1932

Abstract

Vibrational motions of a polyatomic molecule are multifold and can be as simple as stretches or bends or as complex as concerted motions of many atoms. Different modes of excitation often possess different capacities in driving a bimolecular chemical reaction, with distinct dynamic outcomes. Reactions with vibrationally excited methane and its isotopologs serve as a benchmark for advancing our fundamental understanding of polyatomic reaction dynamics. Here, some recent progress in this area is briefly reviewed. Particular emphasis is placed on the key concepts developed from those studies. The interconnections among mode and bond selectivity, Polanyi's rules, and newly introduced vibrational-induced steric phenomena are highlighted.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040215-112522
2016-05-27
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/physchem/67/1/annurev-physchem-040215-112522.html?itemId=/content/journals/10.1146/annurev-physchem-040215-112522&mimeType=html&fmt=ahah

Literature Cited

  1. Isenor NR, Richardson MC. 1.  1971. Dissociation and breakdown of molecular gases by pulsed CO2 laser radiation. Appl. Phys. Lett. 18:224–26 [Google Scholar]
  2. Bloembergen N, Yablonovitch E. 2.  1978. Infrared-laser-induced unimolecular reactions. Phys. Today 31:523–30 [Google Scholar]
  3. Bomse DS, Woodin RL, Beauchamp JL. 3.  1979. Molecular activation with low-intensity CW infrared laser radiation. Multiphoton dissociation of ions derived from diethyl ether. J. Am. Chem. Soc 101:5503–12 [Google Scholar]
  4. Schulz PA, Sudbo AS, Krajnovich DJ, Kwok HS, Shen YR, Lee YT. 4.  1979. Multiphoton dissociation of polyatomic molecules. Annu. Rev. Phys. Chem. 30:379–409 [Google Scholar]
  5. Schatz GC. 5.  1979. How symmetric stretch excitation in a triatomic molecule can be more efficient than asymmetric stretch excitation in enhancing reaction rates in atom plus triatom reactions. J. Chem. Phys. 71:542–43Represents one of the first theoretical studies to demonstrate mode-specific behaviors in polyatomic reactions. [Google Scholar]
  6. Sinha A. 6.  1990. Bimolecular reaction of a local mode vibrational state: H + H2O(4vOH) → OH(v, J) + H2. J. Phys. Chem. 94:4391–93 [Google Scholar]
  7. Sinha A, Hsiao MC, Crim FF. 7.  1991. Controlling bimolecular reaction: mode and bond selected reaction of water with hydrogen atoms. J. Chem. Phys. 94:4928–35Reports the first experimental realization of mode- and bond-selected reactivity. [Google Scholar]
  8. Hsiao MC, Sinha A, Crim FF. 8.  1991. Energy disposal in the vibrational-state- and bond-selected reaction of water with hydrogen atoms. J. Phys. Chem. 95:8263–67 [Google Scholar]
  9. Sinha A, Hsiao MC, Crim FF. 9.  1990. Bond-selected bimolecular chemistry: H + HOD(4vOH) → OD + H2. J. Chem. Phys. 92:6333–35 [Google Scholar]
  10. Metz RB, Thoemke JD, Pfeiffer JM, Crim FF. 10.  1993. Selectively breaking either bond in a bimolecular reaction of HOD with hydrogen atom. J. Chem. Phys. 99:1744–51 [Google Scholar]
  11. Child MS. 11.  1985. Local mode overtone spectra. Acc. Chem. Res. 18:45–50 [Google Scholar]
  12. Mills IM, Robiette AG. 12.  1985. On the relationship of normal modes to local modes in molecular vibrations. Mol. Phys. 56:743–65 [Google Scholar]
  13. Sinha A, Thoemke JD, Crim FF. 13.  1992. Controlling bimolecular reactions: mode and bond selected reaction of water with translationally energetic chlorine atoms. J. Chem. Phys. 96:372–76 [Google Scholar]
