1932

Abstract

The valence orbital electron binding energies of water and of embedded solutes are crucial quantities for understanding chemical reactions taking place in aqueous solution, including oxidation/reduction, transition-metal coordination, and radiation chemistry. Their experimental determination based on liquid-photoelectron spectroscopy using soft X-rays is described, and we provide an overview of valence photoelectron spectroscopy studies reported to date. We discuss principal experimental aspects and several theoretical approaches to compute the measured binding energies of the least tightly bound molecular orbitals. Solutes studied are presented chronologically, from simple electrolytes, via transition-metal ion solutions and several organic and inorganic molecules, to biologically relevant molecules, including aqueous nucleotides and their components. In addition to the lowest vertical ionization energies, the measured valence photoelectron spectra also provide information on adiabatic ionization energies and reorganization energies for the oxidation (ionization) half-reaction. For solutes with low solubility, resonantly enhanced ionization provides a promising alternative pathway.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040513-103715
2016-05-27
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/physchem/67/1/annurev-physchem-040513-103715.html?itemId=/content/journals/10.1146/annurev-physchem-040513-103715&mimeType=html&fmt=ahah

Literature Cited

  1. Atkins P, Jones L. 1.  2010. Chemical Principles: The Quest for Insight New York: Freeman
  2. Hüfner S. 2.  1995. Photoelectron Spectroscopy: Principles and Applications Berlin: Springer-Verlag
  3. Winter B, Faubel M. 3.  2006. Photoemission from liquid aqueous solutions. Chem. Rev. 106:1176–211 [Google Scholar]
  4. Ogletree DF, Bluhm H, Lebedev G, Fadley CS, Hussain Z, Salmeron M. 4.  2002. A differentially pumped electrostatic lens system for photoemission studies in the millibar range. Rev. Sci. Instrum. 73:3872–77 [Google Scholar]
  5. Bluhm H, Andersson K, Araki T, Benzerara K, Brown GE. 5.  et al. 2006. Soft X-ray microscopy and spectroscopy at the molecular environmental science beamline at the Advanced Light Source. J. Electron Spectrosc. 150:86–104 [Google Scholar]
  6. Salmeron M, Schlögl R. 6.  2008. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf. Sci. Rep. 63:169–99 [Google Scholar]
  7. Siefermann KR, Liu YX, Lugovoy E, Link O, Faubel M. 7.  et al. 2010. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Chem. 2:274–79 [Google Scholar]
  8. Tang Y, Shen H, Sekiguchi K, Kurahashi N, Mizuno T. 8.  et al. 2010. Direct measurement of vertical binding energy of a hydrated electron. Phys. Chem. Chem. Phys. 12:3653–55 [Google Scholar]
  9. Shreve AT, Yen TA, Neumark DM. 9.  2010. Photoelectron spectroscopy of hydrated electrons. Chem. Phys. Lett. 493:216–19 [Google Scholar]
  10. Lübcke A, Buchner F, Heine N, Hertel IV, Schultz T. 10.  2010. Time-resolved photoelectron spectroscopy of solvated electrons in aqueous NaI solution. Phys. Chem. Chem. Phys. 12:14629–34 [Google Scholar]
  11. Suzuki Y-I, Shen H, Tang Y, Kurahashi N, Sekiguchi K. 11.  et al. 2011. Isotope effect on ultrafast charge-transfer-to-solvent reaction from I to water in aqueous NaI solution. Chem. Sci. 2:1094–102 [Google Scholar]
  12. Elkins MH, Williams HL, Shreve AT, Neumark DM. 12.  2013. Relaxation mechanism of the hydrated electron. Science 342:1496–99 [Google Scholar]
  13. Link O, Lugovoy E, Siefermann K, Liu Y, Faubel M, Abel B. 13.  2009. Ultrafast electronic spectroscopy for chemical analysis near liquid water interfaces: concepts and applications. Appl. Phys. A 96:117–35 [Google Scholar]
