1932

Abstract

Obesity and morbid obesity are associated with many physiological changes affecting pharmacokinetics, such as increased blood volume, cardiac output, splanchnic blood flow, and hepatic blood flow. In obesity, drug absorption appears unaltered, although recent evidence suggests that this conclusion may be premature. Volume of distribution may vary largely, but the magnitude and direction of changes seem difficult to predict, with extrapolation on the basis of total body weight being the best approach to date. Changes in clearance may be smaller than in distribution, whereas there is growing evidence that the influence of obesity on clearance can be predicted on the basis of reported changes in the metabolic or elimination pathways involved. For obese children, we propose two methods to distinguish between developmental and obesity-related changes. Future research should focus on the characterization of physiological concepts to predict the optimal dose for each drug in the obese population.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010814-124354
2015-01-06
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/55/1/annurev-pharmtox-010814-124354.html?itemId=/content/journals/10.1146/annurev-pharmtox-010814-124354&mimeType=html&fmt=ahah

Literature Cited

  1. Flegal KM, Carroll MD, Kit BK, Ogden CL. 1.  2012. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 307:491–97 [Google Scholar]
  2. 2. World Obes. Fed 2014. World map of obesity. Accessed Aug. 12. http://www.worldobesity.org/aboutobesity/world-map-obesity/
  3. Ogden CL, Carroll MD, Kit BK, Flegal KM. 3.  2012. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA 307:483–90 [Google Scholar]
  4. Haslam DW, James WPT. 4.  2005. Obesity. Lancet 366:1197–209 [Google Scholar]
  5. Stone AA, Broderick JE. 5.  2012. Obesity and pain are associated in the United States. Obesity 20:1491–95 [Google Scholar]
  6. McCarthy LH, Bigal ME, Katz M, Derby C, Lipton RB. 6.  2009. Chronic pain and obesity in elderly people: results from the Einstein aging study. J. Am. Geriatr. Soc. 57:115–19 [Google Scholar]
  7. Choban PS, Heckler R, Burge JC, Flancbaum L. 7.  1995. Increased incidence of nosocomial infections in obese surgical patients. Am. Surg. 61:1001–5 [Google Scholar]
  8. Huttunen R, Karppelin M, Syrjanen J. 8.  2013. Obesity and nosocomial infections. J. Hosp. Infect. 85:8–16 [Google Scholar]
  9. Oyetunji TA, Franklin AL, Ortega G, Akolkar N, Qureshi FG. 9.  et al. 2012. Revisiting childhood obesity: persistent underutilization of surgical intervention?. Am. Surg. 78:788–93 [Google Scholar]
  10. Schilling PL, Davis MM, Albanese CT, Dutta S, Morton J. 10.  2008. National trends in adolescent bariatric surgical procedures and implications for surgical centers of excellence. J. Am. Coll. Surg. 206:1–12 [Google Scholar]
  11. Black MH, Zhou H, Takayanagi M, Jacobsen SJ, Koebnick C. 11.  2013. Increased asthma risk and asthma-related health care complications associated with childhood obesity. Am. J. Epidemiol. 178:1120–28 [Google Scholar]
  12. Forno E, Lescher R, Strunk R, Weiss S, Fuhlbrigge A, Celedon JC. 12.  2011. Decreased response to inhaled steroids in overweight and obese asthmatic children. J. Allergy Clin. Immunol. 127:741–49 [Google Scholar]
