1932

Abstract

This review documents the development of high–bunch charge electron pulses with sufficient combined spatiotemporal resolution and intensity to literally light up atomic motions. This development holds promise in coming to a first-principles understanding of diverse problems, ranging from molecular reaction dynamics and structure-function correlations in biology to cooperativity in strongly correlated electron-lattice systems. It is now possible to directly observe the key modes involved in propagating structural changes and the enormous reduction in dimensionality that occurs in barrier crossing regions, which is central to chemistry and makes reaction mechanisms transferrable concepts. This information will help direct theoretical advances that will undoubtedly lead to generalized principles with respect to scaling relations in structural dynamics that will bridge chemistry to biology. In this quest, the limitations and future directions for further development are discussed to give an overview of the present status of the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040412-110117
2014-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/physchem/65/1/annurev-physchem-040412-110117.html?itemId=/content/journals/10.1146/annurev-physchem-040412-110117&mimeType=html&fmt=ahah

Literature Cited

  1. Siwick BJ, Dwyer JR, Jordan RE, Miller RJD. 1.  2003. An atomic-level view of melting using femtosecond electron diffraction. Science 302:1382–85 [Google Scholar]
  2. Dwyer JR, Hebeisen CT, Ernstorfer R, Harb M, Deyirmenjian VB. 2.  et al. 2006. Femtosecond electron diffraction: “making the molecular movie.”. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 364:741–78 [Google Scholar]
  3. Bostedt C, Bozek JD, Bucksbaum PH, Coffee RN, Hastings JB. 3.  et al. 2013. Ultra-fast and ultra-intense x-ray sciences: first results from the Linac Coherent Light Source free-electron laser. J. Phys. B 46:164003 [Google Scholar]
  4. Sciaini G, Miller RJD. 4.  2011. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics. Rep. Prog. Phys. 74:096101 [Google Scholar]
  5. Barty A, Küpper J, Chapman HN. 5.  2013. Molecular imaging using X-ray free-electron lasers. Annu. Rev. Phys. Chem. 64:415–35 [Google Scholar]
  6. Hänggi P, Borkovec M. 6.  1990. Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62:251–341 [Google Scholar]
  7. Schmickler W. 7.  1986. A theory of adiabatic electron-transfer reactions. J. Electroanal. Chem. Interfacial Electrochem. 204:31–43 [Google Scholar]
  8. Polanyi JC, Zewail AH. 8.  1995. Direct observation of the transition state. Acc. Chem. Res. 28:119–32 [Google Scholar]
  9. Evans MG, Polanyi M. 9.  1935. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31:875–94 [Google Scholar]
  10. Seno Y, N. 10.  1990. Deoxymyoglobin studied by the conformational normal mode analysis. J. Mol. Biol. 216:111–26 [Google Scholar]
  11. Genberg L, Richard L, McLendon G, Miller R. 11.  1991. Direct observation of global protein motion in hemoglobin and myoglobin on picosecond time scales. Science 251:1051–54 [Google Scholar]
  12. Bahar I, Rader A. 12.  2005. Coarse-grained normal mode analysis in structural biology. Curr. Opin. Struct. Biol. 15:586–92 [Google Scholar]
  13. Kitao A, Go N. 13.  1999. Investigating protein dynamics in collective coordinate space. Curr. Opin. Struct. Biol. 9:164–69 [Google Scholar]
  14. Lange OF, Grubmüller H. 14.  2007. Full correlation analysis of conformational protein dynamics. Proteins Struct. Funct. Bioinforma. 70:1294–312 [Google Scholar]
  15. Miller RJD. 15.  1994. Energetics and dynamics of deterministic protein motion. Acc. Chem. Res. 27:145–50 [Google Scholar]
