1932

Abstract

Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver disorders characterized by abnormal hepatic fat accumulation, inflammation, and hepatocyte dysfunction. Importantly, it is also closely linked to obesity and the metabolic syndrome. NAFLD predisposes susceptible individuals to cirrhosis, hepatocellular carcinoma, and cardiovascular disease. Although the precise signals remain poorly understood, NAFLD pathogenesis likely involves actions of the different hepatic cell types and multiple extrahepatic signals. The complexity of this disease has been a major impediment to the development of appropriate metrics of its progression and effective therapies. Recent clinical data place increasing importance on identifying fibrosis, as it is a strong indicator of hepatic disease–related mortality. Preclinical modeling of the fibrotic process remains challenging, particularly in the contexts of obesity and the metabolic syndrome. Future studies are needed to define the molecular pathways determining the natural progression of NAFLD, including key determinants of fibrosis and disease-related outcomes. This review covers the evolving concepts of NAFLD from both human and animal studies. We discuss recent clinical and diagnostic methods assessing NAFLD diagnosis, progression, and outcomes; compare the features of genetic and dietary animal models of NAFLD; and highlight pharmacological approaches for disease treatment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021115-105331
2016-02-10
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/physiol/78/1/annurev-physiol-021115-105331.html?itemId=/content/journals/10.1146/annurev-physiol-021115-105331&mimeType=html&fmt=ahah

Literature Cited

  1. Wong RJ, Aguilar M, Cheung R, Perumpail RB, Harrison SA. 1.  et al. 2015. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 148:547–55 [Google Scholar]
  2. Day CP, James OF. 2.  1998. Steatohepatitis: a tale of two “hits”?. Gastroenterology 114:842–45 [Google Scholar]
  3. Luyckx FH, Lefebvre PJ, Scheen AJ. 3.  2000. Non-alcoholic steatohepatitis: association with obesity and insulin resistance, and influence of weight loss. Diabetes Metab. 26:98–106 [Google Scholar]
  4. Brunt EM, Belt PH, Wilson L, Guy CD, Yeh MM. 4.  et al. 2013. Progression to bridging fibrosis in non-alcoholic fatty liver disease over 4 years in the NASH CRN. Hepatology 58:A495–96 [Google Scholar]
  5. Merriman RB, Ferrell LD, Patti MG, Weston SR, Pabst MS. 5.  et al. 2006. Correlation of paired liver biopsies in morbidly obese patients with suspected nonalcoholic fatty liver disease. Hepatology 44:874–80 [Google Scholar]
  6. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ. 6.  et al. 2005. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–21 [Google Scholar]
  7. Brunt EM, Kleiner DE, Wilson LA, Belt P, Neuschwander-Tetri BA, Network NCR. 7.  2011. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology 53:810–20 [Google Scholar]
  8. Younossi ZM, Stepanova M, Rafiq N, Makhlouf H, Younoszai Z. 8.  et al. 2011. Pathologic criteria for nonalcoholic steatohepatitis: interprotocol agreement and ability to predict liver-related mortality. Hepatology 53:1874–82 [Google Scholar]
  9. Brunt EM, Kleiner DE, Wilson LA, Unalp A, Behling CE. 9.  et al. 2009. Portal chronic inflammation in nonalcoholic fatty liver disease (NAFLD): a histologic marker of advanced NAFLD—clinicopathologic correlations from the nonalcoholic steatohepatitis clinical research network. Hepatology 49:809–20 [Google Scholar]
  10. Bedossa P, Poitou C, Veyrie N, Bouillot JL, Basdevant A. 10.  et al. 2012. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology 56:1751–59 [Google Scholar]
  11. Alkhouri N, McCullough AJ. 11.  2012. Noninvasive diagnosis of NASH and liver fibrosis within the spectrum of NAFLD. Gastroenterol. Hepatol. 8:661–68 [Google Scholar]
  12. Adams LA. 12.  2015. NAFLD. Accurate quantification of hepatic fat—is it important?. Nat. Rev. Gastroenterol. Hepatol. 12:126–27 [Google Scholar]
