1932

Abstract

Mammalian evolution entailed multiple innovations in gene regulation, including the emergence of genomic imprinting, an epigenetic regulation leading to the preferential expression of a gene from its maternal or paternal allele. Genomic imprinting is highly prevalent in the brain, yet, until recently, its central roles in neural processes have not been fully appreciated. Here, we provide a comprehensive survey of adult and developmental brain functions influenced by imprinted genes, from neural development and wiring to synaptic function and plasticity, energy balance, social behaviors, emotions, and cognition. We further review the widespread identification of parental biases alongside monoallelic expression in brain tissues, discuss their potential roles in dosage regulation of key neural pathways, and suggest possible mechanisms underlying the dynamic regulation of imprinting in the brain. This review should help provide a better understanding of the significance of genomic imprinting in the normal and pathological brain of mammals including humans.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-061010-113708
2016-07-08
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/neuro/39/1/annurev-neuro-061010-113708.html?itemId=/content/journals/10.1146/annurev-neuro-061010-113708&mimeType=html&fmt=ahah

Literature Cited

  1. Abreu AP, Dauber A, Macedo DB, Noel SD, Brito VN. et al. 2013. Central precocious puberty caused by mutations in the imprinted gene MKRN3.. N. Engl. J. Med. 368:262467–75 [Google Scholar]
  2. Ahuja R, Pinyol R, Reichenbach N, Custer L, Klingensmith J. et al. 2007. Cordon-bleu is an actin nucleation factor and controls neuronal morphology. Cell 131:2337–50 [Google Scholar]
  3. Ainsley JA, Drane L, Jacobs J, Kittelberger KA, Reijmers LG. 2014. Functionally diverse dendritic mRNAs rapidly associate with ribosomes following a novel experience. Nat. Commun. 5:4510 [Google Scholar]
  4. Al Adhami H, Evano B, Le Digarcher A, Gueydan C, Dubois E. et al. 2015. A systems-level approach to parental genomic imprinting: The imprinted gene network includes extracellular matrix genes and regulates cell cycle exit and differentiation. Genome Res. 25:353–67 [Google Scholar]
  5. Albrecht U, Sutcliffe JS, Cattanach BM, Beechey CV, Armstrong D. et al. 1997. Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat. Genet. 17:175–78 [Google Scholar]
  6. Angulo MA, Butler MG, Cataletto ME. 2015. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J. Endocrinol. Investig. 38:121249–63 [Google Scholar]
  7. Arnett MG, Muglia LM, Laryea G, Muglia LJ. 2015. Genetic approaches to hypothalamic-pituitary-adrenal axis regulation. Neuropsychopharmacology. doi: 10.1038/npp.2015.215
  8. Asmus F, Zimprich A, Tezenas Du Montcel S, Kabus C, Deuschl G. et al. 2002. Myoclonus-dystonia syndrome: ε-sarcoglycan mutations and phenotype. Ann. Neurol. 52:4489–92 [Google Scholar]
  9. Babak T, Deveale B, Tsang EK, Zhou Y, Li X. et al. 2015. Genetic conflict reflected in tissue-specific maps of genomic imprinting in human and mouse. Nat. Genet. 47:544–49 [Google Scholar]
  10. Bailey CH, Kandel ER, Harris KM. 2015. Structural components of synaptic plasticity and memory consolidation. Cold Spring Harb. Perspect. Biol. 7:7a021758 [Google Scholar]
  11. Ball ST, Kelly ML, Robson JE, Turner MD, Harrison J. et al. 2013. Gene dosage effects at the imprinted Gnas cluster. PLOS ONE 8:6e65639 [Google Scholar]
  12. Bando Y, Hirano T, Tagawa Y. 2014. Dysfunction of KCNK potassium channels impairs neuronal migration in the developing mouse cerebral cortex. Cereb. Cortex 24:41017–29 [Google Scholar]
  13. Barel O, Shalev SA, Ofir R, Cohen A, Zlotogora J. et al. 2008. Maternally inherited Birk Barel mental retardation dysmorphism syndrome caused by a mutation in the genomically imprinted potassium channel KCNK9. Am. J. Hum. Genet. 83:2193–99 [Google Scholar]
  14. Barlow DP, Stöger R, Herrmann BG, Saito K, Schweifer N. 1991. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349:630484–87 [Google Scholar]
  15. Bartolomei MS, Ferguson-Smith AC. 2011. Mammalian genomic imprinting. Cold Spring Harb. Perspect. Biol. 3:7a002592 [Google Scholar]
  16. Bartolomei MS, Zemel S, Tilghman SM. 1991. Parental imprinting of the mouse H19 gene. Nature 351:6322153–55 [Google Scholar]
  17. Bastepe M. 2012. Relative functions of Gαs and its extra-large variant XLαs in the endocrine system. Horm. Metab. Res. 44:10732–40 [Google Scholar]
  18. Batassa EM, Costanzi M, Saraulli D, Scardigli R, Barbato C. et al. 2010. RISC activity in hippocampus is essential for contextual memory. Neurosci. Lett. 471:3185–88 [Google Scholar]
  19. Bird LM. 2014. Angelman syndrome: review of clinical and molecular aspects. Appl. Clin. Genet. 7:93–104 [Google Scholar]
  20. Bischof JM, Stewart CL, Wevrick R. 2007. Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader-Willi syndrome. Hum. Mol. Genet. 16:222713–19 [Google Scholar]
  21. Bista P, Cerina M, Ehling P, Leist M, Pape H-C. et al. 2015. The role of two-pore-domain background K+ (K2P) channels in the thalamus. Pflügers Arch. Eur. J. Physiol. 467:5895–905 [Google Scholar]
  22. Bittel DC, Kibiryeva N, McNulty SG, Driscoll DJ, Butler MG, White RA. 2007. Whole genome microarray analysis of gene expression in an imprinting center deletion mouse model of Prader-Willi syndrome. Am. J. Med. Genet. 143A:5422–29 [Google Scholar]
  23. Bless E, Raitcheva D, Henion TR, Tobet S, Schwarting GA. 2006. Lactosamine modulates the rate of migration of GnRH neurons during mouse development. Eur. J. Neurosci. 24:3654–60 [Google Scholar]
  24. Boer H, Holland A, Whittington J, Butler J, Webb T, Clarke D. 2002. Psychotic illness in people with Prader Willi syndrome due to chromosome 15 maternal uniparental disomy. Lancet 359:9301135–36 [Google Scholar]
  25. Bonthuis PJ, Huang W-C, Hörndli CNS, Ferris E, Cheng T, Gregg C. 2015. Noncanonical genomic imprinting effects in offspring. Cell Rep. 12:6979–91 [Google Scholar]
  26. Bracko O, Singer T, Aigner S, Knobloch M, Winner B. et al. 2012. Gene expression profiling of neural stem cells and their neuronal progeny reveals IGF2 as a regulator of adult hippocampal neurogenesis. J. Neurosci. 32:103376–87 [Google Scholar]