  14. Thoemke JD, Pfeiffer JM, Metz RB, Crim FF. 14.  1995. Mode- and bond-selective reactions of chlorine atoms with highly vibrationally excited H2O and HOD. J. Phys. Chem. 99:13748–54 [Google Scholar]
  15. Bronikowski MJ, Simpson WR, Girard B, Zare RN. 15.  1991. Bond-specific chemistry: OD-OH product ratios for the reactions H + HOD(100) and H + HOD(001). J. Chem. Phys. 95:8647–48 [Google Scholar]
  16. Bronikowski MJ, Simpson WR, Zare RN. 16.  1993. Effect of reagent vibration of the H + HOD reaction: an example of bond specific chemistry. J. Phys. Chem. 97:2194–203 [Google Scholar]
  17. Nesbitt DJ, Field RW. 17.  1996. Vibrational energy flow in highly excited molecules: role of intramolecular vibrational redistributions. J. Phys. Chem. 100:12735–56 [Google Scholar]
  18. Crim FF. 18.  1993. Vibrationally mediated photodissociation: exploring excited-state surfaces and controlling decomposition pathways. Annu. Rev. Phys. Chem. 44:397–428 [Google Scholar]
  19. Crim FF. 19.  1990. State- and bond-selected unimolecular reactions. Science 249:1387–92 [Google Scholar]
  20. Kuhn B, Boyarkin OV, Rizzo TR. 20.  1997. State-to-state studies of intramolecular dynamics and unimolecular reaction. Ber. Bunsenges. Phys. Chem. 101:339–45 [Google Scholar]
  21. Bar I, Rosenwaks S. 21.  2001. Controlling bond cleavage and probing intramolecular dynamics via photodissociation of rovibrationally excited molecules. Int. Rev. Phys. Chem. 20:711–49 [Google Scholar]
  22. Herman M, Perry DS. 22.  2013. Molecular spectroscopy and dynamics: a polyad-based perspective. Phys. Chem. Chem. Phys. 15:9970–93 [Google Scholar]
  23. Crim FF. 23.  1999. Vibrations state control of bimolecular reactions: discovering and directing the chemistry. Acc. Chem. Res. 32:877–84 [Google Scholar]
  24. Crim FF. 24.  1996. Bond-selected chemistry: vibrational state control of photodissociation and bimolecular reaction. J. Phys. Chem. 100:12725–34 [Google Scholar]
  25. Zare RN. 25.  1998. Laser control of chemical reactions. Science 279:1875–79 [Google Scholar]
  26. Zhang DH, Guo H. 26.  2016. Recent advances in quantum dynamics of bimolecular reactions. Annu. Rev. Phys. Chem.67135–58
  27. Liu K. 27.  2006. Recent advances in crossed-beam studies of bimolecular reactions. J. Chem. Phys. 125:132307 [Google Scholar]
  28. Liu K. 28.  2012. Quantum dynamical resonances in chemical reactions: from A + BC to polyatomic systems. Adv. Chem. Phys. 149:1–46Provides a historical and pedagogical account of quantum dynamic resonances in chemical reactions. [Google Scholar]
  29. Liu K. 29.  2007. Product pair correlation in bimolecular reactions. Phys. Chem. Chem. Phys. 9:17–30 [Google Scholar]
  30. Liu K. 30.  2015. Perspective: vibrational-induced steric effects in bimolecular reactions. J. Chem. Phys. 142:080901Introduces the concept of vibrational-induced steric phenomena. [Google Scholar]
  31. Simpson WR, Orr-Ewing AJ, Rakitzis TP, Kandel SA, Zare RN. 31.  1995. Core extraction for measuring state-to-state differential cross sections of bimolecular reactions. J. Chem. Phys. 103:7299–312 [Google Scholar]
  32. Koszinowski K, Goldberg NT, Pomerantz AE, Zare RN. 32.  2006. Construction and calibration of an instrument for three-dimensional ion imaging. J. Chem. Phys. 125:133503 [Google Scholar]
  33. Jankunas J, Zare RN, Bouakline F, Althorpe SC, Herraez-Aguilar D, Aoiz FJ. 33.  2012. Seemingly anomalous angular distributions in H + D2 reactive scattering. Science 336:1687–90 [Google Scholar]
