1932

Abstract

Vitamin D deficiency is prevalent throughout the world, and growing evidence supports a requirement for optimal vitamin D levels for the healthy developing and adult brain. Vitamin D has important roles in proliferation and differentiation, calcium signaling within the brain, and neurotrophic and neuroprotective actions; it may also alter neurotransmission and synaptic plasticity. Recent experimental studies highlight the impact that vitamin D deficiency has on brain function in health and disease. In addition, results from recent animal studies suggest that vitamin D deficiency during adulthood may exacerbate underlying brain disorders and/or worsen recovery from brain stressors. An increasing number of epidemiological studies indicate that vitamin D deficiency is associated with a wide range of neuropsychiatric disorders and neurodegenerative diseases. Vitamin D supplementation is readily available and affordable, and this review highlights the need for further research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-071813-105557
2014-07-17
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/nutr/34/1/annurev-nutr-071813-105557.html?itemId=/content/journals/10.1146/annurev-nutr-071813-105557&mimeType=html&fmt=ahah

Literature Cited

  1. Abrahams BS, Geschwind DH. 1.  2008. Advances in autism genetics: on the threshold of a new neurobiology. Nat. Rev. Genet. 9:341–55 [Google Scholar]
  2. Afzal S, Bojesen SE, Nordestgaard BG. 2.  2014. Reduced 25-hydroxyvitamin D and risk of Alzheimer's disease and vascular dementia. Alzheimer's Dement. 10296–302
  3. Altemus KL, Finger S, Wolf C, Birge SJ. 3.  1987. Behavioral correlates of vitamin D deficiency. Physiol. Behav. 39:435–40 [Google Scholar]
  4. Amato R, Pinelli M, Monticelli A, Miele G, Cocozza S. 4.  2010. Schizophrenia and vitamin D related genes could have been subject to latitude-driven adaptation. BMC Evol. Biol. 10:351 [Google Scholar]
  5. Anglin RE, Samaan Z, Walter SD, McDonald SD. 5.  2013. Vitamin D deficiency and depression in adults: systematic review and meta-analysis. Br. J. Psychiatry 202:100–7 [Google Scholar]
  6. Annweiler C, Herrmann FR, Fantino B, Brugg B, Beauchet O. 6.  2012. Effectiveness of the combination of memantine plus vitamin D on cognition in patients with Alzheimer disease: a pre-post pilot study. Cogn. Behav. Neurol. 25:121–27 [Google Scholar]
  7. Annweiler C, Llewellyn DJ, Beauchet O. 7.  2013. Low serum vitamin D concentrations in Alzheimer's disease: a systematic review and meta-analysis. J. Alzheimer's Dis. 33:659–74 [Google Scholar]
  8. Annweiler C, Rolland Y, Schott AM, Blain H, Vellas B. 8.  et al. 2012. Higher vitamin D dietary intake is associated with lower risk of Alzheimer's disease: a 7-year follow-up. J. Gerontol. A Biol. Sci. Med. Sci. 67:1205–11 [Google Scholar]
  9. Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. 9.  2010. Vitamin D: modulator of the immune system. Curr. Opin. Pharmacol. 10:482–96 [Google Scholar]
  10. Baksi SN, Hughes MJ. 10.  1982. Chronic vitamin D deficiency in the weanling rat alters catecholamine metabolism in the cortex. Brain Res. 242:387–90 [Google Scholar]
  11. Balden R, Selvamani A, Sohrabji F. 11.  2012. Vitamin D deficiency exacerbates experimental stroke injury and dysregulates ischemia-induced inflammation in adult rats. Endocrinology 153:2420–35 [Google Scholar]
  12. Balion C, Griffith LE, Strifler L, Henderson M, Patterson C. 12.  et al. 2012. Vitamin D, cognition, and dementia: a systematic review and meta-analysis. Neurology 79:1397–405 [Google Scholar]
  13. Barchetta I, Carotti S, Labbadia G, Gentilucci UV, Muda AO. 13.  et al. 2012. Liver vitamin D receptor, CYP2R1, and CYP27A1 expression: relationship with liver histology and vitamin D3 levels in patients with nonalcoholic steatohepatitis or hepatitis C virus. Hepatology 56:2180–87 [Google Scholar]
  14. Becker A, Eyles DW, McGrath JJ, Grecksch G. 14.  2005. Transient prenatal vitamin D deficiency is associated with subtle alterations in learning and memory functions in adult rats. Behav. Brain Res. 161:306–12 [Google Scholar]
  15. Beecham GW, Martin ER, Li YJ, Slifer MA, Gilbert JR. 15.  et al. 2009. Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. Am. J. Hum. Genet. 84:35–43 [Google Scholar]
  16. Bikle D. 16.  2009. Nonclassic actions of vitamin D. J. Clin. Endocrinol. Metab. 94:26–34 [Google Scholar]
  17. Bonnet AM, Houeto JL. 17.  1999. Pathophysiology of Parkinson's disease. Biomed. Pharmacother. 53:117–21 [Google Scholar]
  18. Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A. 18.  et al. 2008. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr. Rev. 29:726–76 [Google Scholar]
  19. Brewer LD, Thibault V, Chen KC, Langub MC, Landfield PW, Porter NM. 19.  2001. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J. Neurosci. 21:98–108 [Google Scholar]
  20. Briones TL, Darwish H. 20.  2012. Vitamin D mitigates age-related cognitive decline through the modulation of pro-inflammatory state and decrease in amyloid burden. J. Neuroinflamm. 9:244 [Google Scholar]
  21. Brondum-Jacobsen P, Nordestgaard BG, Schnohr P, Benn M. 21.  2013. 25-Hydroxyvitamin D and symptomatic ischemic stroke: an original study and meta-analysis. Ann. Neurol. 73:38–47 [Google Scholar]
  22. Brown J, Bianco JI, McGrath JJ, Eyles DW. 22.  2003. 1,25-Dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci. Lett. 343:139–43 [Google Scholar]
