1932

Abstract

Rice feeds more than half of the world's population. Rice blast, caused by the fungal pathogen , and bacterial blight, caused by the bacterial pathogen pv. , are major constraints to rice production worldwide. Genome sequencing and extensive molecular analysis has led to the identification of many new pathogen-associated molecular patterns (PAMPs) and avirulence and virulence effectors in both pathogens, as well as effector targets and receptors in the rice host. Characterization of these effectors, host targets, and resistance genes has provided new insight into innate immunity in plants. Some of the new findings, such as the binding activity of transcriptional activator–like (TAL) effectors to specific rice genomic sequences, are being used for the development of effective disease control methods and genome modification tools. This review summarizes the recent progress toward understanding the recognition and signaling events that govern rice innate immunity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-102313-045926
2014-08-04
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/phyto/52/1/annurev-phyto-102313-045926.html?itemId=/content/journals/10.1146/annurev-phyto-102313-045926&mimeType=html&fmt=ahah

Literature Cited

  1. Adams DJ. 1.  2004. Fungal cell wall chitinases and glucanases. Microbiology 150:2029–35 [Google Scholar]
  2. Akamatsu A, Wong HL, Fujiwara M, Okuda J, Nishide K. 2.  et al. 2013. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity. Cell Host Microbe 13:465–76 [Google Scholar]
  3. Akimoto K, Katakami H, Kim HJ, Ogawa E, Sano CM. 3.  et al. 2007. Epigenetic inheritance in rice plants. Ann. Bot. 100:205–17 [Google Scholar]
  4. Antolin-Llovera M, Ried MK, Binder A, Parniske M. 4.  2012. Receptor kinase signaling pathways in plant-microbe interactions. Annu. Rev. Phytopathol. 50:451–73 [Google Scholar]
  5. Arora R, Agarwal P, Ray S, Singh AK, Singh VP. 5.  et al. 2007. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242 [Google Scholar]
  6. Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J. 6.  et al. 2008. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180:2267–76 [Google Scholar]
  7. Beck M, Heard W, Mbengue M, Robatzek S. 7.  2012. The INs and OUTs of pattern recognition receptors at the cell surface. Curr. Opin. Plant Biol. 15:367–74 [Google Scholar]
  8. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S. 8.  et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–12 [Google Scholar]
  9. Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV. 9.  et al. 2011. Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J. Bacteriol. 193:5450–64 [Google Scholar]
  10. Bogdanove AJ, Schornack S, Lahaye T. 10.  2010. TAL effectors: finding plant genes for disease and defense. Curr. Opin. Plant Biol. 13:394–401 [Google Scholar]
  11. Bogdanove AJ, Voytas DF. 11.  2011. TAL effectors: customizable proteins for DNA targeting. Science 333:1843–46 [Google Scholar]
  12. Bolton MD, van Esse HP, Vossen JH, de Jonge R, Stergiopoulos I. 12.  et al. 2008. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Mol. Microbiol. 69:119–36 [Google Scholar]
  13. Bryant CE, Monie TP. 13.  2012. Mice, men and the relatives: cross-species studies underpin innate immunity. Open Biol. 2:120015 [Google Scholar]
  14. Buttner D. 14.  2012. Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol. Mol. Biol. Rev. 76:262–310 [Google Scholar]
  15. Campo S, Peris-Peris C, Sire C, Moreno AB, Donaire L. 15.  et al. 2013. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. New Phytol. 199:212–27 [Google Scholar]
  16. Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C. 16.  et al. 2013. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25:1463–81 [Google Scholar]
  17. Chen LQ. 17.  2013. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol. 201:1150–55 [Google Scholar]