  13. Bastati N, Feier D, Wibmer A, Traussnigg S, Balassy C. 13.  et al. 2014. Noninvasive differentiation of simple steatosis and steatohepatitis by using gadoxetic acid–enhanced MR imaging in patients with nonalcoholic fatty liver disease: a proof-of-concept study. Radiology 271:739–47 [Google Scholar]
  14. Younossi ZM, Page S, Rafiq N, Birerdinc A, Stepanova M. 14.  et al. 2011. A biomarker panel for non-alcoholic steatohepatitis (NASH) and NASH-related fibrosis. Obes. Surg. 21:431–39 [Google Scholar]
  15. Cusi K, Chang Z, Harrison S, Lomonaco R, Bril F. 15.  et al. 2014. Limited value of plasma cytokeratin-18 as a biomarker for NASH and fibrosis in patients with non-alcoholic fatty liver disease. J. Hepatol. 60:167–74 [Google Scholar]
  16. Ekstedt M, Hagstrom H, Nasr P, Fredrikson M, Stal P. 16.  et al. 2015. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61:1547–54 [Google Scholar]
  17. Angulo P, Kleiner DE, Dam-Larsen S, Adams LA, Bjornsson ES. 17.  et al. 2015. Liver fibrosis, but no other histologic features, associates with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149:389–97.e10 [Google Scholar]
  18. Harrison SA, Oliver D, Arnold HL, Gogia S, Neuschwander-Tetri BA. 18.  2008. Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease. Gut 57:1441–47 [Google Scholar]
  19. Angulo P, Hui JM, Marchesini G, Bugianesi E, George J. 19.  et al. 2007. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 45:846–54 [Google Scholar]
  20. Vallet-Pichard A, Mallet V, Nalpas B, Verkarre V, Nalpas A. 20.  et al. 2007. FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection. Comparison with liver biopsy and fibrotest. Hepatology 46:32–36 [Google Scholar]
  21. Guha IN, Parkes J, Roderick P, Chattopadhyay D, Cross R. 21.  et al. 2008. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: validating the European Liver Fibrosis Panel and exploring simple markers. Hepatology 47:455–60 [Google Scholar]
  22. Ratziu V, Massard J, Charlotte F, Messous D, Imbert-Bismut F. 22.  et al. 2006. Diagnostic value of biochemical markers (FibroTest-FibroSURE) for the prediction of liver fibrosis in patients with non-alcoholic fatty liver disease. BMC Gastroenterol. 6:6 [Google Scholar]
  23. Boursier J, de Ledinghen V, Zarski JP, Fouchard-Hubert I, Gallois Y. 23.  et al. 2012. Comparison of eight diagnostic algorithms for liver fibrosis in hepatitis C: New algorithms are more precise and entirely noninvasive. Hepatology 55:58–67 [Google Scholar]
  24. McPherson S, Hardy T, Henderson E, Burt AD, Day CP, Anstee QM. 24.  2015. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management. J. Hepatol. 62:1148–55 [Google Scholar]
  25. Pais R, Charlotte F, Fedchuk L, Bedossa P, Lebray P. 25.  et al. 2013. A systematic review of follow-up biopsies reveals disease progression in patients with non-alcoholic fatty liver. J. Hepatol. 59:550–56 [Google Scholar]
  26. Anstee QM, Targher G, Day CP. 26.  2013. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 10:330–44 [Google Scholar]
  27. Sanyal AJ, Friedman SL, McCullough AJ, Dimick-Santos L. 27.  2015. Challenges and opportunities in drug and biomarker development for nonalcoholic steatohepatitis: findings and recommendations from an American Association for the Study of Liver Diseases–U.S. Food and Drug Administration joint workshop. Hepatology 61:1392–405 [Google Scholar]
  28. Naik A, Kosir R, Rozman D. 28.  2013. Genomic aspects of NAFLD pathogenesis. Genomics 102:84–95 [Google Scholar]
  29. Anstee QM, Day CP. 29.  2013. The genetics of NAFLD. Nat. Rev. Gastroenterol. Hepatol. 10:645–55 [Google Scholar]
  30. Kozlitina J, Smagris E, Stender S, Nordestgaard BG, Zhou HH. 30.  et al. 2014. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 46:352–56 [Google Scholar]
  31. Liu YL, Reeves HL, Burt AD, Tiniakos D, McPherson S. 31.  et al. 2014. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat. Commun. 5:4309 [Google Scholar]