  27. Brambilla R, Gnesutta N, Minichiello L, White G, Roylance AJ. et al. 1997. A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature 390:6657281–86 [Google Scholar]
  28. Brickley SG, Aller MI, Sandu C, Veale EL, Alder FG. et al. 2007. TASK-3 two-pore domain potassium channels enable sustained high-frequency firing in cerebellar granule neurons. J. Neurosci. 27:359329–40 [Google Scholar]
  29. Broad KD, Curley JP, Keverne EB. 2009. Increased apoptosis during neonatal brain development underlies the adult behavioral deficits seen in mice lacking a functional paternally expressed gene 3 (Peg3). Dev. Neurobiol. 69:5314–25 [Google Scholar]
  30. Broad KD, Keverne EB. 2011. Placental protection of the fetal brain during short-term food deprivation. PNAS 108:3715237–41 [Google Scholar]
  31. Carneiro AM, Ingram SL, Beaulieu J-M, Sweeney A, Amara SG. et al. 2002. The multiple LIM domain-containing adaptor protein Hic-5 synaptically colocalizes and interacts with the dopamine transporter. J. Neurosci. 22:167045–54 [Google Scholar]
  32. Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. 2012. Prader-Willi syndrome. Genet. Med. 14:110–26 [Google Scholar]
  33. Causeret F, Jacobs T, Terao M, Heath O, Hoshino M, Nikolic M. 2007. Neurabin-I is phosphorylated by Cdk5: implications for neuronal morphogenesis and cortical migration. Mol. Biol. Cell 18:114327–42 [Google Scholar]
  34. Chao H-T, Zoghbi HY. 2012. MeCP2: Only 100% will do. Nat. Neurosci. 15:2176–77 [Google Scholar]
  35. Charalambous M, da Rocha ST, Ferguson-Smith AC. 2007. Genomic imprinting, growth control and the allocation of nutritional resources: consequences for postnatal life. Curr. Opin. Endocrinol. Diabetes Obes. 14:13–12 [Google Scholar]
  36. Charalambous M, Ferrón SR, da Rocha ST, Murray AJ, Rowland T. et al. 2012. Imprinted gene dosage is critical for the transition to independent life. Cell Metab. 15:2209–21 [Google Scholar]
  37. Chen DY, Stern SA, Garcia-Osta A, Saunier-Rebori B, Pollonini G. et al. 2011. A critical role for IGF-II in memory consolidation and enhancement. Nature 469:7331491–97 [Google Scholar]
  38. Chen H, Qiang H, Fan K, Wang S, Zheng Z. 2014. The snoRNA MBII-52 regulates cocaine-induced conditioned place preference and locomotion in mice. PLOS ONE 9:6e99986 [Google Scholar]
  39. Chen M, Berger A, Kablan A, Zhang J, Gavrilova O, Weinstein LS. 2012. Gsα deficiency in the paraventricular nucleus of the hypothalamus partially contributes to obesity associated with Gsα mutations. Endocrinology 153:94256–65 [Google Scholar]
  40. Chen M, Gavrilova O, Liu J, Xie T, Deng C. et al. 2005. Alternative Gnas gene products have opposite effects on glucose and lipid metabolism. PNAS 102:207386–91 [Google Scholar]
  41. Chen M, Wang J, Dickerson KE, Kelleher J, Xie T. et al. 2009. Central nervous system imprinting of the G protein Gsα and its role in metabolic regulation. Cell Metab. 9:6548–55 [Google Scholar]
  42. Chen WV, Maniatis T. 2013. Clustered protocadherins. Development 140:163297–302 [Google Scholar]
  43. Cheong CY, Chng K, Ng S, Chew SB, Chan L, Ferguson-Smith AC. 2015. Germline and somatic imprinting in the nonhuman primate highlights species differences in oocyte methylation. Genome Res. 25:611–23 [Google Scholar]
  44. Chung S-H, Marzban H, Aldinger K, Dixit R, Millen K. et al. 2011. Zac1 plays a key role in the development of specific neuronal subsets in the mouse cerebellum. Neural Dev. 6:125 [Google Scholar]
  45. Cohen JE, Lee PR, Chen S, Li W, Fields RD. 2011. MicroRNA regulation of homeostatic synaptic plasticity. PNAS 108:2811650–55 [Google Scholar]
  46. Colas D, Wagstaff J, Fort P, Salvert D, Sarda N. 2005. Sleep disturbances in Ube3a maternal-deficient mice modeling Angelman syndrome. Neurobiol. Dis. 20:2471–78 [Google Scholar]
  47. Cougot N, Bhattacharyya SN, Tapia-Arancibia L, Bordonné R, Filipowicz W. et al. 2008. Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation. J. Neurosci. 28:5113793–804 [Google Scholar]
  48. Cowley M, Garfield AS, Madon-Simon M. 2014. Developmental programming mediated by complementary roles of imprinted Grb10 in mother and pup. PLOS Biol. 12:2e1001799 [Google Scholar]
  49. Crowley JJ, Zhabotynsky V, Sun W, Huang S, Pakatci IK. et al. 2015. Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance. Nat. Genet. 47:353–60 [Google Scholar]
  50. Cubelos B, Sebastián-Serrano A, Beccari L, Calcagnotto ME, Cisneros E. et al. 2010. Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron 66:4523–35 [Google Scholar]
  51. Curley JP. 2011. Is there a genomically imprinted social brain?. BioEssays 33:9662–68 [Google Scholar]
  52. Curley JP, Barton S, Surani A, Keverne EB. 2004. Coadaptation in mother and infant regulated by a paternally expressed imprinted gene. Proc. R. Soc. B 271:15451303–9 [Google Scholar]
  53. Curley JP, Pinnock SB, Dickson SL, Thresher R, Miyoshi N. et al. 2005. Increased body fat in mice with a targeted mutation of the paternally expressed imprinted gene Peg3. FASEB J. 19:101302–4 [Google Scholar]
  54. DeChiara TM, Robertson EJ, Efstratiadis A. 1991. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:4849–59 [Google Scholar]
  55. Dindot SV, Antalffy BA, Bhattacharjee MB, Beaudet AL. 2008. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum. Mol. Genet. 17:1111–18 [Google Scholar]
  56. Ding F, Li HH, Zhang S, Solomon NM, Camper SA. et al. 2008. SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice. PLOS ONE 3:3e1709 [Google Scholar]
  57. d'Isa R, Clapcote SJ, Voikar V, Wolfer DP, Giese P. et al. 2011. Mice lacking Ras-GRF1 show contextual fear conditioning but not spatial memory impairments: convergent evidence from two independently generated mouse mutant lines. Front. Behav. Neurosci. 5:00078 [Google Scholar]
  58. Dölen G, Osterweil E, Rao BSS, Smith GB, Auerbach BD. et al. 2007. Correction of fragile X syndrome in mice. Neuron 56:6955–62 [Google Scholar]
  59. Donaldson ZR, Hen R. 2015. From psychiatric disorders to animal models: a bidirectional and dimensional approach. Biol. Psychiatry 77:115–21 [Google Scholar]
  60. Drake NM, Park YJ, Shirali AS, Cleland TA, Soloway PD. 2009. Imprint switch mutations at Rasgrf1 support conflict hypothesis of imprinting and define a growth control mechanism upstream of IGF1. Mamm. Genome 20:9–10654–63 [Google Scholar]