  18. Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML. 18.  et al. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–32 [Google Scholar]
  19. Chen LT, Hamada S, Fujiwara M, Zhu TH, Thao NP. 19.  et al. 2010. The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host Microbe 7:185–96 [Google Scholar]
  20. Chen X, Chern M, Canlas PE, Ruan D, Jiang C, Ronald PC. 20.  2010. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. Proc. Natl. Acad. Sci. USA 107:8029–34 [Google Scholar]
  21. Chen X, Ronald PC. 21.  2011. Innate immunity in rice. Trends Plant Sci. 16:451–59 [Google Scholar]
  22. Chen X, Shang J, Chen D, Lei C, Zou Y. 22.  et al. 2006. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J. 46:794–804 [Google Scholar]
  23. Chen X, Zuo S, Schwessinger B, Chern M, Canlas PE. 23.  et al. 2014. An XA21-associated kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors. Mol. Plant 7874–92
  24. Cheong H, Kim C-Y, Jeon J-S, Lee B-M, Moon JS, Hwang I. 24.  2013. Xanthomonas oryzae pv. oryzae type III effector XopN targets OsVOZ2 and a putative thiamine synthase as a virulence factor in rice. PLoS ONE 8:e73346 [Google Scholar]
  25. Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC. 25.  et al. 2003. BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol. 132:1961–72 [Google Scholar]
  26. Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G. 26.  2006. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465–76 [Google Scholar]
  27. Chinchilla D, Shan L, He P, de Vries S, Kemmerling B. 27.  2009. One for all: the receptor-associated kinase BAK1. Trends Plant Sci. 14:535–41 [Google Scholar]
  28. Choi J, Park J, Kim D, Jung K, Kang S, Lee Y-H. 28.  2010. Fungal secretome database: integrated platform for annotation of fungal secretomes. BMC Genomics 11:105 [Google Scholar]
  29. Citovsky V, Zaltsman A, Kozlovsky SV, Gafni Y, Krichevsky A. 29.  2009. Proteasomal degradation in plant-pathogen interactions. Semin. Cell Dev. Biol. 20:1048–54 [Google Scholar]
  30. Condon BJ, Leng Y, Wu D, Bushley KE, Ohm RA. 30.  et al. 2013. Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens. PLoS Genet. 9:e1003233 [Google Scholar]
  31. Daniels MD, Leach JE. 31.  1993. Genetics of Xanthomonas. In Xanthomonas, ed. JG Swings, EL Civerolo 301–39 London: Chapman and Hall [Google Scholar]
  32. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A. 32.  et al. 2012. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414–30 [Google Scholar]
  33. Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK. 33.  et al. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–86 [Google Scholar]
  34. de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y. 34.  et al. 2010. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–55 [Google Scholar]
  35. Desaki Y, Miya A, Venkatesh B, Tsuyumu S, Yamane H. 35.  et al. 2006. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol. 47:1530–40 [Google Scholar]
  36. De Vleesschauwer D, Yang Y, Cruz CV, Hofte M. 36.  2010. Abscisic acid–induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiol. 152:2036–52 [Google Scholar]
  37. Ding B, Bellizzi MD, Ning YS, Meyers BC, Wang GL. 37.  2012. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice. Plant Cell 24:3783–94 [Google Scholar]
  38. Dudler R. 38.  2013. Manipulation of host proteasomes as a virulence mechanism of plant pathogens. Annu. Rev. Phytopathol. 51:521–42 [Google Scholar]
  39. Eitas TK, Dangl JL. 39.  2010. NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr. Opin. Plant Biol. 13:472–77 [Google Scholar]
  40. Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J. 40.  et al. 2008. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475–79 [Google Scholar]
  41. Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K. 41.  2011. Crop genome sequencing: lessons and rationales. Trends Plant Sci. 16:77–88 [Google Scholar]
  42. Flor HH. 42.  1971. Current status of gene-for-gene concept. Annu. Rev. Phytopathol. 9:275–96 [Google Scholar]