  34. Lin JJ, Zhou J, Shiu W, Liu K. 34.  2003. Application of time-sliced ion velocity imaging to crossed molecular beam experiments. Rev. Sci. Instrum. 74:2495–500 [Google Scholar]
  35. Sonnenfroh DM, Liu K. 35.  1991. Number density-to-flux transformation revisited: kinematic effects in the use of laser-induced fluorescence for scattering experiments. Chem. Phys. Lett. 176:183–90 [Google Scholar]
  36. Riedel J, Yan S, Kawamata H, Liu K. 36.  2008. A simple yet effective multipass reflector for vibrational excitation in molecular beams. Rev. Sci. Instrum. 79:033105 [Google Scholar]
  37. Chandler DW, Houston PL. 37.  1987. Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization. J. Chem. Phys. 87:1445–47 [Google Scholar]
  38. Eppink ATJB, Parker DH. 38.  1997. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68:3477–84 [Google Scholar]
  39. Gebhardt CR, Rakitzis TP, Samartzis PC, Ladopoulos V, Kitsopoulos TN. 39.  2001. Slice imaging: a new approach to ion imaging and velocity mapping. Rev. Sci. Instrum. 72:3848–53 [Google Scholar]
  40. Townsend D, Minitti MP, Suits AG. 40.  2003. Direct current slice imaging. Rev. Sci. Instrum. 74:2530–39 [Google Scholar]
  41. Lin JJ, Zhou J, Shiu W, Liu K. 41.  2003. State-specific correlation of coincident product pairs in the F + CD4 reaction. Science 300:966–69 [Google Scholar]
  42. Lin JJ, Zhou J, Shiu W, Liu K. 42.  2006. State-correlation matrix of the product pair from F + CD4 → DF(ν′) + CD3(0 v2 0 0). Phys. Chem. Chem. Phys. 8:3000–6 [Google Scholar]
  43. Proctor DL, Davis HF. 43.  2008. Vibrational versus translational energy in promoting a prototype metal–hydrocarbon insertion reaction. PNAS 105:12673–77 [Google Scholar]
  44. Polanyi JC, Wong WH. 44.  1969. Location of energy barriers. I. Effect on the dynamics of reactions A + BC. J. Chem. Phys. 51:1439–50 [Google Scholar]
  45. Polanyi JC. 45.  1972. Some concepts in reaction dynamics. Acc. Chem. Res. 5:161–68Provides a good and concise description of Polanyi's rules. [Google Scholar]
  46. Levine RD. 46.  2005. Molecular Reaction Dynamics Cambridge, UK: Cambridge Univ. Press
  47. Jiang B, Guo H. 47.  2013. Relative efficacy of vibrational versus translational excitation in promoting atom-diatom reactivity: rigorous examination of Polanyi's rules and proposition of sudden vector projection (SVP) model. J. Chem. Phys. 138:234104 [Google Scholar]
  48. Guo H, Jiang B. 48.  2014. The sudden vector projection model for reactivity: mode specificity and bond selectivity made simple. Acc. Chem. Res. 47:3679–85 [Google Scholar]
  49. Jiang B, Li J, Guo H. 49.  2014. Effects of reactant rotational excitation on reactivity: perspectives from the sudden limit. J. Chem. Phys. 140:034112 [Google Scholar]
  50. Li J, Song H, Guo H. 50.  2015. Insights into the bond-selective reaction of Cl + HOD(nOH) → HCl + OD. Phys. Chem. Chem. Phys. 17:4259–67 [Google Scholar]
  51. Song H, Guo H. 51.  2015. Mode specificity in the HCl + OH → Cl + H2O reaction: Polanyi's rules versus sudden vector projection model. J. Phys. Chem. A 119:826–31 [Google Scholar]
  52. Jiang B, Guo H. 52.  2013. Control of mode/bond selectivity and product energy disposal by the transition state: X + H2O (X=H, F, O(3P), and Cl) reactions. J. Am. Chem. Soc. 135:15251–56 [Google Scholar]
  53. Jiang B, Guo H. 53.  2013. Mode and bond selectivities in methane dissociative chemisorption: quasi-classical trajectory studies on twelve-dimensional potential energy surface. J. Phys. Chem. C 117:16127–35 [Google Scholar]
