfman AR. 44.  et al. 1976. Antileukemic principles isolated from euphorbiaceae plants. Science 191:571–72 [Google Scholar]
  45. Fujiwara M, Ijichi K, Tokuhisa K. 45.  et al. 1996. Mechanism of selective inhibition of human immunodeficiency virus by ingenol triacetate. Antimicrob. Agents Chemother. 40:271–73 [Google Scholar]
  46. Warrilow D, Gardner J, Darnell GA. 46.  et al. 2006. HIV type 1 inhibition by protein kinase C modulatory compounds. AIDS Res. Hum. Retrovir. 22:854–64 [Google Scholar]
  47. Pandelo Jose D, Bartholomeeusen K, da Cunha RD. 47.  et al. 2014. Reactivation of latent HIV-1 by new semi-synthetic ingenol esters. Virology 462–463:328–39 [Google Scholar]
  48. Abreu CM, Price SL, Shirk EN. 48.  et al. 2014. Dual role of novel ingenol derivatives from Euphorbia tirucalli in HIV replication: inhibition of de novo infection and activation of viral LTR. PLOS ONE 9:e97257 [Google Scholar]
  49. Alchin DR. 49.  2014. Ingenol mebutate: a succinct review of a succinct therapy. Dermatol. Ther. 4:157–64 [Google Scholar]
  50. Jiang G, Mendes EA, Kaiser P. 50.  et al. 2015. Synergistic reactivation of latent HIV expression by ingenol-3-angelate, PEP005, targeted NF-κB signaling in combination with JQ1 induced p-TEFb activation. PLOS Pathog 11:e1005066 [Google Scholar]
  51. Gama L, Abreu CM, Shirk EN. 51.  et al. 2017. Reactivation of simian immunodeficiency virus reservoirs in the brain of virally suppressed macaques. AIDS 31:5–14 [Google Scholar]
  52. Dental C, Proust A, Ouellet M. 52.  et al. 2017. HIV-1 latency-reversing agents prostratin and bryostatin-1 induce blood–brain barrier disruption/inflammation and modulate leukocyte adhesion/transmigration. J. Immunol. 198:1229–41 [Google Scholar]
  53. Shi QW, Su XH, Kiyota H. 53.  2008. Chemical and pharmacological research of the plants in genus Euphorbia. Chem. Rev. 108:4295–327 [Google Scholar]
  54. Cary DC, Fujinaga K, Peterlin BM. 54.  2016. Euphorbia kansui reactivates latent HIV. PLOS ONE 11:e0168027 [Google Scholar]
  55. Hamer DH, Bocklandt S, McHugh L. 55.  et al. 2003. Rational design of drugs that induce human immunodeficiency virus replication. J. Virol. 77:10227–36 [Google Scholar]
  56. Marquez N, Calzado MA, Sanchez-Duffhues G. 56.  et al. 2008. Differential effects of phorbol-13-monoesters on human immunodeficiency virus reactivation. Biochem. Pharmacol. 75:1370–80 [Google Scholar]
  57. Jiang G, Mendes EA, Kaiser P. 57.  et al. 2014. Reactivation of HIV latency by a newly modified ingenol derivative via protein kinase Cδ-NF-κB signaling. AIDS 28:1555–66 [Google Scholar]
  58. Spivak AM, Larragoite ET, Coletti ML. 58.  et al. 2016. Janus kinase inhibition suppresses PKC-induced cytokine release without affecting HIV-1 latency reversal ex vivo. Retrovirology 13:88 [Google Scholar]
  59. Martin AR, Pollack RA, Capoferri A. 59.  et al. 2017. Rapamycin-mediated mTOR inhibition uncouples HIV-1 latency reversal from cytokine-associated toxicity. J. Clin. Investig. 127:651–56 [Google Scholar]
  60. Besnard E, Hakre S, Kampmann M. 60.  et al. 2016. The mTOR Complex Controls HIV latency. Cell Host Microbe 20:785–97 [Google Scholar]
  61. Cillo AR, Sobolewski MD, Bosch RJ. 61.  et al. 2014. Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy. PNAS 111:7078–83 [Google Scholar]
  62. Archin NM, Liberty AL, Kashuba AD. 62.  et al. 2012. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487:482–85 [Google Scholar]
  63. Elliott JH, Wightman F, Solomon A. 63.  et al. 2014. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLOS Pathog 10:e1004473 [Google Scholar]
  64. Rasmussen TA, Tolstrup M, Brinkmann CR. 64.  et al. 2014. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV 1:e13–21 [Google Scholar]
  65. Rasmussen TA, Tolstrup M, Moller HJ. 65.  et al. 2015. Activation of latent human immunodeficiency virus by the histone deacetylase inhibitor panobinostat: a pilot study to assess effects on the central nervous system. Open Forum Infect. Dis. 2:ofv037 [Google Scholar]
  66. Sogaard OS, Graversen ME, Leth S. 66.  et al. 2015. The depsipeptide romidepsin reverses HIV-1 latency in vivo. PLOS Pathog 11:e1005142 [Google Scholar]