  43. Fritz-Laylin LK, Krishnamurthy N, Tor M, Sjolander KV, Jones JDG. 43.  2005. Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiol. 138:611–23 [Google Scholar]
  44. Fukuoka S, Saka N, Koga H, Ono K, Shimizu T. 44.  et al. 2009. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001 [Google Scholar]
  45. Furutani A, Takaoka M, Sanada H, Noguchi Y, Oku T. 45.  et al. 2008. Identification of novel type III secretion effectors in Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 22:96–106 [Google Scholar]
  46. Giraldo MC, Dagdas YF, Gupta YK, Mentlak TA, Yi M. 46.  et al. 2013. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat. Commun. 4:1996 [Google Scholar]
  47. Giraldo MC, Valent B. 47.  2013. Filamentous plant pathogen effectors in action. Nat. Rev. Microbiol. 11:800–14 [Google Scholar]
  48. Goff S, Ricke D, Lan TH, Presting G, Wang R. 48.  et al. 2002. A draft seqeunce of the rice genomes (Oryza sativa L. ssp. japonica). Science 296:92–100 [Google Scholar]
  49. Grau J, Wolf A, Reschke M, Bonas U, Posch S, Boch J. 49.  2013. Computational predictions provide insights into the biology of TAL effector target sites. PLoS Comput. Biol. 9:e1002962 [Google Scholar]
  50. Gu K, Tian D, Qiu C, Yin Z. 50.  2009. Transcription activator-like type III effector AvrXa27 depends on OsTFIIAγ5 for the activation of Xa27 transcription in rice that triggers disease resistance to Xanthomonas oryzae pv. oryzae. Mol. Plant Pathol. 10:829–35 [Google Scholar]
  51. Guo W, Wu G, Yan F, Lu Y, Zheng H. 51.  et al. 2012. Identification of novel Oryza sativa miRNAs in deep sequencing-based small RNA libraries of rice infected with rice stripe virus. PLoS ONE 7:e46443 [Google Scholar]
  52. Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S. 52.  et al. 2007. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J. Biol. Chem. 282:32338–48 [Google Scholar]
  53. Ham JH, Melanson RA, Rush MC. 53.  2011. Burkholderia glumae: next major pathogen of rice?. Mol. Plant Pathol. 12:329–39 [Google Scholar]
  54. He C, Fong SH, Yang D, Wang GL. 54.  1999. BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol. Plant-Microbe Interact. 12:1064–73 [Google Scholar]
  55. Hopkins CM, White FF, Choi SH, Guo A, Leach JE. 55.  1992. Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 5:451–59 [Google Scholar]
  56. Hu H, Xiong L, Yang Y. 56.  2005. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta 222:107–17 [Google Scholar]
  57. Hua L, Wu J, Chen C, Wu W, He X. 57.  et al. 2012. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor. Appl. Genet. 125:1047–55 [Google Scholar]
  58. Hummel AW, Doyle EL, Bogdanove AJ. 58.  2012. Addition of transcription activator–like effector binding sites to a pathogen strain–specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak. New Phytol. 195:883–93 [Google Scholar]
  59. Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B. 59.  2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19:4004–14 [Google Scholar]
  60. Jiang CJ, Shimono M, Sugano S, Kojima M, Yazawa K. 60.  et al. 2010. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice–Magnaporthe grisea interaction. Mol. Plant-Microbe Interact. 23:791–98 [Google Scholar]
  61. Jiang RH, Tyler BM. 61.  2012. Mechanisms and evolution of virulence in oomycetes. Annu. Rev. Phytopathol. 50:295–318 [Google Scholar]
  62. Jiang Y, Chen X, Ding X, Wang Y, Chen Q, Song WY. 62.  2013. The XA21 binding protein XB25 is required for maintaining XA21-mediated disease resistance. Plant J. 73:814–23 [Google Scholar]
  63. Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N. 63.  et al. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. USA 103:11086–91 [Google Scholar]
  64. Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A. 64.  et al. 2012. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J. 72:894–907 [Google Scholar]