  23. Brown TH, Chapman PF, Kairiss EW, Keenan CL. 23.  1988. Long-term synaptic potentiation. Science 242:724–28 [Google Scholar]
  24. Buell JS, Scott TM, Dawson-Hughes B, Dallal GE, Rosenberg IH. 24.  et al. 2009. Vitamin D is associated with cognitive function in elders receiving home health services. J. Gerontol. A Biol. Sci. Med. Sci. 64:888–95 [Google Scholar]
  25. Burket R, McGrath J, Eyles D. 25.  2003. Vitamin D receptor expression in the embryonic rat brain. Neurosci. Res. Commun. 33:63–71 [Google Scholar]
  26. Burne TH, Becker A, Brown J, Eyles DW, Mackay-Sim A, McGrath JJ. 26.  2004. Transient prenatal vitamin D deficiency is associated with hyperlocomotion in adult rats. Behav. Brain Res. 154:549–55 [Google Scholar]
  27. Burne TH, Feron F, Brown J, Eyles DW, McGrath JJ, Mackay-Sim A. 27.  2004. Combined prenatal and chronic postnatal vitamin D deficiency in rats impairs prepulse inhibition of acoustic startle. Physiol. Behav. 81:651–55 [Google Scholar]
  28. Byrne JH, Voogt M, Turner KM, Eyles DW, McGrath JJ, Burne TH. 28.  2013. The impact of adult vitamin D deficiency on behaviour and brain function in male Sprague-Dawley rats. PLoS ONE 8:e71593 [Google Scholar]
  29. Cantorna MT, Hayes CE, DeLuca HF. 29.  1996. 1,25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc. Natl. Acad. Sci. USA 93:7861–64 [Google Scholar]
  30. Cantorna MT, Woodward WD, Hayes CE, DeLuca HF. 30.  1998. 1,25-Dihydroxyvitamin D3 is a positive regulator for the two anti-encephalitogenic cytokines TGF-beta 1 and IL-4. J. Immunol. 160:5314–19 [Google Scholar]
  31. Cass WA, Peters LE, Fletcher AM, Yurek DM. 31.  2012. Evoked dopamine overflow is augmented in the striatum of calcitriol treated rats. Neurochem. Int. 60:186–91 [Google Scholar]
  32. Cass WA, Smith MP, Peters LE. 32.  2006. Calcitriol protects against the dopamine- and serotonin-depleting effects of neurotoxic doses of methamphetamine. Ann. N. Y. Acad. Sci. 1074:261–71 [Google Scholar]
  33. Cekic M, Cutler SM, VanLandingham JW, Stein DG. 33.  2011. Vitamin D deficiency reduces the benefits of progesterone treatment after brain injury in aged rats. Neurobiol. Aging 32:864–74 [Google Scholar]
  34. Chao MV. 34.  1994. The p75 neurotrophin receptor. J. Neurobiol. 25:1373–85 [Google Scholar]
  35. Chen J, Olivares-Navarrete R, Wang Y, Herman TR, Boyan BD, Schwartz Z. 35.  2010. Protein-disulfide isomerase-associated 3 (PDIA3) mediates the membrane response to 1,25-dihydroxyvitamin D3 in osteoblasts. J. Biol. Chem. 285:37041–50 [Google Scholar]
  36. Chen TC, Chimeh F, Lu Z, Mathieu J, Person KS. 36.  et al. 2007. Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Arch. Biochem. Biophys. 460:213–17 [Google Scholar]
  37. Christiansen C, Rodbro P, Sjo O. 37.  1974. “Anticonvulsant action” of vitamin D in epileptic patients? A controlled pilot study. Br. Med. J. 2:258–59 [Google Scholar]
  38. Clemens Z, Hollo A, Kelemen A, Rasonyi G, Fabo D. 38.  et al. 2013. Seasonality in epileptic seizures. J. Neurol. Transl. Neurosci. 1:1016 [Google Scholar]
  39. Correale J, Ysrraelit MC, Gaitan MI. 39.  2009. Immunomodulatory effects of vitamin D in multiple sclerosis. Brain 132:1146–60 [Google Scholar]
  40. Cui X, Groves NJ, Burne TH, Eyles DW, McGrath JJ. 40.  2013. Low vitamin D concentration exacerbates adult brain dysfunction. Am. J. Clin. Nutr. 5:907–8 [Google Scholar]
  41. Cui X, McGrath JJ, Burne TH, Mackay-Sim A, Eyles DW. 41.  2007. Maternal vitamin D depletion alters neurogenesis in the developing rat brain. Int. J. Dev. Neurosci. 25:227–32 [Google Scholar]
  42. Cui X, Pelekanos M, Burne TH, McGrath JJ, Eyles DW. 42.  2010. Maternal vitamin D deficiency alters the expression of genes involved in dopamine specification in the developing rat mesencephalon. Neurosci. Lett. 486:220–23 [Google Scholar]
  43. Cui X, Pelekanos M, Liu PY, Burne TH, McGrath JJ, Eyles DW. 43.  2013. The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain. Neuroscience 236:77–87 [Google Scholar]
  44. Daly RM, Gagnon C, Lu ZX, Magliano DJ, Dunstan DW. 44.  et al. 2012. Prevalence of vitamin D deficiency and its determinants in Australian adults aged 25 years and older: a national, population-based study. Clin. Endocrinol. (Oxf.) 77:26–35 [Google Scholar]
  45. Ding H, Dhima K, Lockhart KC, Locascio JJ, Hoesing AN. 45.  et al. 2013. Unrecognized vitamin D3 deficiency is common in Parkinson disease: Harvard Biomarker Study. Neurology 81:1531–37 [Google Scholar]
  46. Dursun E, Gezen-Ak D, Yilmazer S. 46.  2011. A novel perspective for Alzheimer's disease: vitamin D receptor suppression by amyloid-beta and preventing the amyloid-beta induced alterations by vitamin D in cortical neurons. J. Alzheimer's Dis. 23:207–19 [Google Scholar]
  47. Dursun E, Gezen-Ak D, Yilmazer S. 47.  2013. A new mechanism for amyloid-β induction of iNOS: vitamin D-VDR pathway disruption. J. Alzheimer's Dis. 36:459–74 [Google Scholar]
  48. Eisman JA, Barkla DH, Tutton PJ. 48.  1987. Suppression of in vivo growth of human cancer solid tumor xenografts by 1,25-dihydroxyvitamin D3. Cancer Res. 47:21–25 [Google Scholar]
  49. Engelsen O, Brustad M, Aksnes L, Lund E. 49.  2005. Daily duration of vitamin D synthesis in human skin with relation to latitude, total ozone, altitude, ground cover, aerosols and cloud thickness. Photochem. Photobiol. 81:1287–90 [Google Scholar]