  61. Dunbar RIM, Shultz S. 2007. Evolution in the social brain. Science 317:58431344–47 [Google Scholar]
  62. Dykens EM, Lee E, Roof E. 2011. Prader-Willi syndrome and autism spectrum disorders: an evolving story. J. Neurodev. Disord. 3:3225–37 [Google Scholar]
  63. Eaton SA, Williamson CM, Ball ST, Beechey CV, Moir L. et al. 2012. New mutations at the imprinted Gnas cluster show gene dosage effects of Gsα in postnatal growth and implicate XLαs in bone and fat metabolism but not in suckling. Mol. Cell. Biol. 32:51017–29 [Google Scholar]
  64. Eggermann T, de Nanclares GP, Maher ER, Temple IK, Tümer Z. et al. 2015. Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. Clin. Epigenet. 7:1123 [Google Scholar]
  65. Elgin SCR, Reuter G. 2013. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb. Perspect. Biol. 5:8a017780 [Google Scholar]
  66. Ferrón SR, Charalambous M, Radford E, Mcewen K, Wildner H. et al. 2012. Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature 475:7356381–85 [Google Scholar]
  67. Ferrón SR, Radford EJ, Domingo-Muelas A, Kleine I, Ramme A. et al. 2015. Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis. Nat. Commun. 6:8265 [Google Scholar]
  68. Finn EH, Smith CL, Rodriguez J, Sidow A, Baker JC. 2014. Maternal bias and escape from X chromosome imprinting in the midgestation mouse placenta. Dev. Biol. 390:180–92 [Google Scholar]
  69. Fiore R, Khudayberdiev S, Christensen M, Siegel G, Flavell SW. et al. 2009. Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J. 28:6697–710 [Google Scholar]
  70. Fiore R, Rajman M, Schwale C, Bicker S, Antoniou A. et al. 2014. MiR-134-dependent regulation of Pumilio-2 is necessary for homeostatic synaptic depression. EMBO J. 33:192231–46 [Google Scholar]
  71. Furutachi S, Matsumoto A, Nakayama KI, Gotoh Y. 2013. p57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis. EMBO J. 32:7970–81 [Google Scholar]
  72. Gao J, Wang W-Y, Mao Y-W, Gräff J, Guan J-S. et al. 2010. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466:73101105–9 [Google Scholar]
  73. Gao Q, Horvath TL. 2007. Neurobiology of feeding and energy expenditure. Annu. Rev. Neurosci. 30:1367–98 [Google Scholar]
  74. Garfield AS, Cowley M, Smith FM, Moorwood K, Stewart-Cox JE. et al. 2011. Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature 469:7331534–38 [Google Scholar]
  75. Gaughwin P, Ciesla M, Yang H, Lim B, Brundin P. 2011. Stage-specific modulation of cortical neuronal development by Mmu-miR-134. Cereb. Cortex 21:81857–69 [Google Scholar]
  76. Gehring M. 2013. Genomic imprinting: insights from plants. Annu. Rev. Genet. 47:1187–208 [Google Scholar]
  77. Gennarino VA, Alcott CE, Chen C-A, Chaudhury A, Gillentine MA. et al. 2015. NUDT21-spanning CNVs lead to neuropsychiatric disease and altered MeCP2 abundance via alternative polyadenylation. eLife 4:e10782 [Google Scholar]
  78. Giese KP, Friedman E, Telliez JB, Fedorov NB, Wines M. et al. 2001. Hippocampus-dependent learning and memory is impaired in mice lacking the Ras-guanine-nucleotide releasing factor 1 (Ras-GRF1). Neuropharmacology 41:6791–800 [Google Scholar]
  79. Godavarthi SK, Dey P, Maheshwari M, Jana NR. 2012. Defective glucocorticoid hormone receptor signaling leads to increased stress and anxiety in a mouse model of Angelman syndrome. Hum. Mol. Genet. 21:81824–34 [Google Scholar]
  80. Gotter AL, Santarelli VP, Doran SM, Tannenbaum PL, Kraus RL. et al. 2011. TASK-3 as a potential antidepressant target. Brain Res. 1416:69–79 [Google Scholar]
  81. Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM. et al. 2010. The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140:5704–16 [Google Scholar]
  82. Gregg C. 2014. Known unknowns for allele-specific expression and genomic imprinting effects. F1000Prime Rep. 6:75 [Google Scholar]
  83. Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP. et al. 2010. High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329:5992643–48 [Google Scholar]
  84. Haig D. 2014. Coadaptation and conflict, misconception and muddle, in the evolution of genomic imprinting. Heredity 113:296–103 [Google Scholar]
  85. Hall DD, Dai S, Tseng P-Y, Malik Z, Nguyen M. et al. 2013. Competition between α-actinin and Ca2-calmodulin controls surface retention of the L-type Ca2+ channel Ca(V)1.2. Neuron 78:3483–97 [Google Scholar]
  86. Hasegawa K, Kawahara T, Fujiwara K, Shimpuku M, Sasaki T. et al. 2012. Necdin controls Foxo1 acetylation in hypothalamic arcuate neurons to modulate the thyroid axis. J. Neurosci. 32:165562–72 [Google Scholar]
  87. Hasegawa K, Yoshikawa K. 2008. Necdin regulates p53 acetylation via Sirtuin1 to modulate DNA damage response in cortical neurons. J. Neurosci. 28:358772–84 [Google Scholar]
  88. Hawkes C, Jhamandas JH, Harris KH, Fu W, MacDonald RG, Kar S. 2006. Single transmembrane domain insulin-like growth factor-II/mannose-6-phosphate receptor regulates central cholinergic function by activating a G-protein-sensitive, protein kinase C-dependent pathway. J. Neurosci. 26:2585–96 [Google Scholar]
  89. He Y, Ecker JR. 2015. Non-CG methylation in the human genome. Annu. Rev. Genom. Hum. Genet 16:115–77 [Google Scholar]
  90. Hernandez A, Martinez ME, Fiering S, Galton VA, St. Germain D. 2006. Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J. Clin. Investig. 116:2476–84 [Google Scholar]
  91. Hernandez A, Martinez ME, Liao X-H, Van Sande J, Refetoff S. et al. 2007. Type 3 deiodinase deficiency results in functional abnormalities at multiple levels of the thyroid axis. Endocrinology 148:125680–87 [Google Scholar]
  92. Herzing LBK, Cook EH, Ledbetter DH. 2002. Allele-specific expression analysis by RNA-FISH demonstrates preferential maternal expression of UBE3A and imprint maintenance within 15q11–q13 duplications. Hum. Mol. Genet. 11:151707–18 [Google Scholar]
  93. Hirano K, Kaneko R, Izawa T. 2012. Single-neuron diversity generated by Protocadherin-β cluster in mouse central and peripheral nervous systems. Front. Mol. Neurosci. 5:90 [Google Scholar]