  65. Kawano Y, Akamatsu A, Hayashi K, Housen Y, Okuda J. 65.  et al. 2010. Activation of a Rac GTPase by the NLR family disease resistance protein Pit plays a critical role in rice innate immunity. Cell Host Microbe 7:362–75 [Google Scholar]
  66. Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K. 66.  et al. 2006. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc. Natl. Acad. Sci. USA 103:230–35 [Google Scholar]
  67. Kay S, Bonas U. 67.  2009. How Xanthomonas type III effectors manipulate the host plant. Curr. Opin. Microbiol. 12:37–43 [Google Scholar]
  68. Kelemu S, Leach JE. 68.  1990. Cloning and characterization of an avirulence gene from Xanthomonas campestris pv. oryzae. Mol. Plant-Microbe Interact. 3:59–65 [Google Scholar]
  69. Kim BH, Kim SY, Nam KH. 69.  2013. Assessing the diverse functions of BAK1 and its homologs in Arabidopsis, beyond BR signaling and PTI responses. Mol. Cells 35:7–16 [Google Scholar]
  70. Kim SH, Oikawa T, Kyozuka J, Wong HL, Umemura K. 70.  et al. 2012. The bHLH Rac Immunity1 (RAI1) is activated by OsRac1 via OsMAPK3 and OsMAPK6 in rice immunity. Plant Cell Physiol. 53:740–54 [Google Scholar]
  71. Kojo K, Yaeno T, Kusumi K, Matsumura H, Fujisawa S. 71.  et al. 2006. Regulatory mechanisms of ROI generation are affected by rice spl mutations. Plant Cell Physiol. 47:1035–44 [Google Scholar]
  72. Ladhalakshmi D, Laha GS, Singh R, Karthikeyan A, Mangrauthia SK. 72.  et al. 2012. Isolation and characterization of Ustilaginoidea virens and survey of false smut disease of rice in India. Phytoparasitica 40:171–76 [Google Scholar]
  73. Leach JE, Rhoads ML, Cruz CMV, White FF, Mew TW, Leung H. 73.  1992. Assessment of genetic diversity and population structure of Xanthomonas oryzae pv. oryzae with a repetitive DNA element. Appl. Environ. Microbiol. 58:2188–95 [Google Scholar]
  74. Lee BM, Park YJ, Park DS, Kang HW, Kim JG. 74.  et al. 2005. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res. 33:577–86 [Google Scholar]
  75. Lee SK, Song MY, Seo YS, Kim HK, Ko S. 75.  et al. 2009. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics 181:1627–38 [Google Scholar]
  76. Lee SW, Han SW, Sririyanum M, Park CJ, Seo YS, Ronald PC. 76.  2009. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326:850–53 [Google Scholar]
  77. Lee SW, Han SW, Sririyanum M, Park CJ, Seo YS, Ronald PC. 77.  2013. Retraction. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 342:191 [Google Scholar]
  78. Li D, Wang L, Wang M, Xu YY, Luo W. 78.  et al. 2009. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnol. J. 7:791–806 [Google Scholar]
  79. Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM. 79.  et al. 2012. MicroRNA regulation of plant innate immune receptors. Proc. Natl. Acad. Sci. USA 109:1790–95 [Google Scholar]
  80. Li J. 80.  2010. Multi-tasking of somatic embryogenesis receptor-like protein kinases. Curr. Opin. Plant Biol. 13:509–14 [Google Scholar]
  81. Li T, Chen X, Zhong X, Zhao Y, Liu X. 81.  et al. 2013. Jumonji C protein JMJ705-mediated removal of histone H3 lysine 27 trimethylation is involved in defense-related gene activation in rice. Plant Cell 25:4725–36 [Google Scholar]
  82. Li T, Huang S, Zhou J, Yang B. 82.  2013. Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice. Mol. Plant 6:781–89 [Google Scholar]
  83. Li T, Liu B, Spalding MH, Weeks DP, Yang B. 83.  2012. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 30:390–92 [Google Scholar]
  84. Li W, Ahn IP, Ning Y, Park CH, Zeng L. 84.  et al. 2012. The U-Box/ARM E3 ligase PUB13 regulates cell death, defense, and flowering time in Arabidopsis. Plant Physiol. 159:239–50 [Google Scholar]
  85. Li Y, Lu YG, Shi Y, Wu L, Xu YJ. 85.  et al. 2013. Multiple rice miRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiol. 164:1077–92 [Google Scholar]
  86. Li Y, Xia Q, Kou HP, Wang D, Lin XY. 86.  et al. 2011. Induced Pib expression and resistance to Magnaporthe grisea are compromised by cytosine demethylation at critical promoter regions in rice. J. Integr. Plant Biol. 53:814–23 [Google Scholar]