  14. Faubel M, Siefermann KR, Liu Y, Abel B. 14.  2012. Ultrafast soft X-ray photoelectron spectroscopy at liquid water microjets. Acc. Chem. Res. 45:120–30 [Google Scholar]
  15. Ghosal S, Hemminger JC, Bluhm H, Mun BS, Hebenstreit ELD. 15.  et al. 2005. Electron spectroscopy of aqueous solution interfaces reveals surface enhancement of halides. Science 307:563–66 [Google Scholar]
  16. Ottosson N, Faubel M, Bradforth SE, Jungwirth P, Winter B. 16.  2010. Photoelectron spectroscopy of liquid water and aqueous solution: electron effective attenuation lengths and emission-angle anisotropy. J. Electron Spectrosc. Relat. Phenom. 177:60–70 [Google Scholar]
  17. Arrell CA, Ojeda J, Sabbar M, Okell WA, Witting T. 17.  et al. 2014. A simple electron time-of-flight spectrometer for ultrafast vacuum ultraviolet photoelectron spectroscopy of liquid solutions. Rev. Sci. Instrum. 85:103117 [Google Scholar]
  18. Faubel M, Steiner B, Toennies JP. 18.  1997. Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. J. Chem. Phys. 106:9013–31 [Google Scholar]
  19. Winter B. 19.  2009. Liquid microjet for photoelectron spectroscopy. Nucl. Instrum. Methods A 601:139–50 [Google Scholar]
  20. Seidel R, Thürmer S, Winter B. 20.  2011. Photoelectron spectroscopy meets aqueous solution: studies from a vacuum liquid microjet. Phys. Chem. Lett. 2:633–41 [Google Scholar]
  21. Kurahashi N, Karashima S, Tang Y, Horio T, Abulimiti B. 21.  et al. 2014. Photoelectron spectroscopy of aqueous solutions: streaming potentials of NaX (X = Cl, Br, and I) solutions and electron binding energies of liquid water and X. J. Chem. Phys. 140:174506 [Google Scholar]
  22. Schmidt V. 22.  1997. Electron Spectroscopy of Atoms Using Synchrotron Radiation Cambridge, UK: Cambridge Univ. Press
  23. Cooper J, Zare RN. 23.  1968. Angular distribution of photoelectrons. J. Chem. Phys. 48:942–43 [Google Scholar]
  24. Reid KL. 24.  2003. Photoelectron angular distributions. Annu. Rev. Phys. Chem. 54:397–424 [Google Scholar]
  25. Zhang C, Andersson T, Foerstel M, Mucke M, Arion T. 25.  et al. 2013. The photoelectron angular distribution of water clusters. J. Chem. Phys. 138:234306 [Google Scholar]
  26. Thürmer S, Seidel R, Faubel M, Eberhardt W, Hemminger JC. 26.  et al. 2013. Photoelectron angular distributions from liquid water: effects of electron scattering. Phys. Rev. Lett. 111:173005 [Google Scholar]
  27. Jablonski A, Powell CJ. 27.  1999. Relationship between electron mean free paths, effective attenuation lengths, and mean escape depths. J. Electron Spectrosc. 100:137–60 [Google Scholar]
  28. Suzuki Y-I, Nishizawa K, Kurahashi N, Suzuki T. 28.  2014. Effective attenuation length of an electron in liquid water between 10 and 600 eV. Phys. Rev. E 90:010302 [Google Scholar]
  29. Pimblott SM, LaVerne JA, Mozumder A. 29.  1996. Monte Carlo simulation of range and energy deposition by electrons in gaseous and liquid water. J. Phys. Chem. 100:8595–606 [Google Scholar]
  30. Winter B, Weber R, Widdra W, Dittmar M, Faubel M, Hertel IV. 30.  2004. Full valence band photoemission from liquid water using EUV synchrotron radiation. J. Phys. Chem. A 108:2625–32 [Google Scholar]
  31. Nishizawa K, Kurahashi N, Sekiguchi K, Mizuno T, Ogi Y. 31.  et al. 2011. High-resolution soft X-ray photoelectron spectroscopy of liquid water. Phys. Chem. Chem. Phys. 13:413–17 [Google Scholar]
  32. Nordlund D, Odelius M, Bluhm H, Ogasawara H, Pettersson LGM, Nilsson A. 32.  2008. Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory. Chem. Phys. Lett. 460:86–92 [Google Scholar]
  33. Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M. 33.  et al. 2004. The structure of the first coordination shell in liquid water. Science 304:995–99 [Google Scholar]