  32. Ray K. 32.  2014. NAFLD: PNPLA3 variant and hepatic steatosis. Nat. Rev. Gastroenterol. Hepatol. 11:455 [Google Scholar]
  33. Moylan CA, Pang H, Dellinger A, Suzuki A, Garrett ME. 33.  et al. 2014. Hepatic gene expression profiles differentiate presymptomatic patients with mild versus severe nonalcoholic fatty liver disease. Hepatology 59:471–82 [Google Scholar]
  34. Murphy SK, Yang H, Moylan CA, Pang H, Dellinger A. 34.  et al. 2013. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology 145:1076–87 [Google Scholar]
  35. Ahrens M, Ammerpohl O, von Schonfels W, Kolarova J, Bens S. 35.  et al. 2013. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metab. 18:296–302 [Google Scholar]
  36. Francque S, Verrijken A, Caron S, Prawitt J, Paumelle R. 36.  et al. 2015. PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J. Hepatol. 63:164–73 [Google Scholar]
  37. Min HK, Kapoor A, Fuchs M, Mirshahi F, Zhou H. 37.  et al. 2012. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 15:665–74 [Google Scholar]
  38. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. 38.  2005. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Investig. 115:1343–51 [Google Scholar]
  39. Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. 39.  2014. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146:726–35 [Google Scholar]
  40. Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, Goto T, Westerbacka J. 40.  et al. 2002. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J. Clin. Endocrinol. Metab. 87:3023–28 [Google Scholar]
  41. Bugianesi E, Gastaldelli A, Vanni E, Gambino R, Cassader M. 41.  et al. 2005. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia 48:634–42 [Google Scholar]
  42. Sunny NE, Parks EJ, Browning JD, Burgess SC. 42.  2011. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 14:804–10 [Google Scholar]
  43. Koliaki C, Szendroedi J, Kaul K, Jelenik T, Nowotny P. 43.  et al. 2015. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 21:739–46 [Google Scholar]
  44. Fujita K, Nozaki Y, Wada K, Yoneda M, Fujimoto Y. 44.  et al. 2009. Dysfunctional very-low-density lipoprotein synthesis and release is a key factor in nonalcoholic steatohepatitis pathogenesis. Hepatology 50:772–80 [Google Scholar]
  45. Yamaguchi K, Yang L, McCall S, Huang J, Yu XX. 45.  et al. 2007. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45:1366–74 [Google Scholar]
  46. Monetti M, Levin MC, Watt MJ, Sajan MP, Marmor S. 46.  et al. 2007. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab. 6:69–78 [Google Scholar]
  47. Harley IT, Stankiewicz TE, Giles DA, Softic S, Flick LM. 47.  et al. 2014. IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology 59:1830–39 [Google Scholar]
  48. Mashek DG, Khan SA, Sathyanarayan A, Ploeger JM, Franklin MP. 48.  2015. Hepatic lipid droplet biology: getting to the root of fatty liver. Hepatology 62:964–67 [Google Scholar]
  49. Krahmer N, Guo Y, Wilfling F, Hilger M, Lingrell S. 49.  et al. 2011. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab. 14:504–15 [Google Scholar]
  50. Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ. 50.  et al. 2013. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev. Cell 24:384–99 [Google Scholar]
  51. Wolins NE, Brasaemle DL, Bickel PE. 51.  2006. A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett. 580:5484–91 [Google Scholar]
  52. Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J. 52.  et al. 2007. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46:1081–90 [Google Scholar]
  53. Straub BK, Stoeffel P, Heid H, Zimbelmann R, Schirmacher P. 53.  2008. Differential pattern of lipid droplet–associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology 47:1936–46 [Google Scholar]
  54. Pawella LM, Hashani M, Eiteneuer E, Renner M, Bartenschlager R. 54.  et al. 2014. Perilipin discerns chronic from acute hepatocellular steatosis. J. Hepatol. 60:633–42 [Google Scholar]