  94. Hoekstra EJ, von Oerthel L, van der Linden AJA, Schellevis RD, Scheppink G. et al. 2013. Lmx1a is an activator of Rgs4 and Grb10 and is responsible for the correct specification of rostral and medial mdDA neurons. Eur. J. Neurosci. 37:123–32 [Google Scholar]
  95. Hogart A, Wu D, LaSalle JM, Schanen NC. 2010. The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13. Neurobiol. Dis. 38:2181–91 [Google Scholar]
  96. Huang H-S, Allen JA, Mabb AM, King IF, Miriyala J. et al. 2012. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature 481:7380185–89 [Google Scholar]
  97. Huang H-S, Yoon B-J, Brooks S, Bakal R, Berrios J. et al. 2014. Snx14 regulates neuronal excitability, promotes synaptic transmission, and is imprinted in the brain of mice. PLOS ONE 9:5e98383 [Google Scholar]
  98. Isles AR. 2011. Genomic imprinting; the cost of mother's care. BioEssays 33:12924–26 [Google Scholar]
  99. Isles AR, Baum MJ, Ma D, Szeto A, Keverne EB, Allen ND. 2002. A possible role for imprinted genes in inbreeding avoidance and dispersal from the natal area in mice. Proc. R. Soc. B 269:1492665–70 [Google Scholar]
  100. Itier JM, Tremp GL, Léonard JF, Multon MC, Ret G. et al. 1998. Imprinted gene in postnatal growth role. Nature 393:6681125–26 [Google Scholar]
  101. Jacobs FMJ, van der Linden AJA, Wang Y, von Oerthel L, Sul HS. et al. 2009. Identification of Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons. Development 136:142363–73 [Google Scholar]
  102. Jauregi J, Arias C, Vegas O, Alén F, Martinez S. et al. 2007. A neuropsychological assessment of frontal cognitive functions in Prader-Willi syndrome. J. Intellect. Disabil. Res. 51:Pt. 5350–65 [Google Scholar]
  103. Jiang Y-H, Armstrong D, Albrecht U, Atkins CM. 1998. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21:4799–811 [Google Scholar]
  104. Jiang Y-H, Pan Y, Zhu L, Landa L, Yoo J. et al. 2010. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3. PLOS ONE 5:8e12278 [Google Scholar]
  105. Jiao S, Li Z. 2011. Nonapoptotic function of BAD and BAX in long-term depression of synaptic transmission. Neuron 70:4758–72 [Google Scholar]
  106. Jones BK, Levorse J, Tilghman SM. 2001. Deletion of a nuclease-sensitive region between the Igf2 and H19 genes leads to Igf2 misregulation and increased adiposity. Hum. Mol. Genet. 10:8807–14 [Google Scholar]
  107. Joseph B, Andersson ER, Vlachos P, Södersten E, Liu L. et al. 2009. p57Kip2 is a repressor of Mash1 activity and neuronal differentiation in neural stem cells. Cell Death Differ. 16:91256–65 [Google Scholar]
  108. Jouvenot Y, Poirier F, Jami J, Paldi A. 1999. Biallelic transcription of Igf2 and H19 in individual cells suggests a post-transcriptional contribution to genomic imprinting. Curr. Biol. 9:201199–202 [Google Scholar]
  109. Kaphzan H, Buffington SA, Jung JI, Rasband MN, Klann E. 2011. Alterations in intrinsic membrane properties and the axon initial segment in a mouse model of Angelman syndrome. J. Neurosci. 31:4817637–48 [Google Scholar]
  110. Kaphzan H, Buffington SA, Ramaraj AB, Lingrel JB, Rasband MN. et al. 2013. Genetic reduction of the α1 subunit of Na/K-ATPase corrects multiple hippocampal phenotypes in Angelman syndrome. Cell Rep. 4:3405–12 [Google Scholar]
  111. Kelly ML, Moir L, Jones L, Whitehill E, Anstee QM. et al. 2009. A missense mutation in the non-neural G-protein α-subunit isoforms modulates susceptibility to obesity. Int. J. Obes. Relat. Metab. Disord. 33:5507–18 [Google Scholar]
  112. Keverne EB. 2013. Importance of the matriline for genomic imprinting, brain development and behaviour. Philos. Trans. R. Soc. B 368:160920110327 [Google Scholar]
  113. Keverne EB, Fundele R, Narasimha M, Barton SC, Surani MA. 1996. Genomic imprinting and the differential roles of parental genomes in brain development. Brain Res. Dev. Brain Res. 92:191–100 [Google Scholar]
  114. Kishore S, Stamm S. 2006. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311:5758230–32 [Google Scholar]
  115. Kotzot D. 2004. Maternal uniparental disomy 14 dissection of the phenotype with respect to rare autosomal recessively inherited traits, trisomy mosaicism, and genomic imprinting. Ann. Génét. 47:3251–60 [Google Scholar]
  116. Kozlov SV, Bogenpohl JW, Howell MP, Wevrick R, Panda S. et al. 2007. The imprinted gene Magel2 regulates normal circadian output. Nat. Genet. 39:101266–72 [Google Scholar]
  117. Krechowec SO, Burton KL, Newlaczyl AU, Nunn N, Vlatković N, Plagge A. 2012. Postnatal changes in the expression pattern of the imprinted signalling protein XLαs underlie the changing phenotype of deficient mice. PLOS ONE 7:1e29753 [Google Scholar]
  118. Kriegstein A, Alvarez-Buylla A. 2009. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32:1149–84 [Google Scholar]
  119. Kurita M, Kuwajima T, Nishimura I, Yoshikawa K. 2006. Necdin downregulates CDC2 expression to attenuate neuronal apoptosis. J. Neurosci. 26:4612003–13 [Google Scholar]
  120. Kuwajima T, Hasegawa K, Yoshikawa K. 2010. Necdin promotes tangential migration of neocortical interneurons from basal forebrain. J. Neurosci. 30:103709–14 [Google Scholar]
  121. Kuwajima T, Nishimura I, Yoshikawa K. 2006. Necdin promotes GABAergic neuron differentiation in cooperation with Dlx homeodomain proteins. J. Neurosci. 26:205383–92 [Google Scholar]
  122. Labialle S, Yang L, Ruan X, Villemain A, Schmidt JV. et al. 2008. Coordinated diurnal regulation of genes from the Dlk1–Dio3 imprinted domain: implications for regulation of clusters of non-paralogous genes. Hum. Mol. Genet. 17:115–26 [Google Scholar]
  123. Lassi G, Ball ST, Maggi S, Colonna G, Nieus T. et al. 2012. Loss of Gnas imprinting differentially affects REM/NREM sleep and cognition in mice. PLOS Genet. 8:5e1002706 [Google Scholar]
  124. Lee S, Walker CL, Karten B, Kuny SL, Tennese AA. et al. 2005. Essential role for the Prader-Willi syndrome protein necdin in axonal outgrowth. Hum. Mol. Genet. 14:5627–37 [Google Scholar]
  125. Lefebvre L, Viville S, Barton SC, Ishino F, Keverne EB, Surani MA. 1998. Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat. Genet. 20:2163–69 [Google Scholar]
  126. Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD. et al. 2011. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69:5893–905 [Google Scholar]
