1932

Abstract

The global HIV/AIDS pandemic has resulted in 39 million deaths to date, and there are currently more than 35 million people living with HIV worldwide. Prevention, screening, and treatment strategies have led to major progress in addressing this disease globally. Diagnostics is critical for HIV prevention, screening and disease staging, and monitoring antiretroviral therapy (ART). Currently available diagnostic assays, which include polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), and western blot (WB), are complex, expensive, and time consuming. These diagnostic technologies are ill suited for use in low- and middle-income countries, where the challenge of the HIV/AIDS pandemic is most severe. Therefore, innovative, inexpensive, disposable, and rapid diagnostic platform technologies are urgently needed. In this review, we discuss challenges associated with HIV management in resource-constrained settings and review the state-of-the-art HIV diagnostic technologies for CD4+ T lymphocyte count, viral load measurement, and drug resistance testing.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-092112-143017
2015-01-14
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/med/66/1/annurev-med-092112-143017.html?itemId=/content/journals/10.1146/annurev-med-092112-143017&mimeType=html&fmt=ahah

Literature Cited

  1. Bor J, Herbst AJ, Newell ML, Barnighausen T. 1.  2013. Increases in adult life expectancy in rural South Africa: valuing the scale-up of HIV treatment. Science 339:961–65 [Google Scholar]
  2. Cohen MS, Chen YQ, McCauley M. 2.  et al. 2011. Prevention of HIV-1 infection with early antiretroviral therapy. N. Engl. J. Med. 365:493–505 [Google Scholar]
  3. 3. World Health Organization 2013. Global update on HIV treatment 2013: results, impact and opportunities http://www.who.int/hiv/pub/progressreports/update2013/en/
  4. 4. World Health Organization 2014. World Health Statistics. http://apps.who.int/iris/bitstream/10665/112738/1/9789240692671_eng.pdf?ua=1
  5. 5. World Health Organization 2014. Global updtate on the health sector response to HIV. http://www.who.int/hiv/pub/progressreports/update2014/en/ [Google Scholar]
  6. 6. UNAIDS 2011. Global HIV/AIDS response: epidemic update and health sector progress towards Universal Access http://www.unaids.org/sites/default/files/media_asset/20111130_UA_Report_en_1.pdf
  7. Creek TL, Sherman GG, Nkengasong J. 7.  et al. 2007. Infant human immunodeficiency virus diagnosis in resource-limited settings: issues, technologies, and country experiences. Am. J. Obstet. Gynecol. 197:S64–71 [Google Scholar]
  8. Persaud D, Gay H, Ziemniak C. 8.  et al. 2013. Absence of detectable HIV-1 viremia after treatment cessation in an infant. N. Engl. J. Med. 369:1828–35 [Google Scholar]
  9. 9. UNITAID 2014. HIV/AIDS diagnostic technology landscape: 4th edition http://www.unitaid.eu/images/marketdynamics/publications/UNITAID-HIV_Diagnostic_Landscape-4th_edition.pdf
  10. Wang S, Xu F, Demirci U. 10.  2010. Advances in developing HIV-1 viral load assays for resource-limited settings. Biotechnol. Adv. 28:770–81 [Google Scholar]
  11. Rosenberg NE, Kamanga G, Phiri S. 11.  et al. 2012. Detection of acute HIV infection: a field evaluation of the Determine® HIV-1/2 Ag/Ab Combo test. J. Infect. Dis. 205:528–34 [Google Scholar]