  13. Gelelete CB, Pereira SH, Azevedo AM, Thiago LS, Mundim M. 13.  et al. 2011. Overweight as a prognostic factor in children with acute lymphoblastic leukemia. Obesity 19:1908–11 [Google Scholar]
  14. Conroy S, Choonara I, Impicciatore P, Mohn A, Arnell H. 14.  et al. 2000. Survey of unlicensed and off label drug use in paediatric wards in European countries. BMJ 320:79–82 [Google Scholar]
  15. Ernest TB, Elder DP, Martini LG, Roberts M, Ford JL. 15.  2007. Developing paediatric medicines: identifying the needs and recognizing the challenges. J. Pharm. Pharmacol. 59:1043–55 [Google Scholar]
  16. ‘t Jong GW, Vulto AG, de Hoog M, Schimmel KJM, Tibboel D, van den Anker JN. 16.  2001. A survey of the use of off-label and unlicensed drugs in a Dutch children's hospital. Pediatrics 108:1089–93 [Google Scholar]
  17. Cheymol G. 17.  1993. Clinical pharmacokinetics of drugs in obesity: an update. Clin. Pharmacokinet. 25:103–14 [Google Scholar]
  18. Cheymol G. 18.  2000. Effects of obesity on pharmacokinetics: implications for drug therapy. Clin. Pharmacokinet. 39:215–31 [Google Scholar]
  19. Alexander JK, Dennis EW, Smith WG, Amad KH, Duncan WC, Austin RC. 19.  1962. Blood volume, cardiac output, and distribution of systemic blood flow in extreme obesity. Cardiovasc. Res. Cent. Bull. 1:39–44 [Google Scholar]
  20. Licata G, Scaglione R, Barbagallo M, Parrinello G, Capuana G. 20.  et al. 1991. Effect of obesity on left ventricular function studied by radionuclide angiocardiography. Int. J. Obes. 15:295–302 [Google Scholar]
  21. Herrera MF, Deitel M. 21.  1991. Cardiac function in massively obese patients and the effect of weight loss. Can. J. Surg. 34:431–34 [Google Scholar]
  22. Lemmens HJ, Bernstein DP, Brodsky JB. 22.  2006. Estimating blood volume in obese and morbidly obese patients. Obes. Surg. 16:773–76 [Google Scholar]
  23. Blouin RA, Kolpek JH, Mann HJ. 23.  1987. Influence of obesity on drug disposition. Clin. Pharm. 6:706–14 [Google Scholar]
  24. Crocker DW. 24.  1978. Lipomatous infiltrates of the heart. Arch. Pathol. Lab. Med. 102:69–72 [Google Scholar]
  25. Bharati S, Lev M. 25.  1995. Cardiac conduction system involvement in sudden death of obese young people. Am. Heart J. 129:273–81 [Google Scholar]
  26. Jones RL, Nzekwu MM. 26.  2006. The effects of body mass index on lung volumes. Chest 130:827–33 [Google Scholar]
  27. Rajala R, Partinen M, Sane T, Pelkonen R, Huikuri K, Seppäläinen AM. 27.  1991. Obstructive sleep apnoea syndrome in morbidly obese patients. J. Intern. Med. 230:125–29 [Google Scholar]
  28. Guzzaloni G, Grugni G, Minocci A, Moro D, Morabito F. 28.  2000. Liver steatosis in juvenile obesity: correlations with lipid profile, hepatic biochemical parameters and glycemic and insulinemic responses to an oral glucose tolerance test. Int. J. Obes. Relat. Metab. Disord. 24:772–76 [Google Scholar]
  29. Moretto M, Kupski C, Mottin CC, Repetto G, Garcia Toneto M. 29.  et al. 2003. Hepatic steatosis in patients undergoing bariatric surgery and its relationship to body mass index and co-morbidities. Obes. Surg. 13:622–24 [Google Scholar]
  30. Ijaz S, Yang W, Winslet MC, Seifalian AM. 30.  2003. Impairment of hepatic microcirculation in fatty liver. Microcirculation 10:447–56 [Google Scholar]