  55. Smagris E, BasuRay S, Li J, Huang Y, Lai KM. 55.  et al. 2015. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 61:108–18 [Google Scholar]
  56. Vonghia L, Michielsen P, Francque S. 56.  2013. Immunological mechanisms in the pathophysiology of non-alcoholic steatohepatitis. Int. J. Mol. Sci. 14:19867–90 [Google Scholar]
  57. Seki E, Schwabe RF. 57.  2015. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology 61:1066–79 [Google Scholar]
  58. Ganz M, Szabo G. 58.  2013. Immune and inflammatory pathways in NASH. Hepatol. Int. 7:771–81 [Google Scholar]
  59. Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E. 59.  2012. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am. J. Physiol. Gastrointest. Liver Physiol. 302:G1310–21 [Google Scholar]
  60. Stienstra R, Saudale F, Duval C, Keshtkar S, Groener JE. 60.  et al. 2010. Kupffer cells promote hepatic steatosis via interleukin-1β-dependent suppression of peroxisome proliferator–activated receptor α activity. Hepatology 51:511–22 [Google Scholar]
  61. Tosello-Trampont AC, Landes SG, Nguyen V, Novobrantseva TI, Hahn YS. 61.  2012. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production. J. Biol. Chem. 287:40161–72 [Google Scholar]
  62. Syn WK, Oo YH, Pereira TA, Karaca GF, Jung Y. 62.  et al. 2010. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 51:1998–2007 [Google Scholar]
  63. Martin-Murphy BV, You Q, Wang H, De La Houssaye BA, Reilly TP. 63.  et al. 2014. Mice lacking natural killer T cells are more susceptible to metabolic alterations following high fat diet feeding. PLOS ONE 9:e80949 [Google Scholar]
  64. Janssen AW, Kersten S. 64.  2015. The role of the gut microbiota in metabolic health. FASEB J. 29:3111–23 [Google Scholar]
  65. Sumarac-Dumanovic M, Stevanovic D, Ljubic A, Jorga J, Simic M. 65.  et al. 2009. Increased activity of interleukin-23/interleukin-17 proinflammatory axis in obese women. Int. J. Obes. 33:151–56 [Google Scholar]
  66. Wolf MJ, Adili A, Piotrowitz K, Abdullah Z, Boege Y. 66.  et al. 2014. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 26:549–64 [Google Scholar]
  67. Thapa M, Chinnadurai R, Velazquez VM, Tedesco D, Elrod E. 67.  et al. 2015. Liver fibrosis occurs through dysregulation of MyD88-dependent innate B-cell activity. Hepatology 61:2067–79 [Google Scholar]
  68. Friedman SL. 68.  2008. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88:125–72 [Google Scholar]
  69. Elpek GO. 69.  2014. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: an update. World J. Gastroenterol. 20:7260–76 [Google Scholar]
  70. Paik YH, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA. 70.  2003. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology 37:1043–55 [Google Scholar]
  71. Tiggelman AM, Boers W, Linthorst C, Brand HS, Sala M, Chamuleau RA. 71.  1995. Interleukin-6 production by human liver (myo)fibroblasts in culture. Evidence for a regulatory role of LPS, IL-1β and TNFα. J. Hepatol. 23:295–306 [Google Scholar]
  72. Thompson KC, Trowern A, Fowell A, Marathe M, Haycock C. 72.  et al. 1998. Primary rat and mouse hepatic stellate cells express the macrophage inhibitor cytokine interleukin-10 during the course of activation in vitro. Hepatology 28:1518–24 [Google Scholar]
  73. Pirazzi C, Valenti L, Motta BM, Pingitore P, Hedfalk K. 73.  et al. 2014. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum. Mol. Genet. 23:4077–85 [Google Scholar]
  74. Jha P, Knopf A, Koefeler H, Mueller M, Lackner C. 74.  et al. 2014. Role of adipose tissue in methionine-choline-deficient model of non-alcoholic steatohepatitis (NASH). Biochim. Biophys. Acta 1842:959–70 [Google Scholar]
  75. Bril F, Lomonaco R, Orsak B, Ortiz-Lopez C, Webb A. 75.  et al. 2014. Relationship between disease severity, hyperinsulinemia, and impaired insulin clearance in patients with nonalcoholic steatohepatitis. Hepatology 59:2178–87 [Google Scholar]