  127. Lewis A, Mitsuya K, Umlauf D, Smith P, Dean W. et al. 2004. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat. Genet. 36:121291–95 [Google Scholar]
  128. Li H, Alavian KN, Lazrove E, Mehta N, Jones A. et al. 2013. A Bcl-xL–Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis. Nature 15:7773–85 [Google Scholar]
  129. Li JY, Chai B-X, Zhang W, Wang H, Mulholland MW. 2010. Expression of ankyrin repeat and suppressor of cytokine signaling box protein 4 (Asb-4) in proopiomelanocortin neurons of the arcuate nucleus of mice produces a hyperphagic, lean phenotype. Endocrinology 151:1134–42 [Google Scholar]
  130. Li JY, Kuick R, Thompson RC, Misek DE, Lai YM. et al. 2005. Arcuate nucleus transcriptome profiling identifies ankyrin repeat and suppressor of cytokine signalling box-containing protein 4 as a gene regulated by fasting in central nervous system feeding circuits. J. Neuroendocrinol. 17:6394–404 [Google Scholar]
  131. Li LL, Keverne EB, Aparicio SA, Ishino F, Barton SC, Surani MA. 1999. Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science 284:5412330–33 [Google Scholar]
  132. Li S, Tian X, Hartley DM, Feig LA. 2006. Distinct roles for Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) and Ras-GRF2 in the induction of long-term potentiation and long-term depression. J. Neurosci. 26:61721–29 [Google Scholar]
  133. Li Z, Jo J, Jia J-M, Lo S-C, Whitcomb DJ. et al. 2010. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141:5859–71 [Google Scholar]
  134. Linden AM, Sandu C, Aller MI, Vekovischeva OY, Rosenberg PH. et al. 2007. TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics. J. Pharmacol. Exp. Ther. 323:3924–34 [Google Scholar]
  135. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA. et al. 2013. Global epigenomic reconfiguration during mammalian brain development. Science 341:1237905 [Google Scholar]
  136. Luo Y-W, Xu Y, Cao W-Y, Zhong X-L, Duan J. et al. 2014. Insulin-like growth factor 2 mitigates depressive behavior in a rat model of chronic stress. Neuropharmacology 89C:318–24 [Google Scholar]
  137. Makita T, Sucov HM, Gariepy CE, Yanagisawa M, Ginty DD. 2008. Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature 452:7188759–63 [Google Scholar]
  138. Mancini-Dinardo D, Steele SJS, Levorse JM, Ingram RS, Tilghman SM. 2006. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev. 20:101268–82 [Google Scholar]
  139. Martinez ME, Charalambous M, Saferali A, Fiering S, Naumova AK. et al. 2014. Genomic imprinting variations in the mouse type 3 deiodinase gene between tissues and brain regions. Mol. Endocrinol. 28:111875–86 [Google Scholar]
  140. Matsumoto A, Susaki E, Onoyama I, Nakayama K, Hoshino M, Nakayama KI. 2011. Deregulation of the p57-E2F1-p53 axis results in nonobstructive hydrocephalus and cerebellar malformation in mice. Mol. Cell. Biol. 31:204176–92 [Google Scholar]
  141. McGrath J, Solter D. 1984. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:1179–83 [Google Scholar]
  142. Meister B, Perez-Manso M, Daraio T. 2013. Delta-like 1 homologue is a hypothalamus-enriched protein that is present in orexin-containing neurones of the lateral hypothalamic area. J. Neuroendocrinol. 25:7617–25 [Google Scholar]
  143. Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, Rigo F. 2015. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 518409–12
  144. Mercer RE, Michaelson SD, Chee MJS, Atallah TA, Wevrick R, Colmers WF. 2013. Magel2 is required for leptin-mediated depolarization of POMC neurons in the hypothalamic arcuate nucleus in mice. PLOS Genet. 9:1e1003207 [Google Scholar]
  145. Mercer RE, Wevrick R. 2009. Loss of magel2, a candidate gene for features of Prader-Willi syndrome, impairs reproductive function in mice. PLOS ONE 4:1e4291 [Google Scholar]
  146. Meziane H, Schaller F, Bauer S, Villard C, Matarazzo V. et al. 2015. An early postnatal oxytocin treatment prevents social and learning deficits in adult mice deficient for Magel2, a gene involved in Prader-Willi syndrome and autism. Biol. Psychiatry 78:285–94 [Google Scholar]
  147. Michalon A, Sidorov M, Ballard TM, Ozmen L, Spooren W. et al. 2012. Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron 74:149–56 [Google Scholar]
  148. Miller BR, Hen R. 2015. The current state of the neurogenic theory of depression and anxiety. Curr. Opin. Neurobiol. 30:51–58 [Google Scholar]
  149. Miller NLG, Wevrick R, Mellon PL. 2009. Necdin, a Prader-Willi syndrome candidate gene, regulates gonadotropin-releasing hormone neurons during development. Hum. Mol. Genet. 18:2248–60 [Google Scholar]
  150. Minamide R, Fujiwara K, Hasegawa K, Yoshikawa K. 2014. Antagonistic interplay between necdin and Bmi1 controls proliferation of neural precursor cells in the embryonic mouse neocortex. PLOS ONE 9:1e84460 [Google Scholar]
  151. Mishra A, Jana NR. 2008. Regulation of turnover of tumor suppressor p53 and cell growth by E6-AP, a ubiquitin protein ligase mutated in Angelman mental retardation syndrome. Cell. Mol. Life Sci. 65:4656–66 [Google Scholar]
  152. Mo A, Mukamel EA, Davis FP, Luo C, Henry GL. et al. 2015. Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86:61369–84 [Google Scholar]
  153. Mochida GH, Mahajnah M, Hill AD, Basel-Vanagaite L, Gleason D. et al. 2009. A truncating mutation of TRAPPC9 is associated with autosomal-recessive intellectual disability and postnatal microcephaly. Am. J. Hum. Genet. 85:6897–902 [Google Scholar]
  154. Mohawk JA, Green CB, Takahashi JS. 2012. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35:1445–462 [Google Scholar]
  155. Montero I, Teschke M, Tautz D. 2013. Paternal imprinting of mating preferences between natural populations of house mice (Mus musculus domesticus). Mol. Ecol. 22:92549–62 [Google Scholar]
  156. Morison IM, Ramsay JP, Spencer HG. 2005. A census of mammalian imprinting. Trends Genet. 21:8457–65 [Google Scholar]
  157. Motoyama N, Wang F, Roth KA, Sawa H, Nakayama K. et al. 1995. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267:52031506–10 [Google Scholar]
  158. Mott R, Yuan W, Kaisaki P, Gan X, Cleak J. et al. 2014. The architecture of parent-of-origin effects in mice. Cell 156:1–2332–42 [Google Scholar]