  31. Farrell GC, Teoh NC, McCuskey RS. 31.  2008. Hepatic microcirculation in fatty liver disease. Anat. Rec. 291:684–92 [Google Scholar]
  32. Casati A, Putzu M. 32.  2005. Anesthesia in the obese patient: pharmacokinetic considerations. J. Clin. Anesth. 17:134–45 [Google Scholar]
  33. Johnson TN, Tucker GT, Tanner MS, Rostami-Hodjegan A. 33.  2005. Changes in liver volume from birth to adulthood: a meta-analysis. Liver Transpl. 11:1481–93 [Google Scholar]
  34. Kotlyar M, Carson SW. 34.  1999. Effects of obesity on the cytochrome P450 enzyme system. Int. J. Clin. Pharmacol. Ther. 37:8–19 [Google Scholar]
  35. Janmahasatian S, Duffull SB, Chagnac A, Kirkpatrick CM, Green B. 35.  2008. Lean body mass normalizes the effect of obesity on renal function. Br. J. Clin. Pharmacol. 65:964–65 [Google Scholar]
  36. Ribstein J, du Cailar G, Mimran A. 36.  1995. Combined renal effects of overweight and hypertension. Hypertension 26:610–15 [Google Scholar]
  37. Marik P, Varon J. 37.  1998. The obese patient in the ICU. Chest 113:492–98 [Google Scholar]
  38. Anastasio P, Spitali L, Frangiosa A, Molino D, Stellato D. 38.  et al. 2000. Glomerular filtration rate in severely overweight normotensive humans. Am. J. Kidney Dis. 35:1144–48 [Google Scholar]
  39. O'Donnell MP, Kasiske BL, Cleary MP, Keane WF. 39.  1985. Effects of genetic obesity on renal structure and function in the Zucker rat. II. Micropuncture studies. J. Lab. Clin. Med. 106:605–10 [Google Scholar]
  40. Kasiske BL, Cleary MP, O'Donnell MP, Keane WF. 40.  1985. Effects of genetic obesity on renal structure and function in the Zucker rat. J. Lab. Clin. Med. 106:598–604 [Google Scholar]
  41. Schmitz PG, O'Donnell MP, Kasiske BL, Katz SA, Keane WF. 41.  1992. Renal injury in obese Zucker rats: glomerular hemodynamic alterations and effects of enalapril. Am. J. Physiol. 263:F496–502 [Google Scholar]
  42. Kasiske BL, Crosson JT. 42.  1986. Renal disease in patients with massive obesity. Arch. Intern. Med. 146:1105–9 [Google Scholar]
  43. Pai MP. 43.  2010. Estimating the glomerular filtration rate in obese adult patients for drug dosing. Adv. Chronic Kidney Dis. 17:e53–62 [Google Scholar]
  44. Demirovic JA, Pai AB, Pai MP. 44.  2009. Estimation of creatinine clearance in morbidly obese patients. Am. J. Health Syst. Pharm. 66:642–48 [Google Scholar]
  45. Wuerzner G, Bochud M, Giusti V, Burnier M. 45.  2011. Measurement of glomerular filtration rate in obese patients: pitfalls and potential consequences on drug therapy. Obes. Facts 4:238–43 [Google Scholar]
  46. Lim WH, Lim EEM, McDonald S. 46.  2006. Lean body mass-adjusted Cockcroft and Gault formula improves the estimation of glomerular filtration rate in subjects with normal-range serum creatinine. Nephrology 11:250–56 [Google Scholar]
  47. Cardoso-Júnior A, Coelho LGV, Savassi-Rocha PR, Vignolo MC, Abrantes MM. 47.  et al. 2007. Gastric emptying of solids and semi-solids in morbidly obese and non-obese subjects: an assessment using the 13C-octanoic acid and 13C-acetic acid breath tests. Obes. Surg. 17:236–41 [Google Scholar]
  48. Tosetti C, Corinaldesi R, Stanghellini V, Pasquali R, Corbelli C. 48.  et al. 1996. Gastric emptying of solids in morbid obesity. Int. J. Obes. Relat. Metab. Disord. 20:200–5 [Google Scholar]