  34. Nilsson A, Nordlund D, Waluyo I, Huang N, Ogasawara H. 34.  et al. 2010. X-ray absorption spectroscopy and X-ray Raman scattering of water and ice: an experimental view. J. Electron Spectrosc. 177:99–129 [Google Scholar]
  35. Nilsson A, Pettersson LGM. 35.  2011. Perspective on the structure of liquid water. Chem. Phys. 389:1–34 [Google Scholar]
  36. Jagoda-Cwiklik B, Slavíček P, Cwiklik L, Nolting D, Winter B, Jungwirth P. 36.  2008. Ionization of imidazole in the gas phase, microhydrated environments, and in aqueous solution. J. Phys. Chem. A 112:3499–505 [Google Scholar]
  37. Slavíček P, Winter B, Faubel M, Bradforth SE, Jungwirth P. 37.  2009. Ionization energies of aqueous nucleic acids: photoelectron spectroscopy of pyrimidine nucleosides and ab initio calculations. J. Am. Chem. Soc. 131:6460–67 [Google Scholar]
  38. Hunt P, Sprik M, Vuilleumier R. 38.  2003. Thermal versus electronic broadening in the density of states of liquid water. Chem. Phys. Lett. 376:68–74 [Google Scholar]
  39. Barth S, Oncak M, Ulrich V, Mucke M, Lischke T. 39.  et al. 2009. Valence ionization of water clusters: from isolated molecules to bulk. J. Phys. Chem. A 113:13519–27 [Google Scholar]
  40. Tokushima T, Harada Y, Takahashi O, Senba Y, Ohashi H. 40.  et al. 2008. High resolution X-ray emission spectroscopy of liquid water: the observation of two structural motifs. Chem. Phys. Lett. 460:387–400 [Google Scholar]
  41. Clark GNI, Cappa CD, Smith JD, Saykally RJ, Head-Gordon T. 41.  2010. The structure of ambient water. Mol. Phys. 108:1415–33 [Google Scholar]
  42. Clark GNI, Hura GL, Teixeira J, Soper AK, Head-Gordon T. 42.  2010. Small-angle scattering and the structure of ambient liquid water. PNAS 107:14003–7 [Google Scholar]
  43. Winter B, Faubel M, Hertel IV, Pettenkofer C, Bradforth SE. 43.  et al. 2006. Electron binding energies of hydrated H3O+ and OH: photoelectron spectroscopy of aqueous acid and base solutions combined with electronic structure calculations. J. Am. Chem. Soc. 128:3864–65 [Google Scholar]
  44. Thürmer S, Seidel R, Winter B, Oncak M, Slavíček P. 44.  2011. Flexible H2O2 in water: electronic structure from photoelectron spectroscopy and ab initio calculations. J. Phys. Chem. A 115:6239–49 [Google Scholar]
  45. Kloepfer JA, Vilchiz VH, Lenchenkov VA, Germaine AC, Bradforth SE. 45.  2000. The ejection distribution of solvated electrons generated by the one-photon photodetachment of aqueous I and two-photon ionization of the solvent. J. Chem. Phys. 113:6288–307 [Google Scholar]
  46. Chen X, Bradforth SE. 46.  2008. The ultrafast dynamics of photodetachment. Annu. Rev. Phys. Chem. 59:203–31 [Google Scholar]
  47. Winter B, Weber R, Hertel IV, Faubel M, Jungwirth P. 47.  et al. 2005. Electron binding energies of aqueous alkali and halide ions: EUV photoelectron spectroscopy of liquid solutions and combined ab initio and molecular dynamics calculations. J. Am. Chem. Soc. 127:7203–14 [Google Scholar]
  48. Pluhařová E, Oncak M, Seidel R, Schroeder C, Schroeder W. 48.  et al. 2012. Transforming anion instability into stability: contrasting photoionization of three protonation forms of the phosphate ion upon moving into water. J. Phys. Chem. B 116:13254–64 [Google Scholar]
  49. Lide DR. 49.  2000. Handbook of Chemistry and Physics Boca Raton, FL: CRC
  50. Faubel M. 50.  2000. Photoelectron spectroscopy at liquid surfaces. Photoionization and Photodetachment CY Ng 634–90 Singapore: World Sci. [Google Scholar]
  51. Bradforth SE, Jungwirth P. 51.  2002. Excited states of iodide anions in water: a comparison of the electronic structure in clusters and in bulk solution. J. Phys. Chem. A 106:1286–98 [Google Scholar]