  159. Mouallem M, Shaharabany M, Weintrob N, Shalitin S, Nagelberg N. et al. 2008. Cognitive impairment is prevalent in pseudohypoparathyroidism type Ia, but not in pseudopseudohypoparathyroidism: possible cerebral imprinting of Gsα. Clin. Endocrinol. 68:2233–39 [Google Scholar]
  160. Muddashetty RS, Nalavadi VC, Gross C, Yao X, Xing L. et al. 2011. Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling. Mol. Cell 42:5673–88 [Google Scholar]
  161. Mulherkar SA, Jana NR. 2010. Loss of dopaminergic neurons and resulting behavioural deficits in mouse model of Angelman syndrome. Neurobiol. Dis. 40:3586–92 [Google Scholar]
  162. Muscatelli F, Abrous DN, Massacrier A, Boccaccio I, Le Moal M. et al. 2000. Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome. Hum. Mol. Genet. 9:203101–10 [Google Scholar]
  163. Musset B, Meuth SG, Liu GX, Derst C, Wegner S. et al. 2006. Effects of divalent cations and spermine on the K+ channel TASK-3 and on the outward current in thalamic neurons. J. Physiol. 572:Pt. 3639–57 [Google Scholar]
  164. Nakanishi H, Obaishi H, Satoh A, Wada M, Mandai K. et al. 1997. Neurabin: a novel neural tissue–specific actin filament–binding protein involved in neurite formation. J. Cell Biol. 139:4951–61 [Google Scholar]
  165. Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H. et al. 2009. Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 137:71235–46 [Google Scholar]
  166. Nicholls RD, Knoll JH, Butler MG, Karam S, Lalande M. 1989. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature 342:6247281–85 [Google Scholar]
  167. Noor A, Dupuis L, Mittal K, Lionel AC, Marshall CR. et al. 2015. 15q11.2 duplication encompassing only the UBE3A gene is associated with developmental delay and neuropsychiatric phenotypes. Hum. Mutat. 36:7689–93 [Google Scholar]
  168. Nunn N, Feetham CH, Martin J, Barrett-Jolley R, Plagge A. 2013. Elevated blood pressure, heart rate and body temperature in mice lacking the XLαs protein of the Gnas locus is due to increased sympathetic tone. Exp. Physiol. 98:101432–45 [Google Scholar]
  169. Ofengeim D, Chen Y-B, Miyawaki T, Li H, Sacchetti S. et al. 2012. N-terminally cleaved Bcl-xL mediates ischemia-induced neuronal death. Nat. Neurosci. 15:4574–80 [Google Scholar]
  170. Okae H, Hiura H, Nishida Y, Funayama R, Tanaka S. et al. 2012. Re-investigation and RNA sequencing-based identification of genes with placenta-specific imprinted expression. Hum. Mol. Genet. 21:3548–58 [Google Scholar]
  171. Ori-McKenney KM, Vallee RB. 2011. Neuronal migration defects in the Loa dynein mutant mouse. Neural Dev. 6:126 [Google Scholar]
  172. Otto SP, Gerstein AC. 2008. The evolution of haploidy and diploidy. Curr. Biol. 18:24R1121–24 [Google Scholar]
  173. Ouchi Y, Banno Y, Shimizu Y, Ando S, Hasegawa H. et al. 2013. Reduced adult hippocampal neurogenesis and working memory deficits in the Dgcr8-deficient mouse model of 22q11.2 deletion-associated schizophrenia can be rescued by IGF2. J. Neurosci. 33:229408–19 [Google Scholar]
  174. Oyang EL, Davidson BC, Lee W, Poon MM. 2011. Functional characterization of the dendritically localized mRNA neuronatin in hippocampal neurons. PLOS ONE 6:9e24879 [Google Scholar]
  175. Panda S, Antoch MP, Miller BH, Su AI, Schook AB. et al. 2002. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:3307–20 [Google Scholar]
  176. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L. et al. 2008. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32:2232–46 [Google Scholar]
  177. Pang DSJ, Robledo CJ, Carr DR, Gent TC, Vyssotski AL. et al. 2009. An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action. PNAS 106:4117546–51 [Google Scholar]
  178. Patel AJ, Lazdunski M. 2004. The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pflügers Arch. Eur. J. Physiol. 448:3261–73 [Google Scholar]
  179. Patten MM, Ross L, Curley JP, Queller DC, Bonduriansky R, Wolf JB. 2014. The evolution of genomic imprinting: theories, predictions and empirical tests. Heredity 113:2119–28 [Google Scholar]
  180. Peall KJ, Smith DJ, Kurian MA, Wardle M, Waite AJ. et al. 2013. SGCE mutations cause psychiatric disorders: clinical and genetic characterization. Brain 136:Pt. 1294–303 [Google Scholar]
  181. Peeters RP, Hernandez A, Ng L, Ma M, Sharlin DS. et al. 2013. Cerebellar abnormalities in mice lacking type 3 deiodinase and partial reversal of phenotype by deletion of thyroid hormone receptor α1. Endocrinology 154:1550–61 [Google Scholar]
  182. Peña CJ, Neugut YD, Calarco CA, Champagne FA. 2014. Effects of maternal care on the development of midbrain dopamine pathways and reward-directed behavior in female offspring. Eur. J. Neurosci. 39:6946–56 [Google Scholar]
  183. Perez JD, Rubinstein ND, Fernandez DE, Santoro SW, Needleman LA. et al. 2015. Quantitative and functional interrogation of parent-of-origin allelic expression biases in the brain. eLife 4:e07860 [Google Scholar]
  184. Perry JRB, Day F, Elks CE, Sulem P, Thompson DJ. et al. 2014. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 514:752092–97 [Google Scholar]
  185. Peters J, Williamson CM. 2007. Control of imprinting at the Gnas cluster. Epigenetics 2:4207–13 [Google Scholar]
  186. Plagge A, Gordon E, Dean W, Boiani R, Cinti S. et al. 2004. The imprinted signaling protein XLαs is required for postnatal adaptation to feeding. Nat. Genet. 36:8818–26 [Google Scholar]
  187. Powell WT, Coulson RL, Crary FK, Wong SS, Ach RA. et al. 2013. A Prader–Willi locus lncRNA cloud modulates diurnal genes and energy expenditure. Hum. Mol. Genet. 22:214318–28 [Google Scholar]
  188. Pravdivyi I, Ballanyi K, Colmers WF, Wevrick R. 2015. Progressive postnatal decline in leptin sensitivity of arcuate hypothalamic neurons in the Magel2-null mouse model of Prader–Willi syndrome. Hum. Mol. Genet 24:154276–83 [Google Scholar]
  189. Qian N, Frank D, O'Keefe D, Dao D, Zhao L. et al. 1997. The IPL gene on chromosome 11p15.5 is imprinted in humans and mice and is similar to TDAG51, implicated in Fas expression and apoptosis. Hum. Mol. Genet. 6:122021–29 [Google Scholar]
  190. Rago L, Beattie R, Taylor V, Winter J. 2014. miR379-410 cluster miRNAs regulate neurogenesis and neuronal migration by fine-tuning N-cadherin. EMBO J. 33:8906–20 [Google Scholar]