  49. Wright RA, Krinsky S, Fleeman C, Trujillo J, Teague E. 49.  1983. Gastric emptying and obesity. Gastroenterology 84:747–51 [Google Scholar]
  50. Xing J, Chen JD. 50.  2004. Alterations of gastrointestinal motility in obesity. Obes. Res. 12:1723–32 [Google Scholar]
  51. Teixeira TF, Souza NC, Chiarello PG, Franceschini SC, Bressan J. 51.  et al. 2012. Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors. Clin. Nutr. 31:735–40 [Google Scholar]
  52. Horton F, Wright J, Smith L, Hinton PJ, Robertson MD. 52.  2013. Increased intestinal permeability to oral chromium (51Cr)-EDTA in human Type 2 diabetes. Diabet. Med. 31:556–63 [Google Scholar]
  53. French SJ, Murray B, Rumsey RD, Sepple CP, Read NW. 53.  1993. Preliminary studies on the gastrointestinal responses to fatty meals in obese people. Int. J. Obes. Relat. Metab. Disord. 17:295–300 [Google Scholar]
  54. Wisén O, Johansson C. 54.  1992. Gastrointestinal function in obesity: motility, secretion, and absorption following a liquid test meal. Metabolism 41:390–95 [Google Scholar]
  55. 55. World Health Organ 2006. BMI classification. Global Database on Body Mass Index: World Health Organ., Geneva, updated July 31
  56. Green B, Duffull SB. 56.  2004. What is the best size descriptor to use for pharmacokinetic studies in the obese. Br. J. Clin. Pharmacol. 58:119–33 [Google Scholar]
  57. Eleveld DJ, Proost JH, Absalom AR, Struys MMRF. 57.  2011. Obesity and allometric scaling of pharmacokinetics. Clin. Pharmacokinet. 50:751–3 [Google Scholar]
  58. Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM. 58.  et al. 2002. 2000 CDC growth charts for the United States: methods and development. Vital Health Stat.1–190 Ser. 11, No. 246. Hyattsville, MD: Dep. Health Hum. Serv.
  59. 59. Cent. Dis. Control Prev 2014. Percentile data files with LMS values. CDC Growth Charts, Cent. Dis. Control Prev., Atlanta, GA, accessed Mar. 5. http://www.cdc.gov/growthcharts/percentile_data_files.htm
  60. Barlow SE. 60.  2007. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics 120:Suppl. 4S164–92 [Google Scholar]
  61. Devine BJ. 61.  1974. Clinical pharmacy: case studies: case number 25: gentamycin therapy. Ann. Pharmacother. 8:650–55 [Google Scholar]
  62. van Kralingen S, van de Garde EMW, Knibbe CAJ, Diepstraten J, Wiezer MJ. 62.  et al. 2011. Comparative evaluation of atracurium dosed on ideal body weight vs. total body weight in morbidly obese patients. Br. J. Clin. Pharmacol. 71:34–40 [Google Scholar]
  63. Leykin Y, Pellis T, Lucca M, Lomangino G, Marzano B, Gullo A. 63.  2004. The pharmacodynamic effects of rocuronium when dosed according to real body weight or ideal body weight in morbidly obese patients. Anesth. Analg. 99:1086–89 [Google Scholar]
  64. Meyhoff CS, Lund J, Jenstrup MT, Claudius C, Sorensen AM. 64.  et al. 2009. Should dosing of rocuronium in obese patients be based on ideal or corrected body weight?. Anesth. Analg. 109:787–92 [Google Scholar]
  65. Egan TD, Huizinga B, Gupta SK, Jaarsma RL, Sperry RJ. 65.  et al. 1998. Remifentanil pharmacokinetics in obese versus lean patients. Anesthesiology 89:562–73 [Google Scholar]
  66. Pai MP. 66.  2012. Drug dosing based on weight and body surface area: mathematical assumptions and limitations in obese adults. Pharmacotherapy 32:856–68 [Google Scholar]