  12. Gray RH, Makumbi F, Serwadda D. 12.  et al. 2007. Limitations of rapid HIV-1 tests during screening for trials in Uganda: diagnostic test accuracy study. BMJ 335:188–91 [Google Scholar]
  13. Powers KA, Ghani AC, Miller WC. 13.  et al. 2011. The role of acute and early HIV infection in the spread of HIV and implications for transmission prevention strategies in Lilongwe, Malawi: a modelling study. Lancet 378:256–68 [Google Scholar]
  14. Mellors JW, Munoz A, Giorgi JV. 14.  et al. 1997. Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann. Intern. Med. 126:946–54 [Google Scholar]
  15. Braitstein P, Brinkhof MW, Dabis F. 15.  et al. 2006. Mortality of HIV-1-infected patients in the first year of antiretroviral therapy: comparison between low-income and high-income countries. Lancet 367:817–24 [Google Scholar]
  16. Vitoria M, Vella S, Ford N. 16.  2013. Scaling up antiretroviral therapy in resource-limited settings: adapting guidance to meet the challenges. Curr. Opin. HIV AIDS 8:12–18 [Google Scholar]
  17. Hoare A, Kerr SJ, Ruxrungtham K. 17.  et al. 2010. Hidden drug resistant HIV to emerge in the era of universal treatment access in Southeast Asia. PLOS ONE 5:e10981 [Google Scholar]
  18. van Oosterhout JJ, Brown L, Weigel R. 18.  et al. 2009. Diagnosis of antiretroviral therapy failure in Malawi: poor performance of clinical and immunological WHO criteria. Trop. Med. Int. Health 14:856–61 [Google Scholar]
  19. 19. Medecins Sans Frontieres Access Campaign 2013. Putting HIV treatment to the test: a product guide for viral load and point-of-care CD4 diagnostic tools http://www.msfaccess.org/sites/default/files/HIV_Report_VL_ENG_2013_0.pdf
  20. Yager P, Domingo GJ, Gerdes J. 20.  2008. Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 10:107–44 [Google Scholar]
  21. Wang S, Inci F, De Libero G. 21.  et al. 2013. Point-of-care assays for tuberculosis: role of nanotechnology/microfluidics. Biotechnol. Adv. 31:438–49 [Google Scholar]
  22. Louie RF, Ferguson WJ, Curtis CM. 22.  et al. 2014. Vulnerability of point-of-care test reagents and instruments to environmental stresses: implications for health professionals and developers. Clin. Chem. Lab. Med. 52:325–35 [Google Scholar]
  23. Wang S, Inci F, Chaunzwa TL. 23.  et al. 2012. Portable microfluidic chip for detection of Escherichia coli in produce and blood. Int. J. Nanomed. 7:2591–2600 [Google Scholar]
  24. Boyle DS, Hawkins KR, Steele MS. 24.  et al. 2012. Emerging technologies for point-of-care CD4 T-lymphocyte counting. Trends Biotechnol. 30:45–54 [Google Scholar]
  25. Cheng X, Liu YS, Irimia D. 25.  et al. 2007. Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices. Lab. Chip 7:746–55 [Google Scholar]
  26. Holmes D, Morgan H. 26.  2010. Single cell impedance cytometry for identification and counting of CD4 T-cells in human blood using impedance labels. Anal. Chem. 82:1455–61 [Google Scholar]
  27. Watkins NN, Sridhar S, Cheng X. 27.  et al. 2011. A microfabricated electrical differential counter for the selective enumeration of CD4+ T lymphocytes. Lab. Chip 11:1437–47 [Google Scholar]
  28. Alyassin MA, Moon S, Keles HO. 28.  et al. 2009. Rapid automated cell quantification on HIV microfluidic devices. Lab. Chip 9:3364–69 [Google Scholar]