  54. Jiang B, Liu R, Li J, Xie D, Yang M, Guo H. 54.  2013. Mode selectivity in methane dissociative chemisorption on Ni(111). Chem. Sci. 4:3249–54 [Google Scholar]
  55. Yoon S, Henton S, Zivkovic A, Crim FF. 55.  2002. The relative reactivity of the stretch–bend combination vibrations of CH4 in the Cl (2P3/2) + CH4 reaction. J. Chem. Phys. 116:10744–52 [Google Scholar]
  56. Yan S, Wu Y-T, Liu K. 56.  2007. Disentangling mode-specific reaction dynamics from overlapped images. Phys. Chem. Chem. Phys. 9:250–54 [Google Scholar]
  57. Zhang W, Kawamata H, Liu K. 57.  2009. CH stretching excitation in the early barrier F + CHD3 reaction inhibits CH bond cleavage. Science 325:303–6 [Google Scholar]
  58. Cheng Y, Pan H, Wang F, Liu K. 58.  2014. On the signal depletion induced by stretching excitation of methane in the reaction with the F atom. Phys. Chem. Chem. Phys 16:444–52 [Google Scholar]
  59. Yang J, Zhang D, Jiang B, Dai D, Wu G, Zhang D, Yang X. 59.  2014. How is C–H vibrational energy redistributed in F + CHD3(v1=1) → HF + CD3?. J. Chem. Phys. Lett 5:1790–94 [Google Scholar]
  60. Shiu W, Lin JJ, Liu K, Wu M, Parker DH. 60.  2004. Imaging the pair-correlated excitation function: the F + CH4 → HF(v′) + CH3(v=0) reaction. J. Chem. Phys 120:117–22 [Google Scholar]
  61. Persky A. 61.  1996. Kinetics of the F + CH4 reaction in the temperature range 184–406 K. J. Phys. Chem 100:689–93 [Google Scholar]
  62. Persky A. 62.  2006. The temperature dependence of the kinetic isotope effect in the reaction of F atoms with CH4 and CD4. Chem. Phys. Lett 430:251–54 [Google Scholar]
  63. Harper WW, Nizkorodov SA, Nesbitt DJ. 63.  2000. Quantum state-resolved reactive scattering of F + CH4 → HF(v,j) + CH3: nascent HF(v,j) product state distributions. J. Chem. Phys 113:3670–80 [Google Scholar]
  64. Zhou J, Lin JJ, Liu K. 64.  2003. Mode-correlated product pairs in the F + CHD3 → DF + CHD2 reaction. J. Chem. Phys. 119:8289–96 [Google Scholar]
  65. Zhou J, Lin JJ, Liu K. 65.  2004. Observation of a reactive resonance in the integral cross section of a six-atom reaction: F + CHD3. J. Chem. Phys. 121:813–18 [Google Scholar]
  66. Zhou J, Lin JJ, Liu K. 66.  2010. Deciphering the nature of the reactive resonance in F + CHD3: correlated differential cross-sections of the two isotopic channels. Mol. Phys. 108:957–68 [Google Scholar]
  67. Czako G, Bowman JM. 67.  2009. CH stretching excitation steers the F atom to the CD bond in the F + CHD3 reaction. J. Am. Chem. Soc. 131:17534–35 [Google Scholar]
  68. Czako G, Bowman JM. 68.  2009. Quasiclassical trajectory calculations of correlated product distributions for the F + CHD3(v1=0, 1) reactions using an ab initio potential energy surface. J. Chem. Phys. 131:244302 [Google Scholar]
  69. Kawamata H, Zhang W, Liu K. 69.  2012. Imaging the effects of the antisymmetric stretch excitation of CH4 in the reaction with F atom. Faraday Discuss. 157:89–100 [Google Scholar]
  70. Czako G, Shepler BC, Braams BJ, Bowman JM. 70.  2009. Accurate ab initio potential energy surface, dynamics, and thermochemistry of the F + CH4 → HF + CH3 reaction. J. Chem. Phys 130:084301 [Google Scholar]
  71. Czako G, Bowman JM. 71.  2011. An ab initio spin–orbit-corrected potential energy surface and dynamics for the F + CH4 and F + CHD3 reactions. Phys. Chem. Chem. Phys 13:8306–12 [Google Scholar]
  72. Czako G, Bowman JM. 72.  2014. Reaction dynamics of methane with F, O, Cl, and Br on ab initio potential energy surfaces. J. Phys. Chem. A 118:2839–64 [Google Scholar]