  191. Relkovic D, Doe CM, Humby T, Johnstone KA, Resnick JL. et al. 2010. Behavioural and cognitive abnormalities in an imprinting centre deletion mouse model for Prader-Willi syndrome. Eur. J. Neurosci. 31:1156–64 [Google Scholar]
  192. Ressler KJ, Mayberg HS. 2007. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat. Neurosci. 10:91116–24 [Google Scholar]
  193. Riday TT, Dankoski EC, Krouse MC, Fish EW, Walsh PL. et al. 2012. Pathway-specific dopaminergic deficits in a mouse model of Angelman syndrome. J. Clin. Investig. 122:124544–54 [Google Scholar]
  194. Sahoo T, Del Gaudio D, German JR, Shinawi M, Peters SU. et al. 2008. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat. Genet. 40:6719–21 [Google Scholar]
  195. Sato M, Stryker MP. 2010. Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a. PNAS 107:125611–16 [Google Scholar]
  196. Savitt JM, Jang SS, Mu W, Dawson VL, Dawson TM. 2005. Bcl-x is required for proper development of the mouse substantia nigra. J. Neurosci. 25:296721–28 [Google Scholar]
  197. Schaaf CP, Gonzalez-Garay ML, Xia F, Potocki L, Gripp KW. et al. 2013. Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nat. Genet. 45:111405–8 [Google Scholar]
  198. Schaefer A, Im HI, Venø MT, Fowler CD, Min A. et al. 2010. Argonaute 2 in dopamine 2 receptor–expressing neurons regulates cocaine addiction. J. Exp. Med. 207:91843–51 [Google Scholar]
  199. Schaller F, Watrin F, Sturny R, Massacrier A, Szepetowski P, Muscatelli F. 2010. A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Hum. Mol. Genet. 19:244895–4905 [Google Scholar]
  200. Schanen NC. 2006. Epigenetics of autism spectrum disorders. Hum. Mol. Genet. 15:Suppl. 2R138–50 [Google Scholar]
  201. Schmidt-Edelkraut U, Daniel G, Hoffmann A, Spengler D. 2014. Zac1 regulates cell cycle arrest in neuronal progenitors via Tcf4. Mol. Cell. Biol. 34:61020–30 [Google Scholar]
  202. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME. et al. 2006. A brain-specific microRNA regulates dendritic spine development. Nature 439:7074283–89 [Google Scholar]
  203. Shi S, Bichell TJ, Ihrie RA, Johnson CH. 2015. Ube3a imprinting impairs circadian robustness in Angelman syndrome models. Curr. Biol. 25:5537–45 [Google Scholar]
  204. Silva-Santos S, van Woerden GM, Bruinsma CF, Mientjes E, Jolfaei MA. et al. 2015. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model. J. Clin. Investig. 125:52069–76 [Google Scholar]
  205. Sittig LJ, Redei EE. 2014. Fine-tuning notes in the behavioral symphony: parent-of-origin allelic gene expression in the brain. Epigenetics Cancer Part A 86:93–106 [Google Scholar]
  206. Smith SEP, Zhou Y-D, Zhang G, Jin Z, Stoppel DC, Anderson MP. 2011. Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci. Transl. Med. 3:103103ra97 [Google Scholar]
  207. Spencer HG, Clark AG. 2014. Non-conflict theories for the evolution of genomic imprinting. Heredity 113:2112–18 [Google Scholar]
  208. Steffen PA, Ringrose L. 2014. What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat. Rev. Mol. Cell. Biol. 15:5340–56 [Google Scholar]
  209. Störchel PH, Thümmler J, Siegel G, Aksoy-Aksel A, Zampa F. et al. 2015. A large-scale functional screen identifies Nova1 and Ncoa3 as regulators of neuronal miRNA function. EMBO J. 34:2237–54 [Google Scholar]
  210. Sun J, Zhu G, Liu Y, Standley S, Ji A. et al. 2015. UBE3A regulates synaptic plasticity and learning and memory by controlling SK2 channel endocytosis. Cell Rep. 12:3449–61 [Google Scholar]
  211. Surani M, Barton SC, Norris ML. 1984. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:5959548–50 [Google Scholar]
  212. Swaney WT, Curley JP, Champagne FA, Keverne EB. 2007. Genomic imprinting mediates sexual experience-dependent olfactory learning in male mice. PNAS 104:146084–89 [Google Scholar]
  213. Swaney WT, Curley JP, Champagne FA, Keverne EB. 2008. The paternally expressed gene Peg3 regulates sexual experience-dependent preferences for estrous odors. Behav. Neurosci. 122:5963–73 [Google Scholar]
  214. Tamada K, Tomonaga S, Hatanaka F, Nakai N, Takao K. et al. 2010. Decreased exploratory activity in a mouse model of 15q duplication syndrome: implications for disturbance of serotonin signaling. PLOS ONE 5:12e15126 [Google Scholar]
  215. Terranova R, Yokobayashi S, Stadler MB, Otte AP, van Lohuizen M. et al. 2008. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev. Cell 15:5668–79 [Google Scholar]
  216. Tunster SJ, Jensen AB, John RM. 2013. Imprinted genes in mouse placental development and the regulation of fetal energy stores. Reproduction 145:5R117–37 [Google Scholar]
  217. Turan S, Bastepe M. 2013. The GNAS complex locus and human diseases associated with loss-of-function mutations or epimutations within this imprinted gene. Horm. Res. Paediatr. 80:4229–41 [Google Scholar]
  218. Tury A, Mairet-Coello G, DiCicco-Bloom E. 2012. The multiple roles of the cyclin-dependent kinase inhibitory protein p57KIP2 in cerebral cortical neurogenesis. Dev. Neurobiol. 72:6821–42 [Google Scholar]
  219. Úbeda F, Gardner A. 2015. Mother and offspring in conflict: Why not?. PLOS Biol. 13:3e1002084 [Google Scholar]
  220. Umlauf D, Goto Y, Cao R, Cerqueira F, Wagschal A. et al. 2004. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat. Genet. 36:121296–1300 [Google Scholar]
  221. Valente T, Junyent F, Auladell C. 2005. Zac1 is expressed in progenitor/stem cells of the neuroectoderm and mesoderm during embryogenesis: differential phenotype of the Zac1-expressing cells during development. Dev. Dyn. 233:2667–79 [Google Scholar]
  222. van Woerden GM, Harris KD, Hojjati MR, Gustin RM, Qiu S. et al. 2007. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation. Nat. Neurosci. 10:3280–82 [Google Scholar]
  223. Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S. et al. 2006. Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev. Cell 11:5711–22 [Google Scholar]
  224. Villanueva C, Jacquier S, de Roux N. 2012. DLK1 is a somato-dendritic protein expressed in hypothalamic arginine-vasopressin and oxytocin neurons. PLOS ONE 7:4e36134 [Google Scholar]
  225. Vitali P, Royo H, Marty V, Bortolin-Cavaillé M-L, Cavaillé J. 2010. Long nuclear-retained non-coding RNAs and allele-specific higher-order chromatin organization at imprinted snoRNA gene arrays. J. Cell Sci. 123:170–83 [Google Scholar]