  76. Saxena NK, Anania FA. 76.  2015. Adipocytokines and hepatic fibrosis. Trends Endocrinol. Metab. 26:153–61 [Google Scholar]
  77. Okada-Iwabu M, Yamauchi T, Iwabu M, Honma T, Hamagami K. 77.  et al. 2013. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 503:493–99 [Google Scholar]
  78. du Plessis J, van Pelt J, Korf H, Mathieu C, van der Schueren B. 78.  et al. 2015. Association of adipose tissue inflammation with histological severity of non-alcoholic fatty liver disease. Gastroenterology 149:635–48.e14 [Google Scholar]
  79. Ray K. 79.  2015. NAFLD: leaky guts: intestinal permeability and NASH. Nat. Rev. Gastroenterol. Hepatol. 12:123 [Google Scholar]
  80. van Olden C, Groen AK, Nieuwdorp M. 80.  2015. Role of intestinal microbiome in lipid and glucose metabolism in diabetes mellitus. Clin. Ther. 37:1172–77 [Google Scholar]
  81. Porez G, Prawitt J, Gross B, Staels B. 81.  2012. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J. Lipid Res. 53:1723–37 [Google Scholar]
  82. Schrauwen-Hinderling VB, Kooi ME, Schrauwen P. 82.  2015. Mitochondrial function and diabetes: consequences for skeletal and cardiac muscle metabolism. Antioxid. Redox Signal. In press
  83. Shimizu N, Maruyama T, Yoshikawa N, Matsumiya R, Ma Y. 83.  et al. 2015. A muscle-liver-fat signalling axis is essential for central control of adaptive adipose remodelling. Nat. Commun. 6:6693 [Google Scholar]
  84. Shen J, Chan HL, Wong GL, Choi PC, Chan AW. 84.  et al. 2012. Non-invasive diagnosis of non-alcoholic steatohepatitis by combined serum biomarkers. J. Hepatol. 56:1363–70 [Google Scholar]
  85. Farrell GC, Mridha AR, Yeh MM, Arsov T, Van Rooyen DM. 85.  et al. 2014. Strain dependence of diet-induced NASH and liver fibrosis in obese mice is linked to diabetes and inflammatory phenotype. Liver Int. 34:1084–93 [Google Scholar]
  86. Ganz M, Csak T, Szabo G. 86.  2014. High fat diet feeding results in gender specific steatohepatitis and inflammasome activation. World J. Gastroenterol. 20:8525–34 [Google Scholar]
  87. Hashimoto E, Tokushige K. 87.  2011. Prevalence, gender, ethnic variations, and prognosis of NASH. J. Gastroenterol. 46:Suppl. 163–69 [Google Scholar]
  88. Riordan JD, Nadeau JH. 88.  2014. Modeling progressive non-alcoholic fatty liver disease in the laboratory mouse. Mamm. Genome 25:473–86 [Google Scholar]
  89. Bergheim I, Weber S, Vos M, Kramer S, Volynets V. 89.  et al. 2008. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J. Hepatol. 48:983–92 [Google Scholar]
  90. Johnston RD, Stephenson MC, Crossland H, Cordon SM, Palcidi E. 90.  et al. 2013. No difference between high-fructose and high-glucose diets on liver triacylglycerol or biochemistry in healthy overweight men. Gastroenterology 145:1016–25.e2 [Google Scholar]
  91. Subramanian S, Goodspeed L, Wang S, Kim J, Zeng L. 91.  et al. 2011. Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor–deficient mice. J. Lipid Res. 52:1626–35 [Google Scholar]
  92. Leclercq IA, Farrell GC, Field J, Bell DR, Gonzalez FJ, Robertson GR. 92.  2000. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J. Clin. Investig. 105:1067–75 [Google Scholar]
  93. Deng XQ, Chen LL, Li NX. 93.  2007. The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats. Liver Int. 27:708–15 [Google Scholar]
  94. Tanaka N, Matsubara T, Krausz KW, Patterson AD, Gonzalez FJ. 94.  2012. Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology 56:118–29 [Google Scholar]
  95. Koop DR. 95.  1992. Oxidative and reductive metabolism by cytochrome P450 2E1. FASEB J. 6:724–30 [Google Scholar]
  96. Stock MK, Hammerich L, do O NT, Berres ML, Alsamman M. 96.  et al. 2013. Met-CCL5 modifies monocyte subpopulations during liver fibrosis regression. Int. J. Clin. Exp. Pathol. 6:678–85 [Google Scholar]
  97. Lassailly G, Caiazzo R, Buob D, Pigeyre M, Verkindt H. 97.  et al. 2015. Bariatric surgery reduces features of non-alcoholic steatohepatitis in morbidly obese patients. Gastroenterology 149:379–88 [Google Scholar]