  87. Lieberherr D, Thao NP, Nakashima A, Umemura K, Kawasaki T, Shimamoto K. 87.  2005. A sphingolipid elicitor-inducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice 1[w]. Plant Physiol. 138:1644–52 [Google Scholar]
  88. Lim J, Lee TH, Nahm BH, Choi YD, Kim M, Hwang I. 88.  2009. Complete genome sequence of Burkholderia glumae BGR1. J. Bacteriol. 191:3758–59 [Google Scholar]
  89. Liu B, Li JF, Ao Y, Qu J, Li Z. 89.  et al. 2012. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell 24:3406–19 [Google Scholar]
  90. Liu Q, Yuan M, Zhou Y, Li X, Xiao J, Wang S. 90.  2011. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ. 34:1958–69 [Google Scholar]
  91. Liu W, Liu J, Ning Y, Ding B, Wang X. 91.  et al. 2013. Recent progress in understanding PAMP- and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae. Mol. Plant 6:605–20 [Google Scholar]
  92. Lu D, Lin W, Gao X, Wu S, Cheng C. 92.  et al. 2011. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science 332:1439–42 [Google Scholar]
  93. Lyer-Pascuzzi AS, Jiang H, Huang L, McCouch SR. 93.  2008. Genetic and functional characterization of the rice bacterial blight disease resistance gene xa5. Phytopathology 98:289–95 [Google Scholar]
  94. Ma KW, Flores C, Ma WB. 94.  2011. Chromatin configuration as a battlefield in plant-bacteria interactions. Plant Physiol. 157:535–43 [Google Scholar]
  95. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M. 95.  et al. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13:614–29 [Google Scholar]
  96. Matsushita A, Inoue H, Goto S, Nakayama A, Sugano S. 96.  et al. 2013. The nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program. Plant J. 73:302–13 [Google Scholar]
  97. McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS. 97.  et al. 1988. Molecular mapping of rice chromosomes. Theor. Appl. Genet. 76:815–29 [Google Scholar]
  98. McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K. 98.  et al. 2009. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc. Natl. Acad. Sci. USA 106:12273–78 [Google Scholar]
  99. Mei C, Qi M, Sheng G, Yang Y. 99.  2006. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol. Plant-Microbe Interact. 19:1127–37 [Google Scholar]
  100. Meng X, Zhang S. 100.  2013. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 51:245–66 [Google Scholar]
  101. Mengiste T. 101.  2012. Plant immunity to necrotrophs. Annu. Rev. Phytopathol. 50:267–94 [Google Scholar]
  102. Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I. 102.  et al. 2012. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24:322–35 [Google Scholar]
  103. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K. 103.  et al. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 104:19613–18 [Google Scholar]
  104. Mucha E, Fricke I, Schaefer A, Wittinghofer A, Berken A. 104.  2011. Rho proteins of plants: functional cycle and regulation of cytoskeletal dynamics. Eur. J. Cell Biol. 90:934–43 [Google Scholar]
  105. Nakao M, Nakamura R, Kita K, Inukai R, Ishikawa A. 105.  2011. Non-host resistance to penetration and hyphal growth of Magnaporthe oryzae in Arabidopsis. Sci. Rep. 1:171 [Google Scholar]
  106. Nakashima A, Chen LT, Thao NP, Fujiwara M, Wong HL. 106.  et al. 2008. RACK1 functions in rice innate immunity by interacting with the rac1 immune complex. Plant Cell 20:2265–79 [Google Scholar]
  107. Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S. 107.  et al. 2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33:887–98 [Google Scholar]
  108. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N. 108.  et al. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–39 [Google Scholar]
  109. Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H. 109.  et al. 2010. Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30–44 [Google Scholar]