  67. van Rongen A, Brill MJE, Diepstraten J, Knibbe CAJ. 67.  2014. Applied pharmacometrics in the obese population. Applied Pharmacometrics S Schmidt, H Derendorf 161–88 New York: Springer [Google Scholar]
  68. Du Bois D, Du Bois EF. 68.  1916. A formula to estimate the approximate surface area if height and weight be known. Arch. Int. Med. 17:863–71 [Google Scholar]
  69. Mosteller RD. 69.  1987. Simplified calculation of body-surface area. N. Engl. J. Med. 317:1098 [Google Scholar]
  70. Griggs JJ, Mangu PB, Anderson H, Balaban EP, Dignam JJ. 70.  et al. 2012. Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 30:1553–61 [Google Scholar]
  71. Sparreboom A, Wolff AC, Mathijssen RH, Chatelut E, Rowinsky EK. 71.  et al. 2007. Evaluation of alternate size descriptors for dose calculation of anticancer drugs in the obese. J. Clin. Oncol. 25:4707–13 [Google Scholar]
  72. Han PY, Duffull SB, Kirkpatrick CM, Green B. 72.  2007. Dosing in obesity: a simple solution to a big problem. Clin. Pharmacol. Ther. 82:505–8 [Google Scholar]
  73. Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. 73.  2005. Quantification of lean bodyweight. Clin. Pharmacokinet. 44:1051–65 [Google Scholar]
  74. Brill MJE, Houwink API, Schmidt S, Van Dongen EPA, Hazebroek EJ. 74.  et al. 2014. Reduced subcutaneous tissue distribution of cefazolin in morbidly obese versus non-obese patients determined using clinical microdialysis. J. Antimicrob. Chemother. 69:715–23 [Google Scholar]
  75. van Kralingen S, Diepstraten J, Peeters MYM, Deneer VHM, van Ramshorst B. 75.  et al. 2011. Population pharmacokinetics and pharmacodynamics of propofol in morbidly obese patients. Clin. Pharmacokinet. 50:739–50 [Google Scholar]
  76. Peters AM, Snelling HL, Glass DM, Bird NJ. 76.  2011. Estimation of lean body mass in children. Br. J. Anaesth. 106:719–23 [Google Scholar]
  77. Diepstraten J, Chidambaran V, Sadhasivam S, Blussé van Oud-Alblas HJ, Inge T. 77.  et al. 2013. An integrated population pharmacokinetic meta-analysis of propofol in morbidly obese and nonobese adults, adolescents, and children. CPT Pharmacomet. Syst. Pharmacol. 2:e73 [Google Scholar]
  78. Diepstraten J, Chidambaran V, Sadhasivam S, Esslinger HR, Cox SL. 78.  et al. 2012. Propofol clearance in morbidly obese children and adolescents: influence of age and body size. Clin. Pharmacokinet. 51:543–51 [Google Scholar]
  79. Mahmood I. 79.  2012. Prediction of clearance and volume of distribution in the obese from normal weight subjects: an allometric approach. Clin. Pharmacokinet. 51:527–42 [Google Scholar]
  80. Bowman SL, Hudson SA, Simpson G, Munro JF, Clements JA. 80.  1986. A comparison of the pharmacokinetics of propranolol in obese and normal volunteers. Br. J. Clin. Pharmacol. 21:529–32 [Google Scholar]
  81. Greenblatt DJ, Abernethy DR, Locniskar A, Harmatz JS, Limjuco RA, Shader RI. 81.  1984. Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology 61:27–35 [Google Scholar]
  82. Greenblatt DJ, Friedman H, Burstein ES, Scavone JM, Blyden GT. 82.  et al. 1987. Trazodone kinetics: effect of age, gender, and obesity. Clin. Pharmacol. Ther. 42:193–200 [Google Scholar]