  29. Moon S, Gurkan UA, Blander J. 29.  et al. 2011. Enumeration of CD4+ T-cells using a portable microchip count platform in Tanzanian HIV-infected patients. PLOS ONE 6:e21409 [Google Scholar]
  30. Moon S, Keles HO, Ozcan A. 30.  et al. 2009. Integrating microfluidics and lensless imaging for point-of-care testing. Biosens. Bioelectron. 24:3208–14 [Google Scholar]
  31. Gurkan UA, Moon S, Geckil H. 31.  et al. 2011. Miniaturized lensless imaging systems for cell and microorganism visualization in point-of-care testing. Biotechnol. J. 6:138–49 [Google Scholar]
  32. Jokerst JV, Floriano PN, Christodoulides N. 32.  et al. 2008. Integration of semiconductor quantum dots into nano-bio-chip systems for enumeration of CD4+ T cell counts at the point-of-need. Lab. Chip 8:2079–90 [Google Scholar]
  33. Rodriguez WR, Christodoulides N, Floriano PN. 33.  et al. 2005. A microchip CD4 counting method for HIV monitoring in resource-poor settings. PLOS Med. 2:e182 [Google Scholar]
  34. Gallegos D, Long KD, Yu H. 34.  et al. 2013. Label-free biodetection using a smartphone. Lab. Chip 13:2124–32 [Google Scholar]
  35. Wang S, Zhao X, Khimji I. 35.  et al. 2011. Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care. Lab. Chip 11:3411–18 [Google Scholar]
  36. Wang Z, Chin SY, Chin CD. 36.  et al. 2010. Microfluidic CD4+ T-cell counting device using chemiluminescence-based detection. Anal. Chem. 82:36–40 [Google Scholar]
  37. Wang S, Tasoglu S, Chen PZ. 37.  et al. 2014. Micro-a-fluidics ELISA for rapid CD4 cell count at the point-of-care. Sci. Rep. 4:3796 [Google Scholar]
  38. 38. World Health Organization 2013. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection http://apps.who.int/iris/bitstream/10665/85321/1/9789241505727_eng.pdf?ua=1
  39. Stevens WS, Scott LE, Crowe SM. 39.  2010. Quantifying HIV for monitoring antiretroviral therapy in resource-poor settings. J. Infect. Dis. 201:Suppl. 1S16–26 [Google Scholar]
  40. Tanriverdi S, Chen L, Chen S. 40.  2010. A rapid and automated sample-to-result HIV load test for near-patient application. J. Infect. Dis. 201:Suppl. 1S52–58 [Google Scholar]
  41. Usdin M, Guillerm M, Calmy A. 41.  2010. Patient needs and point-of-care requirements for HIV load testing in resource-limited settings. J. Infect. Dis. 201:Suppl. 1S73–77 [Google Scholar]
  42. Labbett W, Garcia-Diaz A, Fox Z. 42.  et al. 2009. Comparative evaluation of the ExaVir Load version 3 reverse transcriptase assay for measurement of human immunodeficiency virus type 1 plasma load. J. Clin. Microbiol. 47:3266–70 [Google Scholar]
  43. Mine M, Bedi K, Maruta T. 43.  et al. 2009. Quantitation of human immunodeficiency virus type 1 viral load in plasma using reverse transcriptase activity assay at a district hospital laboratory in Botswana: a decentralization pilot study. J. Virol. Methods 159:93–97 [Google Scholar]
  44. Drosten C, Panning M, Drexler JF. 44.  et al. 2006. Ultrasensitive monitoring of HIV-1 viral load by a low-cost real-time reverse transcription-PCR assay with internal control for the 5′ long terminal repeat domain. Clin. Chem. 52:1258–66 [Google Scholar]
  45. Rouet F, Ekouevi DK, Chaix ML. 45.  et al. 2005. Transfer and evaluation of an automated, low-cost real-time reverse transcription-PCR test for diagnosis and monitoring of human immunodeficiency virus type 1 infection in a West African resource-limited setting. J. Clin. Microbiol. 43:2709–17 [Google Scholar]