  16. Maguid S, Fernandez-Alberti S, Echave J. 16.  2008. Evolutionary conservation of protein vibrational dynamics. Gene 422:7–13 [Google Scholar]
  17. Plusquellic DF, Siegrist K, Heilweil EJ, Esenturk O. 17.  2007. Applications of terahertz spectroscopy in biosystems. ChemPhysChem 8:2412–31 [Google Scholar]
  18. Sage J, Durbin S, Sturhahn W, Wharton D, Champion P. 18.  et al. 2001. Long-range reactive dynamics in myoglobin. Phys. Rev. Lett. 86:4966–69 [Google Scholar]
  19. Armstrong MR. 19.  2003. Observation of the cascaded atomic-to-global length scales driving protein motion. Proc. Natl. Acad. Sci. USA 100:4990–94 [Google Scholar]
  20. Goodno GD, Astinov V, Miller RJD. 20.  1999. Femtosecond heterodyne-detected four-wave-mixing studies of deterministic protein motions. 2. Protein response. J. Phys. Chem. A 103:10630–43 [Google Scholar]
  21. Miller RJD. 21.  2002. 2000 John C. Polanyi Award Lecture: Mother Nature and the molecular Big Bang. Can. J. Chem. 80:1–24 [Google Scholar]
  22. Gao M, Lu C, Jean-Ruel H, Liu LC, Marx A. 22.  et al. 2013. Mapping molecular motions leading to charge delocalization with ultrabright electrons. Nature 496:343–46 [Google Scholar]
  23. Emma P, Akre R, Arthur J, Bionta R, Bostedt C. 23.  et al. 2010. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4:641–47 [Google Scholar]
  24. Dell'Angela M, Anniyev T, Beye M, Coffee R, Fohlisch A. 24.  et al. 2013. Real-time observation of surface bond breaking with an X-ray laser. Science 339:1302–5 [Google Scholar]
  25. Freyer B, Zamponi F, Juveé V, Stingl J, Woerner M. 25.  et al. 2013. Ultrafast inter-ionic charge transfer of transition-metal complexes mapped by femtosecond X-ray powder diffraction. J. Chem. Phys. 138:144504 [Google Scholar]
  26. Elsaesser T, Woerner M. 26.  2010. Photoinduced structural dynamics of polar solids studied by femtosecond X-ray diffraction. Acta Crystallogr. A 66:168–78 [Google Scholar]
  27. Henry BR, Kjaergaard HG. 27.  2002. Local modes. Can. J. Chem. 80:1635–42 [Google Scholar]
  28. Henry BR, Miller RJD. 28.  1978. Intramolecular perturbation of CH-stretching diagonal local mode anharmonicity in methyl substituted alkanes. Chem. Phys. Lett. 60:81–84 [Google Scholar]
  29. Jensen P. 29.  2000. An introduction to the theory of local mode vibrations. Mol. Phys. 98:1253–85 [Google Scholar]
  30. Nielsen S, Kapral R, Ciccotti G. 30.  2000. Mixed quantum-classical surface hopping dynamics. J. Chem. Phys. 112:6543–53 [Google Scholar]
  31. Abedi A, Agostini F, Suzuki Y, Gross EKU. 31.  2013. Dynamical steps that bridge piecewise adiabatic shapes in the exact time-dependent potential energy surface. Phys. Rev. Lett. 110:263001 [Google Scholar]
  32. Levine BG, Martínez TJ. 32.  2007. Isomerization through conical intersections. Annu. Rev. Phys. Chem. 58:613–34 [Google Scholar]
  33. Domcke W, Yarkony DR. 33.  2012. Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics. Annu. Rev. Phys. Chem. 63:325–52 [Google Scholar]
  34. Bernardi F, Olivucci M, Robb MA. 34.  1996. Potential energy surface crossings in organic photochemistry. Chem. Soc. Rev. 25:321–28 [Google Scholar]
  35. Ben-Nun M, Quenneville J, Martínez TJ. 35.  2000. Ab initio multiple spawning: photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A 104:5161–75 [Google Scholar]
  36. Nenov A, de Vivie-Riedle R. 36.  2012. Conical intersection seams in polyenes derived from their chemical composition. J. Chem. Phys. 137:074101 [Google Scholar]
  37. Altoè P, Stenta M, Bottoni A, Garavelli M. 37.  2007. A tunable QM/MM approach to chemical reactivity, structure and physico-chemical properties prediction. Theor. Chem. Acc. 118:219–40 [Google Scholar]