  52. Blandamer MJ, Fox MF. 52.  1970. Theory and applications of charge-transfer-to-solvent spectra. Chem. Rev. 70:59 [Google Scholar]
  53. Robertson WH, Johnson MA. 53.  2003. Molecular aspects of halide ion hydration: the cluster approach. Annu. Rev. Phys. Chem. 54:173–213 [Google Scholar]
  54. Olleta AC, Lee HM, Kim KS. 54.  2006. Ab initio study of hydrated sodium halides NaX(H2O)1-6 (X = F, Cl, Br, and I). J. Chem. Phys. 124:024321 [Google Scholar]
  55. Thompson WH, Hynes JT. 55.  2000. Frequency shifts in the hydrogen-bonded OH stretch in halide-water clusters. The importance of charge transfer. J. Am. Chem. Soc. 122:6278–86 [Google Scholar]
  56. Ge L, Bernasconi L, Hunt P. 56.  2013. Linking electronic and molecular structure: insight into aqueous chloride solvation. Phys. Chem. Chem. Phys. 15:13169–83 [Google Scholar]
  57. Weber R, Winter B, Schmidt PM, Widdra W, Hertel IV. 57.  et al. 2004. Photoemission from aqueous alkali-metal-iodide salt solutions using EUV synchrotron radiation. J. Phys. Chem. B 108:4729–36 [Google Scholar]
  58. Winter B, Weber R, Schmidt PM, Hertel IV, Faubel M. 58.  et al. 2004. Molecular structure of surface-active salt solutions: photoelectron spectroscopy and molecular dynamics simulations of aqueous tetrabutylammonium iodide. J. Phys. Chem. B 108:14558–64 [Google Scholar]
  59. Buchner F, Schultz T, Lübcke A. 59.  2012. Solvated electrons at the water-air interface: surface versus bulk signal in low kinetic energy photoelectron spectroscopy. Phys. Chem. Chem. Phys. 14:5837–42 [Google Scholar]
  60. Seidel R, Faubel M, Winter B, Blumberger J. 60.  2009. Single-ion reorganization free energy of aqueous Ru(bpy)32+/3+ and Ru(H2O)62+/3+ from photoemission spectroscopy and density functional molecular dynamics simulation. J. Am. Chem. Soc. 131:16127–37 [Google Scholar]
  61. Moens J, Seidel R, Geerlings P, Faubel M, Winter B, Blumberger J. 61.  2010. Energy levels and redox properties of aqueous Mn2+/3+ from photoemission spectroscopy and density functional molecular dynamics simulation. J. Phys. Chem. B 114:9173–82 [Google Scholar]
  62. Seidel R, Thürmer S, Moens J, Geerlings P, Blumberger J, Winter B. 62.  2011. Valence photoemission spectra of aqueous Fe2+/3+ and Fe(CN)64-/3− and their interpretation by DFT calculations. J. Phys. Chem. B 115:11671–77 [Google Scholar]
  63. Yepes D, Seidel R, Winter B, Blumberger J, Jaque P. 63.  2014. Photoemission spectra and density functional theory calculations of 3d transition metal-aqua complexes (Ti-Cu) in aqueous solution. J. Phys. Chem. B 118:6850–63 [Google Scholar]
  64. Wang XB, Wang LS. 64.  2000. Probing the electronic structure of redox species and direct determination of intrinsic reorganization energies of electron transfer reactions. J. Chem. Phys. 112:6959–62 [Google Scholar]
  65. Schroeder CA, Pluhařová E, Seidel R, Schroeder WP, Faubel M. 65.  et al. 2015. Oxidation half-reaction of aqueous nucleosides and nucleotides via photoelectron spectroscopy augmented by ab initio calculations. J. Am. Chem. Soc. 137:201–9 [Google Scholar]
  66. Ghosh D, Roy A, Seidel R, Winter B, Bradforth S, Krylov AI. 66.  2012. First-principle protocol for calculating ionization energies and redox potentials of solvated molecules and ions: theory and application to aqueous phenol and phenolate. J. Phys. Chem. B 116:7269–80 [Google Scholar]
  67. Tentscher PR, Seidel R, Winter B, Guerard JJ, Arey JS. 67.  2015. Exploring the aqueous vertical ionization of organic molecules by molecular simulation and liquid microjet photoelectron spectroscopy. J. Phys. Chem. B 119:238–56 [Google Scholar]
  68. Buchner F, Ritze H-H, Lahl J, Luebcke A. 68.  2013. Time-resolved photoelectron spectroscopy of adenine and adenosine in aqueous solution. Phys. Chem. Chem. Phys. 15:11402–8 [Google Scholar]