  73. Skouteris D, Manolopoulos DE, Bian W, Werner H-J, Lai L-H, Liu K. 73.  1999. van der Waals interactions in the Cl + HD reaction. Science 286:1713–16 [Google Scholar]
  74. Wang X-G, Sibert EL III. 74.  1999. A nine-dimensional perturbative treatment of the vibrations of methane and its isotopomers. J. Chem. Phys 111:4510–22 [Google Scholar]
  75. Riedel J, Yan S, Liu K. 75.  2009. Mode specificity in reactions of Cl with CH2 stretch-excited CH2D2(v1, v6=1). J. Phys. Chem. A 113:14270–76 [Google Scholar]
  76. Kim ZH, Bechtel HA, Zare RN. 76.  2001. Vibrational control in the reaction of methane with atomic chlorine. J. Am. Chem. Soc. 123:12714–15 [Google Scholar]
  77. Bechtel HA, Kim ZH, Camden JP, Zare RN. 77.  2004. Bond and mode selectivity in the reaction of atomic chlorine with vibrationally excited CH2D2. J. Chem. Phys. 120:791–99 [Google Scholar]
  78. Wu Y-T, Liu K. 78.  2008. Imaging the pair-correlated dynamics and isotope effects of the Cl + CH2D2 reaction. J. Chem. Phys. 129:154302 [Google Scholar]
  79. Yoon S, Holiday RJ, Sibert EL III, Crim FF. 79.  2003. The relative reactivity of CH3D molecules with excited symmetric and antisymmetric stretching vibrations. J. Chem. Phys 119:9568–75 [Google Scholar]
  80. Yoon S, Holiday RJ, Crim FF. 80.  2005. Vibrationally controlled chemistry: mode- and bond-selected reaction of CH3D with Cl. J. Phys. Chem. B 190:8388–92 [Google Scholar]
  81. Bechtel HA, Camden JP, Brown DJA, Martin MR, Zare RN, Vadopyanov K. 81.  2005. Effects of bending excitation on the reaction of chlorine atoms with methane. Angew. Chem. Int. Ed. 44:2382–85 [Google Scholar]
  82. Wang F, Liu K. 82.  2011. Experimental signatures for a resonance-mediated reaction of bend-excited CD4(vb=1) with fluorine atoms. J. Phys. Chem. Lett. 2:1421–25 [Google Scholar]
  83. Wang F, Liu K. 83.  2013. Imaging the effects of bend-excitation in the F + CD4(vb=0, 1) → DF(v) + CD3(v2=1, 2) reactions. J. Phys. Chem. A 117:8536–44 [Google Scholar]
  84. Czako G, Shiao Q, Liu K, Bowman JM. 84.  2010. Communication: experimental and theoretical investigations of the effects of the reactant bending excitations in the F + CHD3 reaction. J. Chem. Phys. 133:131101 [Google Scholar]
  85. Zhou J, Lin JJ, Zhang B, Liu K. 85.  2004. On the Cl*(2P1/2) reactivity and the effect of bend excitation in the Cl + CH4/CD4 reactions. J. Phys. Chem. A 108:7832–36 [Google Scholar]
  86. Zhang B, Liu K, Czako G, Bowman JM. 86.  2012. Translational energy dependence of the Cl + CH4(vb=0, 1) reaction: a joint crossed-beam and quasiclassical trajectory study. Mol. Phys. 110:1617–26 [Google Scholar]
  87. Zhang J, Liu K. 87.  2011. Imaging the reaction dynamics of O(3P) + CH4 → OH + CH3. Chem. Asian J. 6:3132–36 [Google Scholar]
  88. Zhang B, Liu K. 88.  2005. How active is the bend excitation of methane in the reaction with O(3P)?. J. Phys. Chem. A 109:6791–95 [Google Scholar]
  89. Yan S, Wu Y-T, Zhang B, Yue X-F, Liu K. 89.  2007. Do vibrational excitations of CHD3 preferentially promote reactivity toward the chlorine atom?. Science 316:1723–26 [Google Scholar]
  90. Wang F, Liu K. 90.  2010. Enlarging the reactive cone of acceptance by exciting the C–H bond in the O(3P) + CHD3 reaction. Chem. Sci 1:126–33 [Google Scholar]
  91. Pan H, Liu K. 91.  2014. Communication: imaging the effects of the antisymmetric-stretching excitation in the O(3P) + CH4(v3=1) reaction. J. Chem. Phys. 140:191101 [Google Scholar]