  50. Evatt ML, Delong MR, Khazai N, Rosen A, Triche S, Tangpricha V. 50.  2008. Prevalence of vitamin D insufficiency in patients with Parkinson disease and Alzheimer disease. Arch. Neurol. 65:1348–52 [Google Scholar]
  51. Eyles D, Almeras L, Benech P, Patatian A, Mackay-Sim A. 51.  et al. 2007. Developmental vitamin D deficiency alters the expression of genes encoding mitochondrial, cytoskeletal and synaptic proteins in the adult rat brain. J. Steroid Biochem. Mol. Biol. 103:538–45 [Google Scholar]
  52. Eyles D, Brown J, Mackay-Sim A, McGrath J, Feron F. 52.  2003. Vitamin D3 and brain development. Neuroscience 118:641–53 [Google Scholar]
  53. Eyles DW, Burne TH, McGrath JJ. 53.  2013. Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front. Neuroendocrinol. 34:47–64 [Google Scholar]
  54. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. 54.  2005. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J. Chem. Neuroanat. 29:21–30 [Google Scholar]
  55. Falkenstein E, Tillmann HC, Christ M, Feuring M, Wehling M. 55.  2000. Multiple actions of steroid hormones—a focus on rapid, nongenomic effects. Pharmacol. Rev. 52:513–56 [Google Scholar]
  56. Fatemi SH, Folsom TD. 56.  2009. The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr. Bull. 35:528–48 [Google Scholar]
  57. Fernandes de Abreu DA, Eyles D, Feron F. 57.  2009. Vitamin D, a neuro-immunomodulator: implications for neurodegenerative and autoimmune diseases. Psychoneuroendocrinology 34:Suppl. 1S265–77 [Google Scholar]
  58. Fernandes de Abreu DA, Ibrahim EC, Boucraut J, Khrestchatisky M, Feron F. 58.  2010. Severity of experimental autoimmune encephalomyelitis is unexpectedly reduced in mice born to vitamin D-deficient mothers. J. Steroid Biochem. Mol. Biol. 121:250–53 [Google Scholar]
  59. Fernandes de Abreu DA, Landel V, Barnett AG, McGrath J, Eyles D, Feron F. 59.  2012. Prenatal vitamin D deficiency induces an early and more severe experimental autoimmune encephalomyelitis in the second generation. Int. J. Mol. Sci. 13:10911–19 [Google Scholar]
  60. Fernandes de Abreu DA, Nivet E, Baril N, Khrestchatisky M, Roman F, Feron F. 60.  2010. Developmental vitamin D deficiency alters learning in C57Bl/6J mice. Behav. Brain Res. 208:603–8 [Google Scholar]
  61. Fernell E, Barnevik-Olsson M, Bagenholm G, Gillberg C, Gustafsson S, Saaf M. 61.  2010. Serum levels of 25-hydroxyvitamin D in mothers of Swedish and of Somali origin who have children with and without autism. Acta Paediatr. 99:743–47 [Google Scholar]
  62. Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P. 62.  et al. 2005. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470–72 [Google Scholar]
  63. Frim DM, Yee WM, Isacson O. 63.  1993. NGF reduces striatal excitotoxic neuronal loss without affecting concurrent neuronal stress. Neuroreport 4:655–58 [Google Scholar]
  64. Frith C. 64.  1996. Neuropsychology of schizophrenia. What are the implications of intellectual and experiential abnormalities for the neurobiology of schizophrenia?. Br. Med. Bull. 52:618–26 [Google Scholar]
  65. Garcion E, Sindji L, Leblondel G, Brachet P, Darcy F. 65.  1999. 1,25-Dihydroxyvitamin D3 regulates the synthesis of gamma-glutamyl transpeptidase and glutathione levels in rat primary astrocytes. J. Neurochem. 73:859–66 [Google Scholar]
  66. Garcion E, Sindji L, Montero-Menei C, Andre C, Brachet P, Darcy F. 66.  1998. Expression of inducible nitric oxide synthase during rat brain inflammation: regulation by 1,25-dihydroxyvitamin D3. Glia 22:282–94 [Google Scholar]
  67. Garcion E, Sindji L, Nataf S, Brachet P, Darcy F, Montero-Menei CN. 67.  2003. Treatment of experimental autoimmune encephalomyelitis in rat by 1,25-dihydroxyvitamin D3 leads to early effects within the central nervous system. Acta Neuropathol. 105:438–48 [Google Scholar]
  68. Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D. 68.  2002. New clues about vitamin D functions in the nervous system. Trends Endocrinol. Metab. 13:100–5 [Google Scholar]
  69. Gash DM, Zhang Z, Gerhardt G. 69.  1998. Neuroprotective and neurorestorative properties of GDNF. Ann. Neurol. 44:S121–25 [Google Scholar]
  70. Gezen-Ak D, Dursun E, Bilgic B, Hanagasi H, Ertan T. 70.  et al. 2012. Vitamin D receptor gene haplotype is associated with late-onset Alzheimer's disease. Tohoku J. Exp. Med. 228:189–96 [Google Scholar]
  71. Gezen-Ak D, Dursun E, Yilmazer S. 71.  2011. The effects of vitamin D receptor silencing on the expression of LVSCC-A1C and LVSCC-A1D and the release of NGF in cortical neurons. PLoS ONE 6:e17553 [Google Scholar]
  72. Girgis CM, Clifton-Bligh RJ, Mokbel N, Cheng K, Gunton JE. 72.  2013. Vitamin D signaling regulates proliferation, differentiation and myotube size in C2C12 skeletal muscle cells. Endocrinology 155:347–57 [Google Scholar]
  73. Grant WB, Cannell JJ. 73.  2013. Autism prevalence in the United States with respect to solar UV-B doses: an ecological study. Dermatoendocrinology 5:159–64 [Google Scholar]
  74. Grecksch G, Ruthrich H, Hollt V, Becker A. 74.  2009. Transient prenatal vitamin D deficiency is associated with changes of synaptic plasticity in the dentate gyrus in adult rats. Psychoneuroendocrinology 34:Suppl. 1S258–64 [Google Scholar]
  75. Griffin MD, Lutz W, Phan VA, Bachman LA, McKean DJ, Kumar R. 75.  2001. Dendritic cell modulation by 1α,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc. Natl. Acad. Sci. USA 98:6800–5 [Google Scholar]