  83. Flechner SM, Kolbeinsson ME, Tam J, Lum B. 83.  1989. The impact of body weight on cyclosporine pharmacokinetics in renal transplant recipients. Transplantation 47:806–10 [Google Scholar]
  84. Cheymol G, Weissenburger J, Poirier JM, Gellee C. 84.  1995. The pharmacokinetics of dexfenfluramine in obese and non-obese subjects. Br. J. Clin. Pharmacol. 39:684–87 [Google Scholar]
  85. Kees MG, Weber S, Kees F, Horbach T. 85.  2011. Pharmacokinetics of moxifloxacin in plasma and tissue of morbidly obese patients. J. Antimicrob. Chemother. 66:2330–35 [Google Scholar]
  86. Abernethy DR, Greenblatt DJ, Divoll M, Smith RB, Shader RI. 86.  1984. The influence of obesity on the pharmacokinetics of oral alprazolam and triazolam. Clin. Pharmacokinet. 9:177–83 [Google Scholar]
  87. Brill MJE, van Rongen A, Houwink API, Burggraaf J, van Ramshorst B. 87.  et al. 2014. Midazolam pharmacokinetics in morbidly obese patients following semi-simultaneous oral and intravenous administration: a comparison with healthy volunteers. Clin. Pharmacokinet. 10931–41
  88. Yang J, Jamei M, Yeo KR, Tucker GT, Rostami-Hodjegan A. 88.  2007. Prediction of intestinal first-pass drug metabolism. Curr. Drug Metab. 8:676–84 [Google Scholar]
  89. Rostami-Hodjegan A, Tucker GT. 89.  2002. The effects of portal shunts on intestinal cytochrome P450 3A activity. Hepatology 35:1549–50 [Google Scholar]
  90. Jain R, Chung SM, Jain L, Khurana M, Lau SW. 90.  et al. 2011. Implications of obesity for drug therapy: limitations and challenges. Clin. Pharmacol. Ther. 90:77–89 [Google Scholar]
  91. Hanley MJ, Abernethy DR, Greenblatt DJ. 91.  2010. Effect of obesity on the pharmacokinetics of drugs in humans. Clin. Pharmacokinet. 49:71–87 [Google Scholar]
  92. Blouin RA, Warren GW. 92.  1999. Pharmacokinetic considerations in obesity. J. Pharm. Sci. 88:1–7 [Google Scholar]
  93. Abernethy DR, Greenblatt DJ, Divoll M, Harmatz JS, Shader RI. 93.  1981. Alterations in drug distribution and clearance due to obesity. J. Pharmacol. Exp. Ther. 217:681–85 [Google Scholar]
  94. van Kralingen S, Taks M, Diepstraten J, van de Garde EM, van Dongen EP. 94.  et al. 2011. Pharmacokinetics and protein binding of cefazolin in morbidly obese patients. Eur. J. Clin. Pharmacol. 67:985–92 [Google Scholar]
  95. Falagas ME, Kompoti M. 95.  2006. Obesity and infection. Lancet Infect. Dis. 6:438–46 [Google Scholar]
  96. Diepstraten J, Hackeng CM, van Kralingen S, Zapletal J, van Dongen EPA. 96.  et al. 2012. Anti-Xa levels 4 h after subcutaneous administration of 5,700 IU nadroparin strongly correlate with lean body weight in morbidly obese patients. Obes. Surg. 22:791–96 [Google Scholar]
  97. Hirsh J, Raschke R. 97.  2004. Heparin and low-molecular-weight heparin: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 126188S–203S
  98. Nutescu EA, Spinler SA, Wittkowsky A, Dager WE. 98.  2009. Low-molecular-weight heparins in renal impairment and obesity: available evidence and clinical practice recommendations across medical and surgical settings. Ann. Pharmacother. 43:1064–83 [Google Scholar]
  99. Barras MA, Duffull SB, Atherton JJ, Green B. 99.  2008. Individualized compared with conventional dosing of enoxaparin. Clin. Pharmacol. Ther. 83:882–88 [Google Scholar]