  46. Tang W, Chow WH, Li Y. 46.  et al. 2010. Nucleic acid assay system for tier II laboratories and moderately complex clinics to detect HIV in low-resource settings. J. Infect. Dis. 201:Suppl. 1S46–51 [Google Scholar]
  47. Lee HH, Dineva MA, Chua YL. 47.  et al. 2010. Simple amplification-based assay: a nucleic acid-based point-of-care platform for HIV-1 testing. J. Infect. Dis. 201:Suppl. 1S65–72 [Google Scholar]
  48. Jangam SR, Agarwal AK, Sur K, Kelso DM. 48.  2013. A point-of-care PCR test for HIV-1 detection in resource-limited settings. Biosens. Bioelectron. 42:69–75 [Google Scholar]
  49. Zhang C, Xing D. 49.  2007. Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res. 35:4223–37 [Google Scholar]
  50. Johnston MI, Fauci AS. 50.  2008. An HIV vaccine—challenges and prospects. N. Engl. J. Med. 359:888–90 [Google Scholar]
  51. Burton DR, Desrosiers RC, Doms RW. 51.  et al. 2004. HIV vaccine design and the neutralizing antibody problem. Nat. Immunol. 5:233–36 [Google Scholar]
  52. Wang S, Esfahani M, Gurkan UA. 52.  et al. 2012. Efficient on-chip isolation of HIV subtypes. Lab. Chip 12:1508–15 [Google Scholar]
  53. Kim YG, Moon S, Kuritzkes DR, Demirci U. 53.  2009. Quantum dot-based HIV capture and imaging in a microfluidic channel. Biosens. Bioelectron. 25:253–58 [Google Scholar]
  54. Shafiee H, Jahangir M, Inci F. 54.  et al. 2013. Acute on-chip HIV detection through label-free electrical sensing of viral nano-lysate. Small 9:2553–63 [Google Scholar]
  55. Larguinho M, Baptista PV. 55.  2012. Gold and silver nanoparticles for clinical diagnostics—from genomics to proteomics. J. Proteomics 75:2811–23 [Google Scholar]
  56. Wang S, Sarenac D, Chen MH. 56.  et al. 2012. Simple filter microchip for rapid separation of plasma and viruses from whole blood. Int. J. Nanomed. 7:5019–28 [Google Scholar]
  57. Ozcan A, Demirci U. 57.  2008. Ultra wide-field lens-free monitoring of cells on-chip. Lab. Chip 8:98–106 [Google Scholar]
  58. Inci F, Tokel O, Wang S. 58.  et al. 2013. Nanoplasmonic quantitative detection of intact viruses from unprocessed whole blood. ACS Nano 7:4733–45 [Google Scholar]
  59. Shafiee H, Caldwell J, Davalos R. 59.  2010. A microfluidic system for biological particle enrichment utilizing contactless dielectrophoresis. J. Assoc. Lab. Autom. 15:224–32 [Google Scholar]
  60. Shafiee H, Sano MB, Henslee EA. 60.  et al. 2010. Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab. Chip 10:438–45 [Google Scholar]
  61. Salmanzadeh A, Romero L, Shafiee H. 61.  et al. 2012. Isolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature. Lab. Chip 12:182–89 [Google Scholar]
  62. Shafiee H, Jahangir M, Inci F. 62.  et al. 2012. Towards point-of-care HIV-1 detection through electrical sensing-on-a-chip Presented at Am. Inst. Chem. Eng. Annu. Meet., Pittsburgh, PA
  63. Mok J, Mindrinos MN, Davis RW, Javanmard M. 63.  2014. Digital microfluidic assay for protein detection. Proc. Natl. Acad. Sci. USA 111:2110–15 [Google Scholar]
  64. Tokel O, Inci F, Demirci U. 64.  2014. Advances in plasmonic technologies for point of care applications. Chem. Rev. 114:5728–52 [Google Scholar]
  65. Shamah SM, Cunningham BT. 65.  2011. Label-free cell-based assays using photonic crystal optical biosensors. Analyst 136:1090–102 [Google Scholar]