  76. Groves NJ, Kesby JP, Eyles DW, McGrath JJ, Mackay-Sim A, Burne TH. 76.  2013. Adult vitamin D deficiency leads to behavioural and brain neurochemical alterations in C57BL/6J and BALB/c mice. Behav. Brain Res. 241:120–31 [Google Scholar]
  77. Harms LR, Burne TH, Eyles DW, McGrath JJ. 77.  2011. Vitamin D and the brain. Best Pract. Res. Clin. Endocrinol. Metab. 25:657–69 [Google Scholar]
  78. Harms LR, Eyles DW, McGrath JJ, Mackay-Sim A, Burne TH. 78.  2008. Developmental vitamin D deficiency alters adult behaviour in 129/SvJ and C57BL/6J mice. Behav. Brain Res. 187:343–50 [Google Scholar]
  79. Harrison PJ. 79.  1999. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122:Part 4593–624 [Google Scholar]
  80. Haussler MR, Whitfield GK, Haussler CA, Hsieh JC, Thompson PD. 80.  et al. 1998. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J. Bone Miner. Res. 13:325–49 [Google Scholar]
  81. Heaney RP, Recker RR, Grote J, Horst RL, Armas LA. 81.  2011. Vitamin D3 is more potent than vitamin D2 in humans. J. Clin. Endocrinol. Metab. 96:E447–52 [Google Scholar]
  82. Hewison M, Burke F, Evans KN, Lammas DA, Sansom DM. 82.  et al. 2007. Extra-renal 25-hydroxyvitamin D3-1α-hydroxylase in human health and disease. J. Steroid Biochem. Mol. Biol. 103:316–21 [Google Scholar]
  83. Hoang MT, Defina LF, Willis BL, Leonard DS, Weiner MF, Brown ES. 83.  2011. Association between low serum 25-hydroxyvitamin D and depression in a large sample of healthy adults: the Cooper Center Longitudinal Study. Mayo Clin. Proc. 86:1050–55 [Google Scholar]
  84. Hohman EE, Martin BR, Lachcik PJ, Gordon DT, Fleet JC, Weaver CM. 84.  2011. Bioavailability and efficacy of vitamin D2 from UV-irradiated yeast in growing, vitamin D-deficient rats. J. Agric. Food Chem. 59:2341–46 [Google Scholar]
  85. Holick MF. 84a.  1995. Environmental factors that influence the cutaneous production of vitamin D. Am. J. Clin. Nutr. 61:3 Suppl.638–45S [Google Scholar]
  86. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA. 85.  et al. 2012. Guidelines for preventing and treating vitamin D deficiency and insufficiency revisited. J. Clin. Endocrinol. Metab. 97:1153–58 [Google Scholar]
  87. Hollo A, Clemens Z, Kamondi A, Lakatos P, Szucs A. 86.  2012. Correction of vitamin D deficiency improves seizure control in epilepsy: a pilot study. Epilepsy Behav. 24:131–33 [Google Scholar]
  88. Hoogendijk WJ, Lips P, Dik MG, Deeg DJ, Beekman AT, Penninx BW. 87.  2008. Depression is associated with decreased 25-hydroxyvitamin D and increased parathyroid hormone levels in older adults. Arch. Gen. Psychiatry 65:508–12 [Google Scholar]
  89. Horst RL, Napoli JL, Littledike ET. 88.  1982. Discrimination in the metabolism of orally dosed ergocalciferol and cholecalciferol by the pig, rat and chick. Biochem. J. 204:185–89 [Google Scholar]
  90. Hua F, Reiss JI, Tang H, Wang J, Fowler X. 89.  et al. 2012. Progesterone and low-dose vitamin D hormone treatment enhances sparing of memory following traumatic brain injury. Horm. Behav. 61:642–51 [Google Scholar]
  91. Jiang P, Zhang WY, Li HD, Cai HL, Liu YP, Chen LY. 90.  2013. Stress and vitamin D: altered vitamin D metabolism in both the hippocampus and myocardium of chronic unpredictable mild stress exposed rats. Psychoneuroendocrinology 38:2091–98 [Google Scholar]
  92. Jorde R, Sneve M, Figenschau Y, Svartberg J, Waterloo K. 91.  2008. Effects of vitamin D supplementation on symptoms of depression in overweight and obese subjects: randomized double blind trial. J. Intern. Med. 264:599–609 [Google Scholar]
  93. Jorde R, Strand Hutchinson Kjaergaard M M, Sneve M, Grimnes G. 92.  2013. Supplementation with high doses of vitamin D to subjects without vitamin D deficiency may have negative effects: pooled data from four intervention trials in Tromsø. ISRN Endocrinol. 2013:348705 [Google Scholar]
  94. Joseph B, Wallen-Mackenzie A, Benoit G, Murata T, Joodmardi E. 93.  et al. 2003. p57Kip2 cooperates with Nurr1 in developing dopamine cells. Proc. Natl. Acad. Sci. USA 100:15619–24 [Google Scholar]
  95. Kaelber CT, Moul DE, Farmer ME. 94.  1995. Epidemiology of depression. Handbook of Depression EE Beckham, WR Leber 3–35 New York: Guilford [Google Scholar]
  96. Kampman MT, Wilsgaard T, Mellgren SI. 95.  2007. Outdoor activities and diet in childhood and adolescence relate to MS risk above the Arctic Circle. J. Neurol. 254:471–77 [Google Scholar]
  97. Kearns CM, Cass WA, Smoot K, Kryscio R, Gash DM. 96.  1997. GDNF protection against 6-OHDA: time dependence and requirement for protein synthesis. J. Neurosci. 17:7111–18 [Google Scholar]
  98. Keilhoff G, Grecksch G, Becker A. 97.  2010. Haloperidol normalized prenatal vitamin D depletion-induced reduction of hippocampal cell proliferation in adult rats. Neurosci. Lett. 476:94–98 [Google Scholar]
  99. Kesby JP, Burne TH, McGrath JJ, Eyles DW. 98.  2006. Developmental vitamin D deficiency alters MK 801-induced hyperlocomotion in the adult rat: an animal model of schizophrenia. Biol. Psychiatry 60:591–96 [Google Scholar]
  100. Kesby JP, Cui X, Burne TH, Eyles DW. 99.  2013. Altered dopamine ontogeny in the developmentally vitamin D deficient rat and its relevance to schizophrenia. Front. Cell Neurosci. 7:111 [Google Scholar]