  98. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML. 98.  et al. 2015. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385:956–65 [Google Scholar]
  99. Suzuki W, Iizuka S, Tabuchi M, Funo S, Yanagisawa T. 99.  et al. 1999. A new mouse model of spontaneous diabetes derived from ddY strain. Exp. Anim. 48:181–89 [Google Scholar]
  100. Leclercq IA, Farrell GC, Schriemer R, Robertson GR. 100.  2002. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J. Hepatol. 37:206–13 [Google Scholar]
  101. Nishida T, Tsuneyama K, Fujimoto M, Nomoto K, Hayashi S. 101.  et al. 2013. Spontaneous onset of nonalcoholic steatohepatitis and hepatocellular carcinoma in a mouse model of metabolic syndrome. Lab. Investig. 93:230–41 [Google Scholar]
  102. Mittal S, El-Serag HB. 102.  2013. Epidemiology of hepatocellular carcinoma: Consider the population. J. Clin. Gastroenterol. 47:Suppl.2–6 [Google Scholar]
  103. Soga M, Kishimoto Y, Kawaguchi J, Nakai Y, Kawamura Y. 103.  et al. 1999. The FLS mouse: a new inbred strain with spontaneous fatty liver. Lab. Anim. Sci. 49:269–75 [Google Scholar]
  104. Arsov T, Silva DG, O'Bryan MK, Sainsbury A, Lee NJ. 104.  et al. 2006. Fat Aussie—a new Alström syndrome mouse showing a critical role for ALMS1 in obesity, diabetes, and spermatogenesis. Mol. Endocrinol. 20:1610–22 [Google Scholar]
  105. Semba T, Nishimura M, Nishimura S, Ohara O, Ishige T. 105.  et al. 2013. The FLS (fatty liver Shionogi) mouse reveals local expressions of lipocalin-2, CXCL1 and CXCL9 in the liver with non-alcoholic steatohepatitis. BMC Gastroenterol. 13:120 [Google Scholar]
  106. Arsov T, Larter CZ, Nolan CJ, Petrovsky N, Goodnow CC. 106.  et al. 2006. Adaptive failure to high-fat diet characterizes steatohepatitis in Alms1 mutant mice. Biochem. Biophys. Res. Commun. 342:1152–59 [Google Scholar]
  107. Hearn T, Spalluto C, Phillips VJ, Renforth GL, Copin N. 107.  et al. 2005. Subcellular localization of ALMS1 supports involvement of centrosome and basal body dysfunction in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. Diabetes 54:1581–87 [Google Scholar]
  108. Basantani MK, Sitnick MT, Cai L, Brenner DS, Gardner NP. 108.  et al. 2011. Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome. J. Lipid Res. 52:318–29 [Google Scholar]
  109. Chen W, Chang B, Li L, Chan L. 109.  2010. Patatin-like phospholipase domain–containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease. Hepatology 52:1134–42 [Google Scholar]
  110. He S, McPhaul C, Li JZ, Garuti R, Kinch L. 110.  et al. 2010. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J. Biol. Chem. 285:6706–15 [Google Scholar]
  111. Li JZ, Huang Y, Karaman R, Ivanova PT, Brown HA. 111.  et al. 2012. Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. J. Clin. Investig. 122:4130–44 [Google Scholar]
  112. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D. 112.  et al. 2008. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40:1461–65 [Google Scholar]
  113. Ozturk ZA, Kadayifci A. 113.  2014. Insulin sensitizers for the treatment of non-alcoholic fatty liver disease. World J. Hepatol. 6:199–206 [Google Scholar]
  114. Loomba R, Lutchman G, Kleiner DE, Ricks M, Feld JJ. 114.  et al. 2009. Clinical trial: pilot study of metformin for the treatment of non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther. 29:172–82 [Google Scholar]
  115. Mahady SE, Webster AC, Walker S, Sanyal A, George J. 115.  2011. The role of thiazolidinediones in non-alcoholic steatohepatitis—a systematic review and meta analysis. J. Hepatol. 55:1383–90 [Google Scholar]
  116. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM. 116.  et al. 2010. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362:1675–85 [Google Scholar]
  117. Eguchi Y, Kitajima Y, Hyogo H, Takahashi H, Kojima M. 117.  et al. 2015. Pilot study of liraglutide effects in non-alcoholic steatohepatitis and non-alcoholic fatty liver disease with glucose intolerance in Japanese patients (LEAN-J). Hepatol. Res. 45:269–78 [Google Scholar]