  67. Rasmussen TA, Tolstrup M, Sogaard OS. 67.  2016. Reversal of latency as part of a cure for HIV-1. Trends Microbiol 24:90–97 [Google Scholar]
  68. Xing S, Bullen CK, Shroff NS. 68.  et al. 2011. Disulfiram reactivates latent HIV-1 in a Bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation. J. Virol. 85:6060–64 [Google Scholar]
  69. Doyon G, Zerbato J, Mellors JW, Sluis-Cremer N. 69.  2013. Disulfiram reactivates latent HIV-1 expression through depletion of the phosphatase and tensin homolog. AIDS 27:F7–F11 [Google Scholar]
  70. Spivak AM, Andrade A, Eisele E. 70.  et al. 2014. A pilot study assessing the safety and latency-reversing activity of disulfiram in HIV-1-infected adults on antiretroviral therapy. Clin. Infect. Dis. 58:883–90 [Google Scholar]
  71. Elliott JH, McMahon JH, Chang CC. 71.  et al. 2015. Short-term administration of disulfiram for reversal of latent HIV infection: a phase 2 dose-escalation study. Lancet HIV 2:e520–29 [Google Scholar]
  72. Medzhitov R. 72.  2007. TLR-mediated innate immune recognition. Semin. Immunol. 19:1–2 [Google Scholar]
  73. Kumar H, Kawai T, Akira S. 73.  2011. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 30:16–34 [Google Scholar]
  74. Thibault S, Imbeault M, Tardif MR, Tremblay MJ. 74.  2009. TLR5 stimulation is sufficient to trigger reactivation of latent HIV-1 provirus in T lymphoid cells and activate virus gene expression in central memory CD4+ T cells. Virology 389:20–25 [Google Scholar]
  75. Novis CL, Archin NM, Buzon MJ. 75.  et al. 2013. Reactivation of latent HIV-1 in central memory CD4+ T cells through TLR-1/2 stimulation. Retrovirology 10:119 [Google Scholar]
  76. Bosque A, Planelles V. 76.  2009. Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood 113:58–65 [Google Scholar]
  77. Bosque A, Nilson KA, Macedo AB. 77.  et al. 2017. Benzotriazoles reactivate latent HIV-1 through inactivation of STAT5 SUMOylation. Cell Rep 18:1324–34 [Google Scholar]
  78. Van Nguyen T, Angkasekwinai P, Dou H. 78.  et al. 2012. SUMO-specific protease 1 is critical for early lymphoid development through regulation of STAT5 activation. Mol. Cell 45:210–21 [Google Scholar]
  79. Selliah N, Zhang M, DeSimone D. 79.  et al. 2006. The γc-cytokine regulated transcription factor, STAT5, increases HIV-1 production in primary CD4 T cells. Virology 344:283–91 [Google Scholar]
  80. Sun SC. 80.  2011. Non-canonical NF-κB signaling pathway. Cell Res 21:71–85 [Google Scholar]
  81. Pache L, Dutra MS, Spivak AM. 81.  et al. 2015. BIRC2/cIAP1 is a negative regulator of HIV-1 transcription and can be targeted by Smac mimetics to promote reversal of viral latency. Cell Host Microbe 18:345–53 [Google Scholar]
  82. Archin NM, Bateson R, Tripathy MK. 82.  et al. 2014. HIV-1 expression within resting CD4+ T cells after multiple doses of vorinostat. J. Infect. Dis. 210:728–35 [Google Scholar]
  83. Martinez-Bonet M, Clemente MI, Serramia MJ. 83.  et al. 2015. Synergistic activation of latent HIV-1 expression by novel histone deacetylase inhibitors and bryostatin-1. Sci. Rep. 5:16445 [Google Scholar]
  84. Darcis G, Kula A, Bouchat S. 84.  et al. 2015. An in-depth comparison of latency-reversing agent combinations in various in vitro and ex vivo HIV-1 latency models identified bryostatin-1+JQ1 and ingenol-B+JQ1 to potently reactivate viral gene expression. PLOS Pathog 11:e1005063 [Google Scholar]
  85. Reuse S, Calao M, Kabeya K. 85.  et al. 2009. Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection. PLOS ONE 4:e6093 [Google Scholar]
  86. Brogdon J, Ziani W, Wang X. 86.  et al. 2016. In vitro effects of the small-molecule protein kinase C agonists on HIV latency reactivation. Sci. Rep. 6:39032 [Google Scholar]
  87. Chen D, Wang H, Aweya JJ. 87.  et al. 2016. HMBA enhances prostratin-induced activation of latent HIV-1 via suppressing the expression of negative feedback regulator A20/TNFAIP3 in NF-κB signaling. Biomed. Res. Int. 2016:5173205 [Google Scholar]
  88. Rochat MA, Schlaepfer E, Speck RF. 88.  2017. Promising role of toll-like receptor 8 agonist in concert with prostratin for activation of silent HIV. J. Virol. 91:4e02084–16 [Google Scholar]