  101. Kesby JP, Cui X, Ko P, McGrath JJ, Burne TH, Eyles DW. 100.  2009. Developmental vitamin D deficiency alters dopamine turnover in neonatal rat forebrain. Neurosci. Lett. 461:155–58 [Google Scholar]
  102. Kesby JP, Cui X, O'Loan J, McGrath JJ, Burne TH, Eyles DW. 101.  2010. Developmental vitamin D deficiency alters dopamine-mediated behaviors and dopamine transporter function in adult female rats. Psychopharmacology (Berl.) 208:159–68 [Google Scholar]
  103. Khanal RC, Nemere I. 102.  2007. The ERp57/GRp58/1,25D3-MARRS receptor: multiple functional roles in diverse cell systems. Curr. Med. Chem. 14:1087–93 [Google Scholar]
  104. Khoraminya N, Tehrani-Doost M, Jazayeri S, Hosseini A, Djazayery A. 103.  2013. Therapeutic effects of vitamin D as adjunctive therapy to fluoxetine in patients with major depressive disorder. Aust. N. Z. J. Psychiatry 47:271–75 [Google Scholar]
  105. Kinney DK, Barch DH, Chayka B, Napoleon S, Munir KM. 104.  2010. Environmental risk factors for autism: Do they help cause de novo genetic mutations that contribute to the disorder?. Med. Hypotheses 74:102–6 [Google Scholar]
  106. Kjaergaard M, Waterloo K, Wang CE, Almas B, Figenschau Y. 105.  et al. 2012. Effect of vitamin D supplement on depression scores in people with low levels of serum 25-hydroxyvitamin D: nested case-control study and randomised clinical trial. Br. J. Psychiatry 201:360–68 [Google Scholar]
  107. Knekt P, Kilkkinen A, Rissanen H, Marniemi J, Saaksjarvi K, Heliovaara M. 106.  2010. Serum vitamin D and the risk of Parkinson disease. Arch. Neurol. 67:808–11 [Google Scholar]
  108. Ko P, Burkert R, McGrath J, Eyles D. 107.  2004. Maternal vitamin D3 deprivation and the regulation of apoptosis and cell cycle during rat brain development. Brain Res. Dev. Brain Res. 153:61–68 [Google Scholar]
  109. Korsching S, Auburger G, Heumann R, Scott J, Thoenen H. 108.  1985. Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. EMBO J. 4:1389–93 [Google Scholar]
  110. Kume T, Nishikawa H, Tomioka H, Katsuki H, Akaike A. 109.  et al. 2000. p75-mediated neuroprotection by NGF against glutamate cytotoxicity in cortical cultures. Brain Res. 852:279–89 [Google Scholar]
  111. Lee SJ, Lee HK, Kweon YS, Lee CT, Lee KU. 110.  2009. The impact of executive function on emotion recognition and emotion experience in patients with schizophrenia. Psychiatry Investig. 6:156–62 [Google Scholar]
  112. Lefebvre d'Hellencourt C, Montero-Menei CN, Bernard R, Couez D. 111.  2003. Vitamin D3 inhibits proinflammatory cytokines and nitric oxide production by the EOC13 microglial cell line. J. Neurosci. Res. 71:575–82 [Google Scholar]
  113. Lehmann B, Meurer M. 112.  2010. Vitamin D metabolism. Dermatol. Ther. 23:2–12 [Google Scholar]
  114. Lemire JM, Adams JS. 113.  1992. 1,25-Dihydroxyvitamin D3 inhibits the passive transfer of cellular immunity by a myelin basic protein-specific T cell clone. J. Bone Miner. Res. 7:171–77 [Google Scholar]
  115. Lemire JM, Archer DC. 114.  1991. 1,25-Dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J. Clin. Invest. 87:1103–7 [Google Scholar]
  116. Lips P. 115.  2010. Worldwide status of vitamin D nutrition. J. Steroid Biochem. Mol. Biol. 121:297–300 [Google Scholar]
  117. Llewellyn DJ, Lang IA, Langa KM, Muniz-Terrera G, Phillips CL. 116.  et al. 2010. Vitamin D and risk of cognitive decline in elderly persons. Arch. Intern. Med. 170:1135–41 [Google Scholar]
  118. Llewellyn DJ, Langa KM, Lang IA. 117.  2009. Serum 25-hydroxyvitamin D concentration and cognitive impairment. J. Geriatr. Psychiatry Neurol. 22:188–95 [Google Scholar]
  119. Lorr M, Sonn TM, Katz MM. 118.  1967. Toward a definition of depression. Arch. Gen. Psychiatry 17:183–86 [Google Scholar]
  120. Mahon BD, Gordon SA, Cruz J, Cosman F, Cantorna MT. 119.  2003. Cytokine profile in patients with multiple sclerosis following vitamin D supplementation. J. Neuroimmunol. 134:128–32 [Google Scholar]
  121. Maisonpierre PC, Belluscio L, Squinto S, Ip NY, Furth ME. 120.  et al. 1990. Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science 247:1446–51 [Google Scholar]
  122. Manolagas SC, Provvedini DM, Tsoukas CD. 121.  1985. Interactions of 1,25-dihydroxyvitamin D3 and the immune system. Mol. Cell Endocrinol. 43:113–22 [Google Scholar]
  123. Marniemi J, Alanen E, Impivaara O, Seppanen R, Hakala P. 122.  et al. 2005. Dietary and serum vitamins and minerals as predictors of myocardial infarction and stroke in elderly subjects. Nutr. Metab. Cardiovasc. Dis. 15:188–97 [Google Scholar]
  124. Mayne CG, Spanier JA, Relland LM, Williams CB, Hayes CE. 123.  2011. 1,25-Dihydroxyvitamin D3 acts directly on the T lymphocyte vitamin D receptor to inhibit experimental autoimmune encephalomyelitis. Eur. J. Immunol. 41:822–32 [Google Scholar]
  125. Mazdeh M, Seifirad S, Kazemi N, Seifrabie MA, Dehghan A, Abbasi H. 124.  2013. Comparison of vitamin D3 serum levels in new diagnosed patients with multiple sclerosis versus their healthy relatives. Acta Med. Iran. 51:289–92 [Google Scholar]
  126. McDonald C, Murray RM. 125.  2000. Early and late environmental risk factors for schizophrenia. Brain Res. Brain Res. Rev. 31:130–37 [Google Scholar]
  127. McGrath J. 126.  1999. Hypothesis: Is low prenatal vitamin D a risk-modifying factor for schizophrenia?. Schizophr. Res. 40:173–77 [Google Scholar]
  128. McGrath J, Scragg R, Chant D, Eyles D, Burne T, Obradovic D. 127.  2007. No association between serum 25-hydroxyvitamin D3 level and performance on psychometric tests in NHANES III. Neuroepidemiology 29:49–54 [Google Scholar]