  38. Ruiz-Barragan S, Robb MA, Blancafort L. 38.  2013. Conical intersection optimization based on a double Newton-Raphson algorithm using composed steps. J. Chem. Theory Comput. 9:1433–42 [Google Scholar]
  39. Kochman MA, Morrison CA. 39.  2013. Hybrid QM/QM simulations of excited-state intramolecular proton transfer in the molecular crystal 7-(2-pyridyl)-indole. J. Chem. Theory Comput. 9:1182–92 [Google Scholar]
  40. Kochman MA, Bil A, Morrison CA. 40.  2013. Hybrid QM/QM simulations of photochemical reactions in the molecular crystal N-salicylidene-2-chloroaniline. Phys. Chem. Chem. Phys. 15:10803–16 [Google Scholar]
  41. Ischenko AA, Golubkov VV, Spiridonov VP, Zgurskii AV, Akhmanov AS. 41.  et al. 1983. A stroboscopical gas-electron diffraction method for the investigation of short-lived molecular species. Appl. Phys. B 32:161–63 [Google Scholar]
  42. Williamson S, Mourou G, Li JCM. 42.  1984. Time-resolved laser-induced phase transformation in aluminum. Phys. Rev. Lett. 52:2364–67 [Google Scholar]
  43. Williamson JC, Dantus M, Kim SB, Zewail AH. 43.  1992. Ultrafast diffraction and molecular structure. Chem. Phys. Lett. 196:529–34 [Google Scholar]
  44. Williamson JC, Cao J, Ihee H, Frey H, Zewail AH. 44.  1997. Clocking transient chemical changes by ultrafast electron diffraction. Nature 386:159–62 [Google Scholar]
  45. Dudek RC, Weber PM. 45.  2001. Ultrafast diffraction imaging of the electrocyclic ring-opening reaction of 1,3-cyclohexadiene. J. Phys. Chem. A 105:4167–71 [Google Scholar]
  46. Ihee H, Lobastov VA, Gomez UM, Goodson BM, Srinivasan R. 46.  et al. 2001. Direct imaging of transient molecular structures with ultrafast diffraction. Science 291:458–62 [Google Scholar]
  47. Chergui M, Zewail AH. 47.  2009. Electron and X-ray methods of ultrafast structural dynamics: advances and applications. ChemPhysChem 10:28–43 [Google Scholar]
  48. Baum P, Zewail AH. 48.  2006. Breaking resolution limits in ultrafast electron diffraction and microscopy. Proc. Natl. Acad. Sci. USA 103:16105–10 [Google Scholar]
  49. Flannigan DJ, Zewail AH. 49.  2012. 4D electron microscopy: principles and applications. Acc. Chem. Res. 45:1828–39 [Google Scholar]
  50. Prokhorenko VI, Halpin A, Johnson PJM, Miller RJD, Brown LS. 50.  2011. Coherent control of the isomerization of retinal in bacteriorhodopsin in the high intensity regime. J. Chem. Phys. 134:085105 [Google Scholar]
  51. Lincoln CN, Fitzpatrick AE, van Thor JJ. 51.  2012. Photoisomerisation quantum yield and non-linear cross-sections with femtosecond excitation of the photoactive yellow protein. Phys. Chem. Chem. Phys. 14:15752 [Google Scholar]
  52. Jean-Ruel H. 52.  2013. Femtosecond electron diffraction studies of molecular reaction dynamics PhD Diss., Univ. Toronto
  53. Park H, Zuo JM. 53.  2009. Direct measurement of transient electric fields induced by ultrafast pulsed laser irradiation of silicon. Appl. Phys. Lett. 94:251103 [Google Scholar]
  54. Park H, Zuo J-M. 54.  2010. Comment on “Structural preablation dynamics of graphite observed by ultrafast electron crystallography.”. Phys. Rev. Lett. 105:059603 [Google Scholar]
  55. Carbone F, Baum P, Rudolf P, Zewail AH. 55.  2010. Carbone et al. reply. Phys. Rev. Lett. 105:059604 [Google Scholar]
  56. Siwick BJ, Dwyer JR, Jordan RE, Miller RJD. 56.  2002. Ultrafast electron optics: propagation dynamics of femtosecond electron packets. J. Appl. Phys. 92:1643–48 [Google Scholar]
  57. Michalik AM, Sipe JE. 57.  2006. Analytic model of electron pulse propagation in ultrafast electron diffraction experiments. J. Appl. Phys. 99:054908 [Google Scholar]