  89. Klase Z, Yedavalli VS, Houzet L. 89.  et al. 2014. Activation of HIV-1 from latent infection via synergy of RUNX1 inhibitor Ro5–3335 and SAHA. PLOS Pathog 10:e1003997 [Google Scholar]
  90. Bouchat S, Delacourt N, Kula A. 90.  et al. 2016. Sequential treatment with 5-aza-2′-deoxycytidine and deacetylase inhibitors reactivates HIV-1. EMBO. Mol. Med. 8:117–38 [Google Scholar]
  91. Abdel-Mohsen M, Chavez L, Tandon R. 91.  et al. 2016. Human galectin-9 is a potent mediator of HIV transcription and reactivation. PLOS Pathog 12:e1005677 [Google Scholar]
  92. Shan L, Deng K, Shroff NS. 92.  et al. 2012. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 36:491–501 [Google Scholar]
  93. Jones RB, Walker BD. 93.  2016. HIV-specific CD8+ T cells and HIV eradication. J. Clin. Investig. 126:455–63 [Google Scholar]
  94. Jones RB, O'Connor R, Mueller S. 94.  et al. 2014. Histone deacetylase inhibitors impair the elimination of HIV-infected cells by cytotoxic T-lymphocytes. PLOS Pathog 10:e1004287 [Google Scholar]
  95. Clutton G, Xu Y, Baldoni PL. 95.  et al. 2016. The differential short- and long-term effects of HIV-1 latency-reversing agents on T cell function. Sci. Rep. 6:30749 [Google Scholar]
  96. Walker-Sperling VE, Pohlmeyer CW, Tarwater PM, Blankson JN. 96.  2016. The effect of latency reversal agents on primary CD8+ T cells: implications for shock and kill strategies for human immunodeficiency virus eradication. EBioMedicine 8:217–29 [Google Scholar]
  97. Kwaa AK, Goldsborough K, Walker-Sperling VE. 97.  et al. 2017. The effect of ingenol-B on the suppressive capacity of elite suppressor HIV-specific CD8+ T cells. PLOS ONE 12:e0174516 [Google Scholar]
  98. Pace M, Williams J, Kurioka A. 98.  et al. 2016. Histone deacetylase inhibitors enhance CD4 T cell susceptibility to NK cell killing but reduce NK cell function. PLOS Pathog 12:e1005782 [Google Scholar]
  99. Garrido C, Spivak AM, Soriano-Sarabia N. 99.  et al. 2016. HIV latency-reversing agents have diverse effects on natural killer cell function. Front. Immunol. 7:356 [Google Scholar]
  100. Leth S, Schleimann MH, Nissen SK. 100.  et al. 2016. Combined effect of Vacc-4x, recombinant human granulocyte macrophage colony-stimulating factor vaccination, and romidepsin on the HIV-1 reservoir (REDUC): a single-arm, phase 1B/2A trial. Lancet HIV 3:e463–72 [Google Scholar]
  101. Mylvaganam GH, Silvestri G, Amara RR. 101.  2015. HIV therapeutic vaccines: moving towards a functional cure. Curr. Opin. Immunol. 35:1–8 [Google Scholar]
  102. Eisele E, Siliciano RF. 102.  2012. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 37:377–88 [Google Scholar]
  103. Jin H, Li D, Sivakumaran H. 103.  et al. 2016. Shutdown of HIV-1 transcription in T cells by Nullbasic, a mutant Tat protein. MBio 7:4e00518–16 [Google Scholar]
  104. Cupelli LA, Hsu MC. 104.  1995. The human immunodeficiency virus type 1 Tat antagonist, Ro 5–3335, predominantly inhibits transcription initiation from the viral promoter. J. Virol. 69:2640–43 [Google Scholar]
  105. Mousseau G, Kessing CF, Fromentin R. 105.  et al. 2015. The Tat inhibitor didehydro-cortistatin A prevents HIV-1 reactivation from latency. MBio 6:e00465 [Google Scholar]
  106. Mousseau G, Clementz MA, Bakeman WN. 106.  et al. 2012. An analog of the natural steroidal alkaloid cortistatin A potently suppresses Tat-dependent HIV transcription. Cell Host Microbe 12:97–108 [Google Scholar]
  107. Campos N, Myburgh R, Garcel A. 107.  et al. 2015. Long lasting control of viral rebound with a new drug ABX464 targeting Rev-mediated viral RNA biogenesis. Retrovirology 12:30 [Google Scholar]
  108. Lederman MM, Cannon PM, Currier JS. 108.  et al. 2016. A cure for HIV infection: “not in my lifetime” or “just around the corner”?. Pathog. Immun. 1:154–64 [Google Scholar]
  109. Stevenson M. 109.  2017. HIV persistence in macrophages. Nat. Med. 23:538–39 [Google Scholar]
  110. Li JZ, Smith DM, Mellors JW. 110.  2015. The need for treatment interruption studies and biomarker identification in the search for an HIV cure. AIDS 29:1429–32 [Google Scholar]
/content/journals/10.1146/annurev-med-052716-031710
Loading
/content/journals/10.1146/annurev-med-052716-031710
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error