  129. McGrath JJ, Eyles DW, Pedersen CB, Anderson C, Ko P. 128.  et al. 2010. Neonatal vitamin D status and risk of schizophrenia: a population-based case-control study. Arch. Gen. Psychiatry 67:889–94 [Google Scholar]
  130. Meguid NA, Hashish AF, Anwar M, Sidhom G. 129.  2010. Reduced serum levels of 25-hydroxy and 1,25-dihydroxy vitamin D in Egyptian children with autism. J. Altern. Complement. Med. 16:641–45 [Google Scholar]
  131. Menegaz D, Mizwicki MT, Barrientos-Duran A, Chen N, Henry HL, Norman AW. 130.  2011. Vitamin D receptor (VDR) regulation of voltage-gated chloride channels by ligands preferring a VDR-alternative pocket (VDR-AP). Mol. Endocrinol. 25:1289–300 [Google Scholar]
  132. Milaneschi Y, Bandinelli S, Penninx BW, Vogelzangs N, Corsi AM. 131.  et al. 2011. Depressive symptoms and inflammation increase in a prospective study of older adults: a protective effect of a healthy (Mediterranean-style) diet. Mol. Psychiatry 16:589–90 [Google Scholar]
  133. Milaneschi Y, Shardell M, Corsi AM, Vazzana R, Bandinelli S. 132.  et al. 2010. Serum 25-hydroxyvitamin D and depressive symptoms in older women and men. J. Clin. Endocrinol. Metab. 95:3225–33 [Google Scholar]
  134. Miyaura C, Abe E, Nomura H, Nishii Y, Suda T. 133.  1982. 1α,25-Dihydroxyvitamin D3 suppresses proliferation of murine granulocyte-macrophage progenitor cells (CFU-C). Biochem. Biophys. Res. Commun. 108:1728–33 [Google Scholar]
  135. Mora JR, Iwata M, von Andrian UH. 134.  2008. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat. Rev. Immunol. 8:685–98 [Google Scholar]
  136. Moskovitz RA. 135.  1978. Seasonality in schizophrenia. Lancet 1:664 [Google Scholar]
  137. Mostafa GA, Al-Ayadhi LY. 136.  2012. Reduced serum concentrations of 25-hydroxy vitamin D in children with autism: relation to autoimmunity. J. Neuroinflammation 9:201 [Google Scholar]
  138. Moussavi S, Chatterji S, Verdes E, Tandon A, Patel V, Ustun B. 137.  2007. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet 370:851–58 [Google Scholar]
  139. Mozaffari-Khosravi H, Nabizade L, Yassini-Ardakani SM, Hadinedoushan H, Barzegar K. 138.  2013. The effect of 2 different single injections of high dose of vitamin D on improving the depression in depressed patients with vitamin D deficiency: a randomized clinical trial. J. Clin. Psychopharmacol. 33:378–85 [Google Scholar]
  140. Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. 139.  2006. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296:2832–38 [Google Scholar]
  141. Munger KL, Zhang SM, O'Reilly E, Hernan MA, Olek MJ. 140.  et al. 2004. Vitamin D intake and incidence of multiple sclerosis. Neurology 62:60–65 [Google Scholar]
  142. Nataf S, Garcion E, Darcy F, Chabannes D, Muller JY, Brachet P. 141.  1996. 1,25 Dihydroxyvitamin D3 exerts regional effects in the central nervous system during experimental allergic encephalomyelitis. J. Neuropathol. Exp. Neurol. 55:904–14 [Google Scholar]
  143. Naveilhan P, Neveu I, Baudet C, Funakoshi H, Wion D. 142.  et al. 1996. 1,25-Dihydroxyvitamin D3 regulates the expression of the low-affinity neurotrophin receptor. Brain Res. Mol. Brain Res. 41:259–68 [Google Scholar]
  144. Naveilhan P, Neveu I, Wion D, Brachet P. 143.  1996. 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport 7:2171–75 [Google Scholar]
  145. Nemere I, Garbi N, Hammerling G, Hintze KJ. 144.  2012. Role of the 1,25D3-MARRS receptor in the 1,25(OH)2D3-stimulated uptake of calcium and phosphate in intestinal cells. Steroids 77:897–902 [Google Scholar]
  146. Neveu I, Naveilhan P, Baudet C, Brachet P, Metsis M. 145.  1994. 1,25-Dihydroxyvitamin D3 regulates NT-3, NT-4 but not BDNF mRNA in astrocytes. Neuroreport 6:124–26 [Google Scholar]
  147. Neveu I, Naveilhan P, Jehan F, Baudet C, Wion D. 146.  et al. 1994. 1,25-Dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells. Brain Res. Mol. Brain Res. 24:70–76 [Google Scholar]
  148. Nissou MF, Brocard J, El Atifi M, Guttin A, Andrieux A. 147.  et al. 2013. The transcriptomic response of mixed neuron-glial cell cultures to 1,25-dihydroxyvitamin D3 includes genes limiting the progression of neurodegenerative diseases. J. Alzheimer's Dis. 35:553–64 [Google Scholar]
  149. O'Gorman C, Lucas R, Taylor B. 148.  2012. Environmental risk factors for multiple sclerosis: a review with a focus on molecular mechanisms. Int. J. Mol. Sci. 13:11718–52 [Google Scholar]
  150. Pearlson GD. 149.  2000. Neurobiology of schizophrenia. Ann. Neurol. 48:556–66 [Google Scholar]
  151. Pendyala G, Ninemire C, Fox HS. 150.  2012. Protective role for the disulfide isomerase PDIA3 in methamphetamine neurotoxicity. PLoS ONE 7:e38909 [Google Scholar]
  152. Peterson A, Mattek N, Clemons A, Bowman GL, Buracchio T. 151.  et al. 2012. Serum vitamin D concentrations are associated with falling and cognitive function in older adults. J. Nutr. Health Aging 16:898–901 [Google Scholar]
  153. Pilz S, Dobnig H, Fischer JE, Wellnitz B, Seelhorst U. 152.  et al. 2008. Low vitamin D levels predict stroke in patients referred to coronary angiography. Stroke 39:2611–13 [Google Scholar]
  154. Pols HA, Birkenhager JC, Foekens JA, van Leeuwen JP. 153.  1990. Vitamin D: a modulator of cell proliferation and differentiation. J. Steroid Biochem. Mol. Biol. 37:873–76 [Google Scholar]