  69. Yamamoto Y-I, Suzuki Y-I, Tomasello G, Horio T, Karashima S. 69.  et al. 2015. Femtosecond time and angle resolved photoemission spectroscopy of liquids. Proc. Int. Conf. Ultrafast Phenom. 19th, Okinawa, Japan, July 7–11, pp. 305–8, ed. K Yamanouchi, S Cundiff, R de Vivie-Riedle, M Kuwata-Gonomaki, L DiMauro. Cham, Switz.: Springer [Google Scholar]
  70. Chatterley AS, Johns AS, Stavros VG, Verlet JRR. 70.  2013. Base-specific ionization of deprotonated nucleotides by resonance enhanced two-photon detachment. J. Phys. Chem. A 117:5299–305 [Google Scholar]
  71. Trofimov AB, Schirmer J, Kobychev VB, Potts AW, Holland DMP, Karlsson L. 71.  2006. Photoelectron spectra of the nucleobases cytosine, thymine and adenine. J. Phys. B 39:305–29 [Google Scholar]
  72. Kim NS, LeBreton PR. 72.  1996. UV photoelectron and ab initio quantum mechanical evaluation of nucleotide ionization potentials in water-counterion environments: π polarization effects on DNA alkylation by carcinogenic methylating agents. J. Am. Chem. Soc. 118:3694–707 [Google Scholar]
  73. Belau L, Wilson KR, Leone SR, Ahmed M. 73.  2007. Vacuum-ultraviolet photoionization studies of the microhydration of DNA bases (guanine, cytosine, adenine, and thymine). J. Phys. Chem. A 111:7562–68 [Google Scholar]
  74. Yang X, Wang XB, Vorpagel ER, Wang LS. 74.  2004. Direct experimental observation of the low ionization potentials of guanine in free oligonucleotides by using photoelectron spectroscopy. PNAS 101:17588–92 [Google Scholar]
  75. Steenken S, Jovanovic SV. 75.  1997. How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J. Am. Chem. Soc. 119:617–18 [Google Scholar]
  76. Wardman P. 76.  1989. Reduction potentials of the one-electron couples involving free radicals in aqueous solution. J. Phys. Chem. 18:1637–755 [Google Scholar]
  77. Seidel CAM, Schulz A, Sauer MHM. 77.  1996. Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. J. Phys. Chem. 100:5541–53 [Google Scholar]
  78. Schuster GB, Landman U. 78.  2004. The mechanism of long-distance radical cation transport in duplex DNA: ion-gated hopping of polaron-like distortions. Long-Range Charge Transfer in DNA GB Schuster 139–61 Berlin: Springer [Google Scholar]
  79. Pluhařová E, Schroeder C, Seidel R, Bradforth SE, Winter B. 79.  et al. 2013. Unexpectedly small effect of the DNA environment on vertical ionization energies of aqueous nucleobases. J. Phys. Chem. Lett. 4:3766–69 [Google Scholar]
  80. Winter B, Faubel M, Vacha R, Jungwirth P. 80.  2009. Behavior of hydroxide at the water/vapor interface. Chem. Phys. Lett. 474:241–47 [Google Scholar]
  81. Thürmer S, Seidel R, Eberhardt W, Bradforth SE, Winter B. 81.  2011. Ultrafast hybridization screening in Fe3+ aqueous solution. J. Am. Chem. Soc. 133:12528–35 [Google Scholar]
  82. Seidel R, Ghadimi S, Lange KM, Bonhommeau S, Soldatov MA. 82.  et al. 2012. Origin of dark-channel X-ray fluorescence from transition-metal ions in water. J. Am. Chem. Soc. 134:1600–5 [Google Scholar]
  83. Seidel R, Atak K, Thürmer S, Aziz EF, Winter B. 83.  2015. Ti3+ aqueous solution: hybridization and electronic relaxation probed by state-dependent electron spectroscopy. J. Phys. Chem. B 119:10607–15 [Google Scholar]
  84. Thürmer S, Oncak M, Ottosson N, Seidel R, Hergenhahn U. 84.  et al. 2013. On the nature and origin of di-cationic, charge-separated species formed in liquid water upon X-ray irradiation. Nat. Chem. 5:590–96 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040513-103715
Loading
/content/journals/10.1146/annurev-physchem-040513-103715
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error