  58. Michalik AM, Sherman EY, Sipe JE. 58.  2008. Theory of ultrafast electron diffraction: the role of the electron bunch properties. J. Appl. Phys. 104:054905 [Google Scholar]
  59. Michalik AM, Sipe JE. 59.  2009. Evolution of non-Gaussian electron bunches in ultrafast electron diffraction experiments: comparison to analytic model. J. Appl. Phys. 105:084913 [Google Scholar]
  60. Reed BW. 60.  2006. Femtosecond electron pulse propagation for ultrafast electron diffraction. J. Appl. Phys. 100:034916 [Google Scholar]
  61. Gahlmann A, Park ST, Zewail AH. 61.  2008. Ultrashort electron pulses for diffraction, crystallography and microscopy: theoretical and experimental resolutions. Phys. Chem. Chem. Phys. 10:2894–909 [Google Scholar]
  62. van Oudheusden T, de Jong EF, van der Geer SB, Op ‘t Root WPEM, Luiten OJ, Siwick BJ. 62.  2007. Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range. J. Appl. Phys. 102:093501 [Google Scholar]
  63. Hebeisen CT, Ernstorfer R, Harb M, Dartigalongue T, Jordan RE, Miller RJD. 63.  2006. Femtosecond electron pulse characterization using laser ponderomotive scattering. Opt. Lett. 31:3517–19 [Google Scholar]
  64. Hebeisen CT, Sciaini G, Harb M, Ernstorfer R, Dartigalongue T. 64.  et al. 2008. Grating enhanced ponderomotive scattering for visualization and full characterization of femtosecond electron pulses. Opt. Express 16:3334–41 [Google Scholar]
  65. Dowell DH, Bazarov I, Dunham B, Harkay K, Hernandez-Garcia C. 65.  et al. 2010. Cathode R&D for future light sources. Nucl. Instrum. Methods Phys. Res. A 622:685–97 [Google Scholar]
  66. Kassier GH, Haupt K, Erasmus N, Rohwer EG, Schwoerer H. 66.  2009. Achromatic reflectron compressor design for bright pulses in femtosecond electron diffraction. J. Appl. Phys. 105:113111 [Google Scholar]
  67. Kassier GH, Erasmus N, Haupt K, Boshoff I, Siegmund R. 67.  et al. 2012. Photo-triggered pulsed cavity compressor for bright electron bunches in ultrafast electron diffraction. Appl. Phys. B 109:249–57 [Google Scholar]
  68. Veisz L, Kurkin G, Chernov K, Tarnetsky V, Apolonski A. 68.  et al. 2007. Hybrid DC-AC electron gun for fs-electron pulse generation. New J. Phys. 9:451–51 [Google Scholar]
  69. Tokita S, Hashida M, Inoue S, Nishoji T, Otani K, Sakabe S. 69.  2010. Single-shot femtosecond electron diffraction with laser-accelerated electrons: experimental demonstration of electron pulse compression. Phys. Rev. Lett. 105:215004 [Google Scholar]
  70. van Oudheusden T, Pasmans PLEM, van der Geer SB, de Loos MJ, van der Wiel MJ, Luiten OJ. 70.  2010. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction. Phys. Rev. Lett. 105:264801 [Google Scholar]
  71. Gao M, Jean-Ruel H, Cooney RR, Stampe J, de Jong M. 71.  et al. 2012. Full characterization of RF compressed femtosecond electron pulses using ponderomotive scattering. Opt. Express 20:12048–58 [Google Scholar]
  72. Chatelain RP, Morrison VR, Godbout C, Siwick BJ. 72.  2012. Ultrafast electron diffraction with radio-frequency compressed electron pulses. Appl. Phys. Lett. 101:081901 [Google Scholar]
  73. Jean-Ruel H, Gao M, Kochman MA, Lu C, Liu LC. 73.  et al. 2013. Ring-closing reaction in diarylethene captured by femtosecond electron. J. Phys. Chem. B 11715894–902
  74. Gao M, Jiang Y, Kassier GH, Miller RJD. 74.  2013. Single shot time stamping of ultrabright radio frequency compressed electron pulses. Appl. Phys. Lett. 103:033503 [Google Scholar]
  75. Claessens BJ, van der Geer SB, Taban G, Vredenbregt EJD, Luiten OJ. 75.  2005. Ultracold electron source. Phys. Rev. Lett. 95:164801 [Google Scholar]