  155. Pozuelo-Moyano B, Benito-Leon J, Mitchell AJ, Hernandez-Gallego J. 154.  2013. A systematic review of randomized, double-blind, placebo-controlled trials examining the clinical efficacy of vitamin D in multiple sclerosis. Neuroepidemiology 40:147–53 [Google Scholar]
  156. Procopio M, Marriott PK. 155.  1998. Seasonality of birth in epilepsy: a Danish study. Acta Neurol. Scand. 98:297–301 [Google Scholar]
  157. Procopio M, Marriott PK, Davies RJ. 156.  2006. Seasonality of birth in epilepsy: a Southern Hemisphere study. Seizure 15:17–21 [Google Scholar]
  158. Procopio M, Marriott PK, Williams P. 157.  1997. Season of birth: aetiological implications for epilepsy. Seizure 6:99–105 [Google Scholar]
  159. Prufer K, Barsony J. 158.  2002. Retinoid X receptor dominates the nuclear import and export of the unliganded vitamin D receptor. Mol. Endocrinol. 16:1738–51 [Google Scholar]
  160. Prufer K, Veenstra TD, Jirikowski GF, Kumar R. 159.  1999. Distribution of 1,25-dihydroxyvitamin D3 receptor immunoreactivity in the rat brain and spinal cord. J. Chem. Neuroanat. 16:135–45 [Google Scholar]
  161. Pugliatti M, Harbo HF, Holmoy T, Kampman MT, Myhr KM. 160.  et al. 2008. Environmental risk factors in multiple sclerosis. Acta Neurol. Scand. Suppl. 188:34–40 [Google Scholar]
  162. Quintero EM, Willis LM, Zaman V, Lee J, Boger HA. 161.  et al. 2004. Glial cell line-derived neurotrophic factor is essential for neuronal survival in the locus coeruleus-hippocampal noradrenergic pathway. Neuroscience 124:137–46 [Google Scholar]
  163. Ramagopalan SV, Dyment DA, Cader MZ, Morrison KM, Disanto G. 162.  et al. 2011. Rare variants in the CYP27B1 gene are associated with multiple sclerosis. Ann. Neurol. 70:881–86 [Google Scholar]
  164. Ramagopalan SV, Heger A, Berlanga AJ, Maugeri NJ, Lincoln MR. 163.  et al. 2010. A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res. 20:1352–60 [Google Scholar]
  165. Salami M, Talaei SA, Davari S, Taghizadeh M. 164.  2012. Hippocampal long term potentiation in rats under different regimens of vitamin D: an in vivo study. Neurosci. Lett. 509:56–59 [Google Scholar]
  166. Sanchez B, Lopez-Martin E, Segura C, Labandeira-Garcia JL, Perez-Fernandez R. 165.  2002. 1,25-Dihydroxyvitamin D3 increases striatal GDNF mRNA and protein expression in adult rats. Brain Res. Mol. Brain Res. 108:143–46 [Google Scholar]
  167. Sanchez B, Relova JL, Gallego R, Ben-Batalla I, Perez-Fernandez R. 166.  2009. 1,25-Dihydroxyvitamin D3 administration to 6-hydroxydopamine-lesioned rats increases glial cell line-derived neurotrophic factor and partially restores tyrosine hydroxylase expression in substantia nigra and striatum. J. Neurosci. Res. 87:723–32 [Google Scholar]
  168. Sanders KM, Stuart AL, Williamson EJ, Jacka FN, Dodd S. 167.  et al. 2011. Annual high-dose vitamin D3 and mental well-being: randomised controlled trial. Br. J. Psychiatry 198:357–64 [Google Scholar]
  169. Sato Y, Honda Y, Iwamoto J, Kanoko T, Satoh K. 168.  2005. Abnormal bone and calcium metabolism in immobilized Parkinson's disease patients. Mov. Disord. 20:1598–603 [Google Scholar]
  170. Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA. 169.  et al. 2011. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–19 [Google Scholar]
  171. Schrader M, Kahlen JP, Carlberg C. 170.  1997. Functional characterization of a novel type of 1α,25-dihydroxyvitamin D3 response element identified in the mouse c-fos promoter. Biochem. Biophys. Res. Commun. 230:646–51 [Google Scholar]
  172. Schuster I. 171.  2011. Cytochromes P450 are essential players in the vitamin D signaling system. Biochim. Biophys. Acta 1814:186–99 [Google Scholar]
  173. Shahbeigi S, Pakdaman H, Fereshtehnejad SM, Nikravesh E, Mirabi N, Jalilzadeh G. 172.  2013. Vitamin D3 concentration correlates with the severity of multiple sclerosis. Int. J. Prev. Med. 4:585–91 [Google Scholar]
  174. Simpson S Jr, Blizzard L, Otahal P, Van der Mei I, Taylor B. 173.  2011. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J. Neurol. Neurosurg. Psychiatry 82:1132–41 [Google Scholar]
  175. Slinin Y, Paudel ML, Taylor BC, Fink HA, Ishani A. 174.  et al. 2010. 25-Hydroxyvitamin D levels and cognitive performance and decline in elderly men. Neurology 74:33–41 [Google Scholar]
  176. Sonnenberg J, Luine VN, Krey LC, Christakos S. 175.  1986. 1,25-Dihydroxyvitamin D3 treatment results in increased choline acetyltransferase activity in specific brain nuclei. Endocrinology 118:1433–39 [Google Scholar]
  177. Stephensen CB, Zerofsky M, Burnett DJ, Lin YP, Hammock BD. 176.  et al. 2012. Ergocalciferol from mushrooms or supplements consumed with a standard meal increases 25-hydroxyergocalciferol but decreases 25-hydroxycholecalciferol in the serum of healthy adults. J. Nutr. 142:1246–52 [Google Scholar]
  178. Suzuki M, Yoshioka M, Hashimoto M, Murakami M, Noya M. 177.  et al. 2013. Randomized, double-blind, placebo-controlled trial of vitamin D supplementation in Parkinson disease. Am. J. Clin. Nutr. 97:1004–13 [Google Scholar]
  179. Taghizadeh M, Talaei SA, Salami M. 178.  2013. Vitamin D deficiency impairs spatial learning in adult rats. Iran. Biomed. J. 17:42–48 [Google Scholar]
  180. Tekes K, Gyenge M, Folyovich A, Csaba G. 179.  2009. Influence of neonatal vitamin A or vitamin D treatment on the concentration of biogenic amines and their metabolites in the adult rat brain. Horm. Metab. Res. 41:277–80 [Google Scholar]