  100. Stein PD, Beemath A, Olson RE. 100.  2005. Obesity as a risk factor in venous thromboembolism. Am. J. Med. 118:978–80 [Google Scholar]
  101. Brill MJE, Diepstraten J, van Rongen A, van Kralingen S, van den Anker JN, Knibbe CAJ. 101.  2012. Impact of obesity on drug metabolism and elimination in adults and children. Clin. Pharmacokinet. 51:277–304 [Google Scholar]
  102. McLeay SC, Morrish GA, Kirkpatrick CM, Green B. 102.  2012. The relationship between drug clearance and body size: systematic review and meta-analysis of the literature published from 2000 to 2007. Clin. Pharmacokinet. 51:319–30 [Google Scholar]
  103. Ghobadi C, Johnson TN, Aarabi M, Almond LM, Allabi AC. 103.  et al. 2011. Application of a systems approach to the bottom-up assessment of pharmacokinetics in obese patients: expected variations in clearance. Clin. Pharmacokinet. 50:809–22 [Google Scholar]
  104. Hall RG II, Jean GW, Sigler M, Shah S. 104.  2013. Dosing considerations for obese patients receiving cancer chemotherapeutic agents. Ann. Pharmacother. 47:1666–74 [Google Scholar]
  105. Mulla H, Johnson TN. 105.  2010. Dosing dilemmas in obese children. Arch. Dis. Child. Educ. Pract. Ed. 95:112–17 [Google Scholar]
  106. Kendrick JG, Carr RR, Ensom MH. 106.  2010. Pharmacokinetics and drug dosing in obese children. J. Pediatr. Pharmacol. Ther. 15:94–109 [Google Scholar]
  107. Mahmood I. 107.  2014. Dosing in children: a critical review of the pharmacokinetic allometric scaling and modelling approaches in paediatric drug development and clinical settings. Clin. Pharmacokinet. 53:327–46 [Google Scholar]
  108. Knibbe CAJ, Danhof M. 108.  2011. Individualized dosing regimens in children based on population PKPD modelling: Are we ready for it. Int. J. Pharm. 415:9–14 [Google Scholar]
  109. Knibbe CAJ, Krekels EHJ, Danhof M. 109.  2011. Advances in paediatric pharmacokinetics. Expert Opin. Drug Metab. Toxicol. 7:1–8 [Google Scholar]
  110. Admiraal R, van Kesteren C, Boelens JJ, Bredius RGM, Tibboel D, Knibbe CAJ. 110.  2014. Towards evidence-based dosing regimens in children on the basis of population pharmacokinetic pharmacodynamic modelling. Arch. Dis. Child 99:267–72 [Google Scholar]
  111. Cella M, Knibbe C, Danhof M, Della Pasqua O. 111.  2010. What is the right dose for children?. Br. J. Clin. Pharmacol. 70:597–603 [Google Scholar]
  112. De Cock RFW, Piana C, Krekels EHJ, Danhof M, Allegaert K, Knibbe CAJ. 112.  2011. The role of population PK–PD modelling in paediatric clinical research. Eur. J. Clin. Pharmacol. 67:Suppl. 15–16 [Google Scholar]
  113. Koshida R, Nakashima E, Taniguchi N, Tsuji A, Benet LZ, Ichimura F. 113.  1989. Prediction of the distribution volumes of cefazolin and tobramycin in obese children based on physiological pharmacokinetic concepts. Pharm. Res. 6:486–91 [Google Scholar]
  114. Heble DE Jr, McPherson C, Nelson MP, Hunstad DA. 114.  2013. Vancomycin trough concentrations in overweight or obese pediatric patients. Pharmacotherapy 33:1273–77 [Google Scholar]
  115. Bartelink IH, van Kesteren C, Boelens JJ, Egberts TCG, Bierings MB. 115.  et al. 2012. Predictive performance of a busulfan pharmacokinetic model in children and young adults. Ther. Drug Monit. 34:574–83 [Google Scholar]