  76. McCulloch AJ, Sheludko DV, Saliba SD, Bell SC, Junker M. 76.  et al. 2011. Arbitrarily shaped high-coherence electron bunches from cold atoms. Nat. Phys. 7:785–88 [Google Scholar]
  77. Debernardi N, van Vliembergen RWL, Engelen WJ, Hermans KHM, Reijnders MP. 77.  et al. 2012. Optimization of the current extracted from an ultracold ion source. New J. Phys. 14:083011 [Google Scholar]
  78. Saliba SD, Putkunz CT, Sheludko DV, McCulloch AJ, Nugent KA, Scholten RE. 78.  2012. Spatial coherence of electron bunches extracted from an arbitrarily shaped cold atom electron source. Opt. Express 20:3967–74 [Google Scholar]
  79. Taban G, Reijnders MP, Fleskens B, van der Geer SB, Luiten OJ, Vredenbregt EJD. 79.  2010. Ultracold electron source for single-shot diffraction studies. Eur. Phys. Lett. 91:46004 [Google Scholar]
  80. Engelen WJ, van der Heijden MA, Bakker DJ, Vredenbregt EJD, Luiten OJ. 80.  2013. High-coherence electron bunches produced by femtosecond photoionization. Nat. Commun. 4:1693 [Google Scholar]
  81. Travier C. 81.  1991. RF guns: bright injectors for FEL. Nucl. Instrum. Methods Phys. Res. A 304:285–96 [Google Scholar]
  82. Hastings JB, Rudakov FM, Dowell DH, Schmerge JF, Cardoza JD. 82.  et al. 2006. Ultrafast time-resolved electron diffraction with megavolt electron beams. Appl. Phys. Lett. 89:184109 [Google Scholar]
  83. Musumeci P, Moody JT, Scoby CM, Gutierrez MS, Westfall M. 83.  2010. Laser-induced melting of a single crystal gold sample by time-resolved ultrafast relativistic electron diffraction. Appl. Phys. Lett. 97:063502 [Google Scholar]
  84. Li R, Huang W, Du Y, Yan L, Du Q. 84.  et al. 2010. Note: single-shot continuously time-resolved MeV ultrafast electron diffraction. Rev. Sci. Instrum. 81:036110 [Google Scholar]
  85. Musumeci P, Moody JT, Scoby CM, Gutierrez MS, Westfall M, Li RK. 85.  2010. Capturing ultrafast structural evolutions with a single pulse of MeV electrons: radio frequency streak camera based electron diffraction. J. Appl. Phys. 108:114513 [Google Scholar]
  86. Scoby CM, Musumeci P, Moody JT, Gutierrez MS. 86.  2010. Electro-optic sampling at 90 degree interaction geometry for time-of-arrival stamping of ultrafast relativistic electron diffraction. Phys. Rev. Spec. Top. Accel. Beams 13:022801 [Google Scholar]
  87. Murooka Y, Naruse N, Sakakihara S, Ishimaru M, Yang J, Tanimura K. 87.  2011. Transmission-electron diffraction by MeV electron pulses. Appl. Phys. Lett. 98:251903 [Google Scholar]
  88. Williamson JC, Zewail AH. 88.  1993. Ultrafast electron diffraction: velocity mismatch and temporal resolution in crossed-beam experiments. Chem. Phys. Lett. 209:10–16 [Google Scholar]
  89. Goodno GD, Astinov V, Miller RJD. 89.  1999. Diffractive optics-based heterodyne-detected grating spectroscopy: application to ultrafast protein dynamics. J. Phys. Chem. B 103:603–7 [Google Scholar]
  90. Maznev AA, Crimmins TF, Nelson KA. 90.  1998. How to make femtosecond pulses overlap. Opt. Lett. 23:1378–80 [Google Scholar]
  91. Born M. 91.  1939. Thermodynamics of crystals and melting. J. Chem. Phys. 7:591–603 [Google Scholar]
  92. Ernstorfer R, Harb M, Hebeisen CT, Sciaini G, Dartigalongue T, Miller RJD. 92.  2009. The formation of warm dense matter: experimental evidence for electronic bond hardening in gold. Science 323:1033–37 [Google Scholar]
  93. Lin Z, Zhigilei L. 93.  2006. Time-resolved diffraction profiles and atomic dynamics in short-pulse laser-induced structural transformations: molecular dynamics study. Phys. Rev. B 73:184113 [Google Scholar]
  94. Franjic K, Cowan ML, Kraemer D, Miller RJD. 94.  2009. Laser selective cutting of biological tissues by impulsive heat deposition through ultrafast vibrational excitations. Opt. Express 17:22937–59 [Google Scholar]