  66. Shafiee H, Lidstone EA, Jahangir M. 66.  et al. 2014. Nanostructured optical photonic crystal biosensor for HIV viral load measurement. Sci. Rep. 4:1–7 doi: 10.1038/srep04116 [Google Scholar]
  67. Tang S, Hewlett I. 67.  2010. Nanoparticle-based immunoassays for sensitive and early detection of HIV-1 capsid (p24) antigen. J. Infect. Dis. 201:Suppl. 1S59–64 [Google Scholar]
  68. de la Rica R, Stevens MM. 68.  2012. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotechnol. 7:821–24 [Google Scholar]
  69. Prado JG, Shintani A, Bofill M. 69.  et al. 2004. Lack of longitudinal intrapatient correlation between p24 antigenemia and levels of human immunodeficiency virus (HIV) type 1 RNA in patients with chronic HIV infection during structured treatment interruptions. J. Clin. Microbiol. 42:1620–25 [Google Scholar]
  70. Stevens G, Rekhviashvili N, Scott LE. 70.  et al. 2005. Evaluation of two commercially available, inexpensive alternative assays used for assessing viral load in a cohort of human immunodeficiency virus type 1 subtype C-infected patients from South Africa. J. Clin. Microbiol. 43:857–61 [Google Scholar]
  71. Branson BM, Handsfield HH, Lampe MA. 71.  et al. 2006. Revised recommendations for HIV testing of adults, adolescents, and pregnant women in health-care settings. MMWR Recomm. Rep. 55:1–17 [Google Scholar]
  72. Bulterys M, Jamieson DJ, O'Sullivan MJ. 72.  et al. 2004. Rapid HIV-1 testing during labor: a multicenter study. JAMA 292:219–23 [Google Scholar]
  73. Galiwango RM, Musoke R, Lubyayi L. 73.  et al. 2013. Evaluation of current rapid HIV test algorithms in Rakai, Uganda. J. Virol. Methods 192:25–27 [Google Scholar]
  74. Franco-Paredes C, Tellez I, del Rio C. 74.  2006. Rapid HIV testing: a review of the literature and implications for the clinician. Curr. HIV/AIDS Rep. 3:169–75 [Google Scholar]
  75. Laperche S, Leballais L, Ly TD, Plantier JC. 75.  2012. Failure in the detection of HIV p24 antigen with the Determine HIV-1/2 Ag/Ab Combo rapid test. J. Infect. Dis. 206:1946–47 [Google Scholar]
  76. Chin CD, Laksanasopin T, Cheung YK. 76.  et al. 2011. Microfluidics-based diagnostics of infectious diseases in the developing world. Nat. Med. 17:1015–19 [Google Scholar]
  77. Linder V, Sia SK, Whitesides GM. 77.  2005. Reagent-loaded cartridges for valveless and automated fluid delivery in microfluidic devices. Anal. Chem. 77:64–71 [Google Scholar]
  78. Little SJ, Holte S, Routy JP. 78.  et al. 2002. Antiretroviral-drug resistance among patients recently infected with HIV. N. Engl. J. Med. 347:385–94 [Google Scholar]
  79. Lazzarin A, Clotet B, Cooper D. 79.  et al. 2003. Efficacy of enfuvirtide in patients infected with drug-resistant HIV-1 in Europe and Australia. N. Engl. J. Med. 348:2186–95 [Google Scholar]
  80. Clavel F, Hance AJ. 80.  2004. Medical progress: HIV drug resistance. N. Engl. J. Med. 350:1023–35 [Google Scholar]
  81. Petropoulos CJ, Parkin NT, Limoli KL. 81.  et al. 2000. A novel phenotypic drug susceptibility assay for human immunodeficiency virus type 1. Antimicrob. Agents Chemother. 44:920–28 [Google Scholar]
  82. Kuritzkes DR, Grant RM, Feorino P. 82.  et al. 2003. Performance characteristics of the TRUGENE HIV-1 genotyping kit and the Opengene DNA sequencing system. J. Clin. Microbiol. 41:1594–99 [Google Scholar]