  92. Zhang B, Liu K. 92.  2005. Imaging a reactive resonance in the Cl + CH4 reaction. J. Chem. Phys. 122:101102 [Google Scholar]
  93. Kawamata H, Tauro S, Liu K. 93.  2008. Unravelling the reactivity of antisymmetric stretch-excited CH4 with Cl by product pair-correlation measurements. Phys. Chem. Chem. Phys 10:4378–82 [Google Scholar]
  94. Kawamata H, Liu K. 94.  2010. Imaging the nature of the mode-specific chemistry in the reaction of Cl atom with antisymmetric stretch-excited CH4. J. Chem. Phys 133:124304 [Google Scholar]
  95. Martinez R, Gonzalez M, Defazio P, Petrongolo C. 95.  2007. Searching for resonances in the reaction Cl + CH4 → HCl + CH3: quantum versus quasiclassical dynamics and comparison with experiments. J. Chem. Phys. 127:104302 [Google Scholar]
  96. Remmert SM, Banks ST, Harvey JN, Orr-Ewing AJ, Clary DC. 96.  2011. Reduced dimensionality spin-orbit dynamics of on ab initio surfaces. J. Chem. Phys 134:204311 [Google Scholar]
  97. Kim ZH, Bechtel HA, Zare RN. 97.  2002. Channel-specific angular distributions of HCl and CH3 products from the reaction of atomic chlorine with stretch-excited methane. J. Chem. Phys 117:3232–42 [Google Scholar]
  98. Schechter I, Levine RD. 98.  1989. Enlarged reactive cone of acceptance upon vibrational excitation: O(3P) + HCl. J. Phys. Chem 93:7973–75 [Google Scholar]
  99. Levine RD. 99.  1990. The chemical shape of molecules: an introduction to dynamical stereochemistry. J. Phys. Chem 94:8872–80Provides a seminal discussion of stereo requirements in bimolecular reactions. [Google Scholar]
  100. Czako G, Bowman JM. 100.  2012. Dynamics of O(3P) + CHD3(vCH=1) reactions on an accurate ab initio potential energy surface. PNAS 109:7997–8001 [Google Scholar]
  101. Czako G. 101.  2014. Communication: direct comparison between theory and experiment for correlated angular and product-state distributions of the ground-state and stretching-excited O(3P) + CH4 reactions. J. Chem. Phys. 140:231102 [Google Scholar]
  102. Liu R, Yang M, Czako G, Bowman JM, Li J, Guo H. 102.  2012. Mode selecitivity for a “central” barrier reaction: eight-dimensional quantum studies of the O(3P) + CH4 → OH + CH3 reaction on an ab initio potential energy surface. J. Phys. Chem. Lett. 3:3776–80 [Google Scholar]
  103. Espinosa-Garcia J, Rangel C, Garcia-Bernaldez JC. 103.  2015. A QCT study of the role of symmetric and antisymmetric stretch mode excitations of methane in the O(3P) + CH4(vi=0, 1; i=1, 3) reaction. Phys. Chem. Chem. Phys. 17:6009–15 [Google Scholar]
  104. Simpson WR, Rakitzis TP, Kandel SA, Orr-Ewing AJ, Zare RN. 104.  1995. Reaction of Cl with vibrationally excited CH4 and CHD3: state-to-state differential cross sections and steric effects for the HCl product. J. Chem. Phys. 103:7313–35Presents the first report on differential reactivity in reactions of aligned methane with chlorine atoms. [Google Scholar]
  105. Wang F, Lin J-S, Liu K. 105.  2011. Steric control of the reaction of CH stretch–excited CHD3 with chlorine atom. Science 331:900–3 [Google Scholar]
  106. Wang F, Liu K, Rakitzis TP. 106.  2012. Revealing the stereospecific chemistry of the reaction of Cl with aligned CHD3(v1=1). Nat. Chem 4:636–41Directly inverts a complete set of polarization-dependent differential cross sections from experimental measurements. [Google Scholar]
  107. Wang F, Liu K. 107.  2013. Steric effects in the Cl + CHD3(v1=1) reaction. Chin. J. Chem. Phys. 26:705–9 [Google Scholar]