  110. Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M. 110.  et al. 2011. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J. 66:467–79 [Google Scholar]
  111. Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K. 111.  2001. Essential role of the small GTPase Rac in disease resistance of rice. Proc. Natl. Acad. Sci. USA 98:759–64 [Google Scholar]
  112. Park CH, Chen S, Shirsekar G, Zhou B, Khang CH. 112.  et al. 2012. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell 24:4748–62 [Google Scholar]
  113. Park CJ, Peng Y, Chen X, Dardick C, Ruan D. 113.  et al. 2008. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biol. 6:e231 [Google Scholar]
  114. Park CJ, Ronald PC. 114.  2012. Cleavage and nuclear localization of the rice XA21 immune receptor. Nat. Commun. 3:920 [Google Scholar]
  115. Park C-J, Sharma R, Lefebvre B, Canlas PE, Ronald PC. 115.  2013. The endoplasmic reticulum–quality control component SDF2 is essential for XA21-mediated immunity in rice. Plant Sci. 210:53–60 [Google Scholar]
  116. Park H, Ryu H, Kim B, Kim S, Yoon I, Nam K. 116.  2011. A subset of OsSERK genes, including OsBAK1, affects normal growth and leaf development of rice. Mol. Cells 32:561–69 [Google Scholar]
  117. Peng X, Hu Y, Tang X, Zhou P, Deng X. 117.  et al. 2012. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 236:1485–98 [Google Scholar]
  118. Peng Y, Bartley LE, Chen XW, Dardick C, Chern MS. 118.  et al. 2008. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol. Plant 1:446–58 [Google Scholar]
  119. Pennisi E. 119.  2010. Armed and dangerous. Science 327:804–5 [Google Scholar]
  120. Plant J, Shimizu T, Nakano T, Takamizawa D, Desaki Y. 120.  et al. 2010. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64:204–14 [Google Scholar]
  121. Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S. 121.  2008. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol. 49:865–79 [Google Scholar]
  122. Romer P, Recht S, Lahaye T. 122.  2009. A single plant resistance gene promoter engineered to recognize multiple TAL effectors from disparate pathogens. Proc. Natl. Acad. Sci. USA 106:20526–31 [Google Scholar]
  123. Sanchez-Vallet A, Saleem-Batcha R, Kombrink A, Hansen G, Valkenburg DJ. 123.  et al. 2013. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. ELife 2:e00790 [Google Scholar]
  124. Schornack S, Moscou MJ, Ward ER, Horvath DM. 124.  2013. Engineering plant disease resistance based on TAL effectors. Annu. Rev. Phytopathol. 51:383–406 [Google Scholar]
  125. Sharma T, Rai A, Gupta S, Vijayan J, Devanna B, Ray S. 125.  2012. Rice blast management through host-plant resistance: retrospect and prospects. Agric. Res. 1:37–52 [Google Scholar]
  126. Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K. 126.  et al. 2007. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19:2064–76 [Google Scholar]
  127. Shinya T, Osada T, Desaki Y, Hatamoto M, Yamanaka Y. 127.  et al. 2010. Characterization of receptor proteins using affinity cross-linking with biotinylated ligands. Plant Cell Physiol. 51:262–70 [Google Scholar]
  128. Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH. 128.  2004. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–34 [Google Scholar]
  129. Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC. 129.  2012. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24:859–74 [Google Scholar]
  130. Sinapidou E, Williams K, Nott L, Bahkt S, Tor M. 130.  et al. 2004. Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis. Plant J. 38:898–909 [Google Scholar]
  131. Singla B, Khurana JP, Khurana P. 131.  2009. Structural characterization and expression analysis of the SERK/SERL gene family in rice (Oryza sativa). Int. J. Plant Genomics 2009:539402 [Google Scholar]
  132. Sinha D, Gupta MK, Patel HK, Ranjan A, Sonti RV. 132.  2013. Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of Xanthomonas oryzae pv. oryzae. PLoS ONE 8:e75867 [Google Scholar]