  83. Eshleman SH, Hackett J, Swanson P. 83.  et al. 2004. Performance of the Celera Diagnostics ViroSeq HIV-1 genotyping system for sequence-base analysis of diverse human immunodeficiency virus type 1 strains. J. Clin. Microbiol. 42:2711–17 [Google Scholar]
  84. Mayer KH.84.  2001. Clinical use of genotypic and phenotypic drug resistance testing to monitor antiretroviral chemotherapy. Clin. Infect. Dis. 32:774–82 [Google Scholar]
  85. Xu F, Wu J, Wang S. 85.  et al. 2011. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication 3:1–13 doi: 10.1088/1758-5082/3/3/034101 [Google Scholar]
  86. Yetisen AK, Akram MS, Lowe CR. 86.  2013. Paper-based microfluidic point-of-care diagnostic devices. Lab. Chip 13:2210–51 [Google Scholar]
  87. Coskun AF, Wong J, Khodadadi D. 87.  et al. 2013. A personalized food allergen testing platform on a cellphone. Lab. Chip 13:636–40 [Google Scholar]
  88. Mudanyali O, Dimitrov S, Sikora U. 88.  et al. 2012. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab. Chip 12:2678–86 [Google Scholar]
  89. Breslauer DN, Maamari RN, Switz NA. 89.  et al. 2009. Mobile phone based clinical microscopy for global health applications. PLOS ONE 4:e6320 [Google Scholar]
  90. Smith ZJ, Chu K, Espenson AR. 90.  et al. 2011. Cell-phone-based platform for biomedical device development and education applications. PLOS ONE 6:e17150 [Google Scholar]
  91. Martinez AW, Phillips ST, Butte MJ, Whitesides GM. 91.  2007. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46:1318–20 [Google Scholar]
  92. Martinez AW, Phillips ST, Whitesides GM, Carrilho E. 92.  2010. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82:3–10 [Google Scholar]
  93. Dungchai W, Chailapakul O, Henry CS. 93.  2009. Electrochemical detection for paper-based microfluidics. Anal. Chem. 81:5821–26 [Google Scholar]
  94. Rohrman BA, Richards-Kortum RR. 94.  2012. A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab. Chip 12:3082–88 [Google Scholar]
  95. Wang S, Ge L, Zhang Y. 95.  et al. 2012. Battery-triggered microfluidic paper-based multiplex electrochemiluminescence immunodevice based on potential-resolution strategy. Lab. Chip 12:4489–98 [Google Scholar]
  96. Ge L, Wang S, Song X. 96.  et al. 2012. 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab. Chip 12:3150–58 [Google Scholar]
  97. Carrilho E, Phillips ST, Vella SJ. 97.  et al. 2009. Paper microzone plates. Anal. Chem. 81:5990–98 [Google Scholar]
  98. Bergeron M, Daneau G, Ding T. 98.  et al. 2012. Performance of the PointCare NOW system for CD4 counting in HIV patients based on five independent evaluations. PLOS ONE 7:e41166 [Google Scholar]
  99. Glencross DK, Coetzee LM, Faal M. 99.  et al. 2012. Performance evaluation of the Pima point-of-care CD4 analyser using capillary blood sampling in field tests in South Africa. J. Int. AIDS Soc. 15:1–13 doi: 10.1186/1758-2652-15-3 [Google Scholar]
  100. Watkins NN, Hassan U, Damhorst G. 100.  et al. 2013. Microfluidic CD4+ and CD8+ T lymphocyte counters for point-of-care HIV diagnostics using whole blood. Sci. Transl. Med. 5:1–11 doi: 10.1126/scitranslmed.3006870 [Google Scholar]
/content/journals/10.1146/annurev-med-092112-143017
Loading
/content/journals/10.1146/annurev-med-092112-143017
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error