  118. Sanyal AJ, Abdelmalek MF, Suzuki A, Cummings OW, Chojkier M. 118.  EPE-A Study Group 2014. No significant effects of ethyl-eicosapentanoic acid on histologic features of nonalcoholic steatohepatitis in a phase 2 trial. Gastroenterology 147:377–84.e1 [Google Scholar]
  119. Ekstedt M, Franzen LE, Mathiesen UL, Holmqvist M, Bodemar G, Kechagias S. 119.  2007. Statins in non-alcoholic fatty liver disease and chronically elevated liver enzymes: a histopathological follow-up study. J. Hepatol. 47:135–41 [Google Scholar]
  120. Loomba R, Sirlin CB, Ang B, Bettencourt R, Jain R. 120.  et al. 2015. Ezetimibe for the treatment of nonalcoholic steatohepatitis: assessment by novel magnetic resonance imaging and magnetic resonance elastography in a randomized trial (MOZART trial). Hepatology 61:1239–50 [Google Scholar]
  121. Molloy JW, Calcagno CJ, Williams CD, Jones FJ, Torres DM, Harrison SA. 121.  2012. Association of coffee and caffeine consumption with fatty liver disease, nonalcoholic steatohepatitis, and degree of hepatic fibrosis. Hepatology 55:429–36 [Google Scholar]
  122. Perez-Martinez L, Perez-Matute P, Aguilera-Lizarraga J, Rubio-Mediavilla S, Narro J. 122.  et al. 2014. Maraviroc, a CCR5 antagonist, ameliorates the development of hepatic steatosis in a mouse model of non-alcoholic fatty liver disease (NAFLD). J. Antimicrob. Chemother. 69:1903–10 [Google Scholar]
  123. Caldwell SH, Argo CK. 123.  2015. Reversing advanced hepatic fibrosis in NASH: clearly possible, but widely at hand?. Dig. Dis. Sci. 60:810–12 [Google Scholar]
  124. Barreyro FJ, Holod S, Finocchietto PV, Camino AM, Aquino JB. 124.  et al. 2015. The pan-caspase inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int. 35:953–66 [Google Scholar]
  125. Trauner M, Halilbasic E. 125.  2011. Nuclear receptors as new perspective for the management of liver diseases. Gastroenterology 140:1120–25.e1–12 [Google Scholar]
  126. Joseph SB, McKilligin E, Pei L, Watson MA, Collins AR. 126.  et al. 2002. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. PNAS 99:7604–9 [Google Scholar]
  127. Griffett K, Welch RD, Flaveny CA, Kolar GR, Neuschwander-Tetri BA, Burris TP. 127.  2015. The LXR inverse agonist SR9238 suppresses fibrosis in a model of non-alcoholic steatohepatitis. Mol. Metab. 4:353–57 [Google Scholar]
  128. Pawlak M, Lefebvre P, Staels B. 128.  2015. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 62:720–33 [Google Scholar]
  129. Pawlak M, Bauge E, Bourguet W, De Bosscher K, Lalloyer F. 129.  et al. 2014. The transrepressive activity of peroxisome proliferator–activated receptor α is necessary and sufficient to prevent liver fibrosis in mice. Hepatology 60:1593–606 [Google Scholar]
  130. Kostadinova R, Montagner A, Gouranton E, Fleury S, Guillou H. 130.  et al. 2012. GW501516-activated PPARβ/δ promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate cell proliferation. Cell Biosci. 2:34 [Google Scholar]
  131. Shan W, Palkar PS, Murray IA, McDevitt EI, Kennett MJ. 131.  et al. 2008. Ligand activation of peroxisome proliferator–activated receptor β/δ (PPARβ/δ) attenuates carbon tetrachloride hepatotoxicity by downregulating proinflammatory gene expression.. Toxicol. Sci. 105:418–28 [Google Scholar]
  132. Iwaisako K, Haimerl M, Paik YH, Taura K, Kodama Y. 132.  et al. 2012. Protection from liver fibrosis by a peroxisome proliferator–activated receptor δ agonist. PNAS 109:E1369–76 [Google Scholar]
  133. Vidal-Puig AJ, Considine RV, Jimenez-Linan M, Werman A, Pories WJ. 133.  et al. 1997. Peroxisome proliferator–activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J. Clin. Investig. 99:2416–22 [Google Scholar]
  134. Auboeuf D, Rieusset J, Fajas L, Vallier P, Frering V. 134.  et al. 1997. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator–activated receptors and liver X receptor-α in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes 46:1319–27 [Google Scholar]