  226. Wallace ML, Burette AC, Weinberg RJ, Philpot BD. 2012. Maternal loss of Ube3a produces an excitatory/inhibitory imbalance through neuron type-specific synaptic defects. Neuron 74:5793–800 [Google Scholar]
  227. Wang H, Huang Z, Huang L, Niu S, Rao X. et al. 2012. Hypothalamic Ahi1 mediates feeding behavior through interaction with 5-HT2C receptor. J. Biol. Chem. 287:32237–46 [Google Scholar]
  228. Wang Q, Chow J, Hong J, Smith A, Moreno C. et al. 2011. Recent acquisition of imprinting at the rodent Sfmbt2 locus correlates with insertion of a large block of miRNAs. BMC Genom. 12:1204 [Google Scholar]
  229. Wang Y, Joh K, Masuko S, Yatsuki H, Soejima H. et al. 2004. The mouse Murr1 gene is imprinted in the adult brain, presumably due to transcriptional interference by the antisense-oriented U2af1-rs1 gene. Mol. Cell. Biol. 24:1270–79 [Google Scholar]
  230. Washburn CP, Sirois JE, Talley EM, Guyenet PG, Bayliss DA. 2002. Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH- and halothane-sensitive K+conductance. J. Neurosci. 22:41256–65 [Google Scholar]
  231. Weber M, Schmitt A, Wischmeyer E, Döring F. 2008. Excitability of pontine startle processing neurones is regulated by the two-pore-domain K+ channel TASK-3 coupled to 5-HT2C receptors. Eur. J. Neurosci. 28:5931–40 [Google Scholar]
  232. Weeber EJ, Jiang Y-H, Elgersma Y, Varga AW, Carrasquillo Y. et al. 2003. Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J. Neurosci. 23:72634–44 [Google Scholar]
  233. Wilkins JF, Haig D. 2003. What good is genomic imprinting: the function of parent-specific gene expression. Nat. Rev. Genet. 4:5359–68 [Google Scholar]
  234. Wilkinson LS, Davies W, Isles AR. 2007. Genomic imprinting effects on brain development and function. Nat. Rev. Neurosci. 8:11832–43 [Google Scholar]
  235. Wolf JB, Hager R. 2006. A maternal-offspring coadaptation theory for the evolution of genomic imprinting. PLOS Biol 4:2238–43 [Google Scholar]
  236. Woodcock KA, Oliver C, Humphreys GW. 2009. Task-switching deficits and repetitive behaviour in genetic neurodevelopmental disorders: data from children with Prader-Willi syndrome chromosome 15 q11-q13 deletion and boys with Fragile X syndrome. Cogn. Neuropsychol. 26:2172–94 [Google Scholar]
  237. Wu L-J, Ren M, Wang H, Kim SS, Cao X, Zhuo M. 2008. Neurabin contributes to hippocampal long-term potentiation and contextual fear memory. PLOS ONE 3:1e1407 [Google Scholar]
  238. Xie T, Chen M, Gavrilova O, Lai EW, Liu J, Weinstein LS. 2008. Severe obesity and insulin resistance due to deletion of the maternal Gsα allele is reversed by paternal deletion of the Gsα imprint control region. Endocrinology 149:52443–50 [Google Scholar]
  239. Xie T, Plagge A, Gavrilova O, Pack S, Jou W. et al. 2006. The alternative stimulatory G protein α-subunit XLαs is a critical regulator of energy and glucose metabolism and sympathetic nerve activity in adult mice. J. Biol. Chem. 281:2818989–99 [Google Scholar]
  240. Xie W, Barr C, Kim A, Yue F, Lee A. 2012. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell 148:4816–31 [Google Scholar]
  241. Yamaguchi A, Taniguchi M, Hori O, Ogawa S, Tojo N. et al. 2002. Peg3/Pw1 is involved in p53-mediated cell death pathway in brain ischemia/hypoxia. J. Biol. Chem. 277:1623–29 [Google Scholar]
  242. Yamasaki K, Joh K, Ohta T, Masuzaki H, Ishimaru T. et al. 2003. Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. Hum. Mol. Genet. 12:8837–47 [Google Scholar]
  243. Yamasaki Y, Kayashima T, Soejima H, Kinoshita A, Yoshiura K-I. et al. 2005. Neuron-specific relaxation of Igf2r imprinting is associated with neuron-specific histone modifications and lack of its antisense transcript Air. Hum. Mol. Genet. 14:172511–20 [Google Scholar]
  244. Yamasaki-Ishizaki Y, Kayashima T, Mapendano CK, Soejima H, Ohta T. et al. 2007. Role of DNA methylation and histone H3 lysine 27 methylation in tissue-specific imprinting of mouse Grb10. Mol. Cell. Biol. 27:2732–42 [Google Scholar]
  245. Yan Y, Frisén J, Lee MH, Massagué J, Barbacid M. 1997. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev. 11:8973–83 [Google Scholar]
  246. Yashiro K, Riday TT, Condon KH, Roberts AC, Bernardo DR. et al. 2009. Ube3a is required for experience-dependent maturation of the neocortex. Nat. Neurosci. 12:6777–83 [Google Scholar]
  247. Ye X, Carew TJ. 2010. Small G protein signaling in neuronal plasticity and memory formation: the specific role of Ras family proteins. Neuron 68:3340–61 [Google Scholar]
  248. Ye X, Kohtz A, Pollonini G, Riccio A, Alberini CM. 2015. Insulin like growth factor 2 expression in the rat brain both in basal condition and following learning predominantly derives from the maternal allele. PLOS ONE 10:10e0141078 [Google Scholar]
  249. Yi JJ, Berrios J, Newbern JM, Snider WD, Philpot BD. et al. 2015. An autism-linked mutation disables phosphorylation control of UBE3A. Cell 162:4795–807 [Google Scholar]
  250. Yokoi F, Dang MT, Li J, Li Y. 2006. Myoclonus, motor deficits, alterations in emotional responses and monoamine metabolism in ε-sarcoglycan deficient mice. J. Biochem. 140:1141–46 [Google Scholar]
  251. Yu S, Yu D, Lee E, Eckhaus M, Lee R. et al. 1998. Variable and tissue-specific hormone resistance in heterotrimeric Gs protein α-subunit (Gsα) knockout mice is due to tissue-specific imprinting of the Gsα gene. PNAS 95:158715–20 [Google Scholar]
  252. Zhang L, Yokoi F, Parsons DS, Standaert DG, Li Y. 2012. Alteration of striatal dopaminergic neurotransmission in a mouse model of DYT11 myoclonus-dystonia. PLOS ONE 7:3e33669 [Google Scholar]
  253. Zhou Y, Zhang X, Klibanski A. 2012. MEG3 noncoding RNA: a tumor suppressor. J. Mol. Endocrinol. 48:3R45–53 [Google Scholar]
  254. Zimprich A, Grabowski M, Asmus F, Naumann M, Berg D. et al. 2001. Mutations in the gene encoding ε-sarcoglycan cause myoclonus–dystonia syndrome. Nat. Genet. 29:166–69 [Google Scholar]
  255. Zito K, Knott G, Shepherd GMG, Shenolikar S, Svoboda K. 2004. Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton. Neuron 44:2321–34 [Google Scholar]
/content/journals/10.1146/annurev-neuro-061010-113708
Loading
/content/journals/10.1146/annurev-neuro-061010-113708
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error