  181. Tekes K, Gyenge M, Hantos M, Csaba G. 180.  2009. Transgenerational hormonal imprinting caused by vitamin A and vitamin D treatment of newborn rats. Alterations in the biogenic amine contents of the adult brain. Brain Dev. 31:666–70 [Google Scholar]
  182. Tenenhouse A, Warner M, Commissiong JW. 181.  1991. Neurotransmitters in the CNS of the vitamin D deficient, hypocalcemic rat. Neurochem. Int. 18:249–55 [Google Scholar]
  183. Tohda C, Urano T, Umezaki M, Nemere I, Kuboyama T. 182.  2012. Diosgenin is an exogenous activator of 1,25D3-MARRS/Pdia3/ERp57 and improves Alzheimer's disease pathologies in 5XFAD mice. Sci. Rep. 2:535 [Google Scholar]
  184. Tomac A, Widenfalk J, Lin LF, Kohno T, Ebendal T. 183.  et al. 1995. Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult. Proc. Natl. Acad. Sci. USA 92:8274–78 [Google Scholar]
  185. Tsai MJ, O'Malley BW. 184.  1994. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 63:451–86 [Google Scholar]
  186. Tu WJ, Zhao SJ, Xu DJ, Chen H. 185.  2014. Serum 25-hydroxyvitamin D predicts the short-term outcomes of Chinese patients with acute ischaemic stroke. Clin. Sci. (Lond.) 126:339–46 [Google Scholar]
  187. Turner KM, Young JW, McGrath JJ, Eyles DW, Burne TH. 186.  2013. Cognitive performance and response inhibition in developmentally vitamin D (DVD)-deficient rats. Behav. Brain Res. 242:47–53 [Google Scholar]
  188. Van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, Van Herck E. 187.  et al. 2001. Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Proc. Natl. Acad. Sci. USA 98:13324–29 [Google Scholar]
  189. van der Mei IA, Ponsonby AL, Dwyer T, Blizzard L, Simmons R. 188.  et al. 2003. Past exposure to sun, skin phenotype, and risk of multiple sclerosis: case-control study. BMJ 327:316 [Google Scholar]
  190. VanAmerongen BM, Dijkstra CD, Lips P, Polman CH. 189.  2004. Multiple sclerosis and vitamin D: an update. Eur. J. Clin. Nutr. 58:1095–109 [Google Scholar]
  191. Veenstra TD, Prufer K, Koenigsberger C, Brimijoin SW, Grande JP, Kumar R. 190.  1998. 1,25-Dihydroxyvitamin D3 receptors in the central nervous system of the rat embryo. Brain Res. 804:193–205 [Google Scholar]
  192. Walbert T, Jirikowski GF, Prufer K. 191.  2001. Distribution of 1,25-dihydroxyvitamin D3 receptor immunoreactivity in the limbic system of the rat. Horm. Metab. Res. 33:525–31 [Google Scholar]
  193. Wang JY, Wu JN, Cherng TL, Hoffer BJ, Chen HH. 192.  et al. 2001. Vitamin D3 attenuates 6-hydroxydopamine-induced neurotoxicity in rats. Brain Res. 904:67–75 [Google Scholar]
  194. Wang L, Hara K, Van Baaren JM, Price JC, Beecham GW. 193.  et al. 2012. Vitamin D receptor and Alzheimer's disease: a genetic and functional study. Neurobiol. Aging 33:1844e1–9 [Google Scholar]
  195. Wang Y, Chang CF, Morales M, Chiang YH, Hoffer J. 194.  2002. Protective effects of glial cell line-derived neurotrophic factor in ischemic brain injury. Ann. N. Y. Acad. Sci. 962:423–37 [Google Scholar]
  196. Wang Y, Zhu J, DeLuca HF. 195.  2012. Where is the vitamin D receptor?. Arch. Biochem. Biophys. 523:123–33 [Google Scholar]
  197. Wergeland S, Torkildsen O, Myhr KM, Aksnes L, Mork SJ, Bo L. 196.  2011. Dietary vitamin D3 supplements reduce demyelination in the cuprizone model. PLoS ONE 6:e26262 [Google Scholar]
  198. Williams JH, Wellman NA, Geaney DP, Cowen PJ, Feldon J, Rawlins JN. 197.  1998. Reduced latent inhibition in people with schizophrenia: an effect of psychosis or of its treatment. Br. J. Psychiatry 172:243–49 [Google Scholar]
  199. Wion D, MacGrogan D, Neveu I, Jehan F, Houlgatte R, Brachet P. 198.  1991. 1,25-Dihydroxyvitamin D3 is a potent inducer of nerve growth factor synthesis. J. Neurosci. Res. 28:110–14 [Google Scholar]
  200. Wright DW, Kellermann AL, Hertzberg VS, Clark PL, Frankel M. 199.  et al. 2007. ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann. Emerg. Med. 49:391–402.e2 [Google Scholar]
  201. Xiao G, Wei J, Yan W, Wang W, Lu Z. 200.  2008. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial. Crit. Care 12:R61 [Google Scholar]
  202. Yasuhara T, Hara K, Maki M, Masuda T, Sanberg CD. 201.  et al. 2008. Dietary supplementation exerts neuroprotective effects in ischemic stroke model. Rejuvenation Res. 11:201–14 [Google Scholar]
  203. Zanatta L, Goulart PB, Goncalves R, Pierozan P, Winkelmann-Duarte EC. 202.  et al. 2012. 1α,25-dihydroxyvitamin D3 mechanism of action: modulation of L-type calcium channels leading to calcium uptake and intermediate filament phosphorylation in cerebral cortex of young rats. Biochim. Biophys. Acta 1823:1708–19 [Google Scholar]
  204. Zehnder D, Bland R, Williams MC, McNinch RW, Howie AJ. 203.  et al. 2001. Extrarenal expression of 25-hydroxyvitamin D3-1α-hydroxylase. J. Clin. Endocrinol. Metab. 86:888–94 [Google Scholar]
  205. Zetterström RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T. 204.  1997. Dopamine neuron agenesis in Nurr1-deficient mice. Science 276:248–50 [Google Scholar]
  206. Zhu Y, Zhou R, Yang R, Zhang Z, Bai Y. 205.  et al. 2012. Abnormal neurogenesis in the dentate gyrus of adult mice lacking 1,25-dihydroxy vitamin D3 (1,25-(OH)2D3). Hippocampus 22:421–33 [Google Scholar]
/content/journals/10.1146/annurev-nutr-071813-105557
Loading
/content/journals/10.1146/annurev-nutr-071813-105557
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error