  95. Franjic K, Miller RJD. 95.  2010. Vibrationally excited ultrafast thermodynamic phase transitions at the water/air interface. Phys. Chem. Chem. Phys. 12:5225–39 [Google Scholar]
  96. Amini-Nik S, Kraemer D, Cowan ML, Gunaratne K, Nadesan P. 96.  et al. 2010. Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery. PLoS One 5:e13053 [Google Scholar]
  97. Hess M, Hildebrandt MD, Müller F, Kruber S, Kroetz P. 97.  et al. 2013. Picosecond infrared laser (PIRL): an ideal phonomicrosurgical laser?. Eur. Arch. Otorhinolaryngol. 270:2927–37 [Google Scholar]
  98. Eichberger M, Schaefer H, Krumova M, Beyer M, Demsar J. 98.  et al. 2010. Snapshots of cooperative atomic motions in the optical suppression of charge density waves. Nature 468:799–802 [Google Scholar]
  99. Erasmus N, Eichberger M, Haupt K, Boshoff I, Kassier G. 99.  et al. 2012. Ultrafast dynamics of charge density waves in 4Hb-TaSe2 probed by femtosecond electron diffraction. Phys. Rev. Lett. 109:167402 [Google Scholar]
  100. Eichberger M, Erasmus N, Haupt K, Kassier G, von Flotow A. 100.  et al. 2013. Femtosecond streaking of electron diffraction patterns to study structural dynamics in crystalline matter. Appl. Phys. Lett. 102:121106 [Google Scholar]
  101. Han T-RT, Tao Z, Mahanti SD, Chang K, Ruan C-Y. 101.  et al. 2012. Structural dynamics of two-dimensional charge-density waves in CeTe3 investigated by ultrafast electron crystallography. Phys. Rev. B 86:075145 [Google Scholar]
  102. Irie M. 102.  2001. Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation. Science 291:1769–72 [Google Scholar]
  103. Boggio-Pasqua M, Ravaglia M, Bearpark MJ, Garavelli M, Robb MA. 103.  2003. Can diarylethene photochromism be explained by a reaction path alone? A CASSCF study with model MMVB dynamics. J. Phys. Chem. A 107:11139–52 [Google Scholar]
  104. Reckenthaeler P, Centurion M, Fuß W, Trushin SA, Krausz F, Fill EE. 104.  2009. Time-resolved electron diffraction from selectively aligned molecules. Phys. Rev. Lett. 102:213001 [Google Scholar]
  105. Hensley CJ, Yang J, Centurion M. 105.  2012. Imaging of isolated molecules with ultrafast electron pulses. Phys. Rev. Lett. 109:133202 [Google Scholar]
  106. Mueller C, Harb M, Dwyer JR, Miller RJD. 106.  2013. Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J. Phys. Chem. Lett. 4:2339–47 [Google Scholar]
  107. Hanisch-Blicharski A, Janzen A, Krenzer B, Wall S, Klasing F. 107.  et al. 2013. Ultra-fast electron diffraction at surfaces: from nanoscale heat transport to driven phase transitions. Ultramicroscopy 127:2–8 [Google Scholar]
  108. Paarmann A, Gulde M, Müller M, Schäfer S, Schweda S. 108.  et al. 2012. Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: a numerical study. J. Appl. Phys. 112:113109 [Google Scholar]
  109. Floettman K. 109.  2013. Generation of sub-fs electron beams at few-MeV energies. Nucl. Instrum. Methods Phys. Res. A. In press
/content/journals/10.1146/annurev-physchem-040412-110117
Loading
/content/journals/10.1146/annurev-physchem-040412-110117
Loading

Data & Media loading...

Supplemental Material

    Observation of electron correlation effects and cooperative many-body effects in the formation of charge density waves in TaS (98).

    Direct observation of the reduction in dimensionality during photoinduced charge transfer for the model organic system EDO-TTF (22).

    Atomically resolved ring closing/bond formation dynamics for diarylethene.

    Real-space in situ observations of nanoparticle motions in liquid (106).

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error