  108. Wang F, Lin J-S, Liu K. 108.  2014. How to measure a complete set of polarization-dependent differential cross sections in a scattering experiment with aligned reagents?. J. Chem. Phys. 140:084202 [Google Scholar]
  109. Pan H, Yang J, Wang F, Liu K. 109.  2014. Imaging the stereodynamics of Cl + CH4(v3=1): polarization dependence on the rotational branch and the hyperfine depolarization. J. Phys. Chem. Lett. 5:3878–83 [Google Scholar]
  110. Liu K. 110.  2001. Crossed-beam studies of neutral reactions: state-specific differential cross sections. Annu. Rev. Phys. Chem. 52:139–64 [Google Scholar]
  111. Hudegens JW, DiGiuseppe TG, Lin MC. 111.  1983. Two photon resonance enhanced multiphoton ionization spectroscopy and state assignments of the methyl radical. J. Chem. Phys. 79:571–82 [Google Scholar]
  112. Zhang B, Zhang J, Liu K. 112.  2005. Imaging the “missing” bands in the resonance-enhanced multiphoton ionization detection of methyl radical. J. Chem. Phys. 122:104310 [Google Scholar]
  113. Zhang B, Yan S, Liu K. 113.  2007. Unraveling multicomponent images by extended cross correlation analysis. J. Phys. Chem. A 111:9263–68 [Google Scholar]
  114. Zhang W, Kawamata H, Merer AJ, Liu K. 114.  2009. IR–UV double-resonance of methyl radicals and a determination of the detection sensitivity of REMPI bands. J. Phys. Chem. A 113:13133–38 [Google Scholar]
  115. Zhou J, Lin JJ, Shiu W, Pu S-H, Liu K. 115.  2003. Crossed-beam scattering of F + CD4 → DF + CD3(vNK): the integral cross sections. J. Chem. Phys. 119:2538–44 [Google Scholar]
  116. Casavecchia P, Leonori F, Balucani N, Petrucci R, Capozza G, Segoloni E. 116.  2009. Probing the dynamics of polyatomic multichannel elementary reactions by crossed molecular beam experiments with soft electron-ionization mass spectrometric detection. Phys. Chem. Chem. Phys. 11:46–65 [Google Scholar]
  117. Lee S-H, Chen W-K, Huang W-J. 117.  2009. Exploring the dynamics of reactions of oxygen atoms in states 3P and 1D with ethene at collision energy 3 kcal mol−1. J. Chem. Phys. 130:054301 [Google Scholar]
  118. Joalland B, Van Camp R, Shi Y, Patel N, Suits AG. 118.  2013. Crossed-beam slice imaging of Cl reaction dynamics with butene isomers. J. Phys. Chem. A 117:7589–94 [Google Scholar]
  119. Yan P, Wang Y, Li Y, Wang D. 119.  2015. A seven-degree-of-freedom, time-dependent quantum dynamics study on energy efficiency in surmounting the central energy barrier of the OH + CH3 → O + CH4. J. Chem. Phys. 142:164303 [Google Scholar]
  120. Czako G. 120.  2014. Quasiclassical trajectory study of the rotational mode specificity in the O(3P) + CHD3(v1=0, 1, JK) → OH + CD3 reactions. J. Phys. Chem. A 118:11683–87 [Google Scholar]
  121. Liu R, Wang F, Jiang B, Czako G, Yang M. 121.  et al. 2014. Rotational mode specificity in the Cl + CHD3 → HCl + CD3 reaction. J. Chem. Phys. 141:074310 [Google Scholar]
  122. Wang F, Lin J-S, Cheng Y, Liu K. 122.  2013. Vibrational enhancement factor of the Cl + CHD3(v1=1) reaction: rotational-probe effects. J. Phys. Chem. Lett. 4:323–27 [Google Scholar]
  123. Song H, Li J, Jiang B, Yang M, Lu Y, Guo H. 123.  2014. Effects of reactant rotation on the dynamics of the OH + CH4 → H2O + CH3 reaction: a six-dimensional study. J. Chem. Phys. 140:084307 [Google Scholar]
  124. Yan S, Wu Y-T, Liu K. 124.  2008. Tracking the energy flow along the reaction path. PNAS 105:12667–72 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040215-112522
Loading
/content/journals/10.1146/annurev-physchem-040215-112522
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error