  135. Tontonoz P, Spiegelman BM. 135.  2008. Fat and beyond: the diverse biology of PPARγ. Annu. Rev. Biochem. 77:289–312 [Google Scholar]
  136. Fonseca V. 136.  2003. Effect of thiazolidinediones on body weight in patients with diabetes mellitus. Am. J. Med. 115:Suppl. 8A42–48 [Google Scholar]
  137. Memon RA, Tecott LH, Nonogaki K, Beigneux A, Moser AH. 137.  et al. 2000. Up-regulation of peroxisome proliferator–activated receptors (PPAR-α) and PPAR-γ messenger ribonucleic acid expression in the liver in murine obesity: Troglitazone induces expression of PPAR-γ-responsive adipose tissue–specific genes in the liver of obese diabetic mice. Endocrinology 141:4021–31 [Google Scholar]
  138. Pettinelli P, Videla LA. 138.  2011. Up-regulation of PPAR-γ mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction. J. Clin. Endocrinol. Metab. 96:1424–30 [Google Scholar]
  139. Kuipers F, Bloks VW, Groen AK. 139.  2014. Beyond intestinal soap—bile acids in metabolic control. Nat. Rev. Endocrinol. 10:488–98 [Google Scholar]
  140. Sasaki A, Nitta H, Otsuka K, Umemura A, Baba S. 140.  et al. 2014. Bariatric surgery and non-alcoholic fatty liver disease: current and potential future treatments. Front. Endocrinol. 5:164 [Google Scholar]
  141. Promrat K, Kleiner DE, Niemeier HM, Jackvony E, Kearns M. 141.  et al. 2010. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 51:121–29 [Google Scholar]
  142. Caiazzo R, Lassailly G, Leteurtre E, Baud G, Verkindt H. 142.  et al. 2014. Roux-en-Y gastric bypass versus adjustable gastric banding to reduce nonalcoholic fatty liver disease: a 5-year controlled longitudinal study. Ann. Surg. 260:893–98, discussion 98–99 [Google Scholar]
  143. Dixon JB, Bhathal PS, Hughes NR, O'Brien PE. 143.  2004. Nonalcoholic fatty liver disease: improvement in liver histological analysis with weight loss. Hepatology 39:1647–54 [Google Scholar]
  144. Barker KB, Palekar NA, Bowers SP, Goldberg JE, Pulcini JP, Harrison SA. 144.  2006. Non-alcoholic steatohepatitis: effect of Roux-en-Y gastric bypass surgery. Am. J. Gastroenterol. 101:368–73 [Google Scholar]
  145. Dixon JB, Bhathal PS, O'Brien PE. 145.  2001. Nonalcoholic fatty liver disease: predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese. Gastroenterology 121:91–100 [Google Scholar]
  146. Zein CO, Edmison JM, Schluchter M, Feldstein AE, Zein NN, McCullough AJ. 146.  2007. A NASH predictive index (NPI) for use in patients with nonalcoholic fatty liver disease. Hepatology 46:A747 [Google Scholar]
  147. Feldstein AE, Lopez R, Tamimi TA, Yerian L, Chung YM. 147.  et al. 2010. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J. Lipid Res. 51:3046–54 [Google Scholar]
  148. Anty R, Iannelli A, Patouraux S, Bonnafous S, Lavallard VJ. 148.  et al. 2010. A new composite model including metabolic syndrome, alanine aminotransferase and cytokeratin-18 for the diagnosis of non-alcoholic steatohepatitis in morbidly obese patients. Aliment. Pharmacol. Ther. 32:1315–22 [Google Scholar]
  149. Cassinotto C, Lapuyade B, Mouries A, Hiriart JB, Vergniol J. 149.  et al. 2014. Non-invasive assessment of liver fibrosis with impulse elastography: comparison of supersonic shear imaging with ARFI and FibroScan®. J. Hepatol. 61:550–57 [Google Scholar]
  150. Speliotes EK, Yerges-Armstrong LM, Wu J, Hernaez R, Kim LJ. 150.  et al. 2011. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLOS Genet. 7:e1001324 [Google Scholar]
  151. Chalasani N, Guo X, Loomba R, Goodarzi MO, Haritunians T. 151.  et al. 2010. Genome-wide association study identifies variants associated with histologic features of nonalcoholic fatty liver disease. Gastroenterology 139:1567–76.e1–6 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021115-105331
Loading
/content/journals/10.1146/annurev-physiol-021115-105331
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error