  116. Bartelink IH, Boelens JJ, Bredius RGM, Egberts ACG, Wang C. 116.  et al. 2012. Body weight-dependent pharmacokinetics of busulfan in paediatric haematopoietic stem cell transplantation patients: towards individualized dosing. Clin. Pharmacokinet. 51:331–45 [Google Scholar]
  117. Wang C, Peeters MYM, Allegaert K, Blussé van Oud-Alblas HJ, Krekels EHJ. 117.  et al. 2012. A bodyweight-dependent allometric exponent for scaling clearance across the human life-span. Pharm. Res. 29:1570–81 [Google Scholar]
  118. Krekels EHJ, van Hasselt JGC, Tibboel D, Danhof M, Knibbe CAJ. 118.  2011. Systematic evaluation of the descriptive and predictive performance of paediatric morphine population models. Pharm. Res. 28:797–811 [Google Scholar]
  119. Knibbe CAJ, Krekels EHJ, van den Anker JN, DeJongh J, Santen GWE. 119.  et al. 2009. Morphine glucuronidation in preterm neonates, infants and children younger than 3 years. Clin. Pharmacokinet. 48:371–85 [Google Scholar]
  120. Krekels EHJ, DeJongh J, van Lingen RA, van der Marel CD, Choonara I. 120.  et al. 2011. Predictive performance of a recently developed population pharmacokinetic model for morphine and its metabolites in new datasets of (preterm) neonates, infants and children. Clin. Pharmacokinet. 50:51–63 [Google Scholar]
  121. Krekels EHJ, Neely M, Panoilia E, Tibboel D, Capparelli E. 121.  et al. 2012. From pediatric covariate model to semiphysiological function for maturation: part I–extrapolation of a covariate model from morphine to zidovudine. CPT Pharmacomet. Syst. Pharmacol. 1:e9 [Google Scholar]
  122. Krekels EHJ, Johnson TN, den Hoedt SM, Rostami-Hodjegan A, Danhof M. 122.  et al. 2012. From pediatric covariate model to semiphysiological function for maturation: part II–sensitivity to physiological and physicochemical properties. CPT Pharmacomet. Syst. Pharmacol. 1:e10 [Google Scholar]
  123. De Cock RFW, Allegaert K, Schreuder MF, Sherwin CMT, de Hoog M. 123.  et al. 2012. Maturation of the glomerular filtration rate in neonates, as reflected by amikacin clearance. Clin. Pharmacokinet. 51:105–17 [Google Scholar]
  124. De Cock RFW, Allegaert K, Brussee JM, Sherwin CMT, Mulla H. 124.  et al. 2014. Simultaneous pharmacokinetic modeling of gentamicin, tobramycin and vancomycin clearance from neonates to adults: towards a semi-physiological function for maturation in glomerular filtration. Pharm. Res. 102643–54
  125. De Cock RFW, Allegaert K, Sherwin CMT, Nielsen EI, de Hoog M. 125.  et al. 2014. A neonatal amikacin covariate model can be used to predict ontogeny of other drugs eliminated through glomerular filtration in neonates. Pharm. Res. 31:754–67 [Google Scholar]
  126. Zhao W, Biran V, Jacqz-Aigrain E. 126.  2013. Amikacin maturation model as a marker of renal maturation to predict glomerular filtration rate and vancomycin clearance in neonates. Clin. Pharmacokinet. 52:1127–34 [Google Scholar]
  127. Huisinga W, Solms A, Fronton L, Pilari S. 127.  2012. Modeling interindividual variability in physiologically based pharmacokinetics and its link to mechanistic covariate modeling. CPT Pharmacomet. Syst. Pharmacol. 1:e4 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010814-124354
Loading
/content/journals/10.1146/annurev-pharmtox-010814-124354
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error