  133. Song C, Yang B. 133.  2010. Mutagenesis of 18 type III effectors reveals virulence function of XopZPXO99 in Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 23:893–902 [Google Scholar]
  134. Song D, Chen J, Song F, Zheng Z. 134.  2006. A novel rice MAPK gene, OsBIMK2, is involved in disease-resistance responses. Plant Biol. 8:587–96 [Google Scholar]
  135. Song WY, Wang GL, Chen LL, Kim HS, Pi LY. 135.  et al. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–6 [Google Scholar]
  136. Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B. 136.  2013. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol. 200:808–19 [Google Scholar]
  137. Sugio A, Yang B, Zhu T, White FF. 137.  2007. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1 during bacterial blight of rice. Proc. Natl. Acad. Sci. USA 104:10720–25 [Google Scholar]
  138. Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K. 138.  2002. The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc. Natl. Acad. Sci. USA 99:13307–12 [Google Scholar]
  139. Sun L, Zhang H, Li D, Huang L, Hong Y. 139.  et al. 2013. Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses against Magnaporthe grisea. Plant Mol. Biol. 81:41–56 [Google Scholar]
  140. Sun X, Cao Y, Yang Z, Xu C, Li X. 140.  et al. 2004. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J. 37:517–27 [Google Scholar]
  141. Sweigard JA, Chumley FG, Valent B. 141.  1992. Cloning and analysis of CUT1, a cutinase gene from Magnaporthe grisea. Mol. Gen. Genet. 232:174–82 [Google Scholar]
  142. Takai R, Isogai A, Takayama S, Che FS. 142.  2008. Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol. Plant-Microbe Interact. 21:1635–42 [Google Scholar]
  143. Thao NP, Chen L, Nakashima A, Hara SI, Umemura K. 143.  et al. 2007. RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice. Plant Cell 19:4035–45 [Google Scholar]
  144. Tsuda K, Katagiri F. 144.  2010. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr. Opin. Plant Biol. 13:459–65 [Google Scholar]
  145. Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E. 145.  et al. 2005. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–98 [Google Scholar]
  146. Valent B, Chumley FG. 146.  1991. Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annu. Rev. Phytopathol. 29:443–67 [Google Scholar]
  147. Valent B, Khang CH. 147.  2010. Recent advances in rice blast effector research. Curr. Opin. Plant Biol. 13:434–41 [Google Scholar]
  148. van der Hoorn RA, Kamoun S. 148.  2008. From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–17 [Google Scholar]
  149. Vega-Sanchez ME, Zeng L, Chen S, Leung H, Wang GL. 149.  2008. SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11, is involved in flowering time control in rice. Plant Cell 20:1456–69 [Google Scholar]
  150. Verdier V, Triplett LR, Hummel AW, Corral R, Cernadas RA. 150.  et al. 2012. Transcription activator-like (TAL) effectors targeting OsSWEET genes enhance virulence on diverse rice (Oryza sativa) varieties when expressed individually in a TAL effector-deficient strain of Xanthomonas oryzae. New Phytol. 196:1197–207 [Google Scholar]
  151. Wang CZ, Gao F, Wu JG, Dai JL, Wei CH, Li Y. 151.  2010. Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression. Plant Cell Physiol. 51:1291–99 [Google Scholar]
  152. Wang H, Hao J, Chen X, Hao Z, Wang X. 152.  et al. 2007. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol. Biol. 65:799–815 [Google Scholar]
  153. Wang YS, Pi LY, Chen XH, Chakrabarty PK, Jiang J. 153.  et al. 2006. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell 18:3635–46 [Google Scholar]
  154. White FF, Potnis N, Jones JB, Koebnik R. 154.  2009. The type III effectors of Xanthomonas. Mol. Plant Pathol. 10:749–66 [Google Scholar]
  155. Wiemann P, Sieber CM, von Bargen KW, Studt L, Niehaus EM. 155.  et al. 2013. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog. 9:e1003475 [Google Scholar]
  156. Willmann R, Lajunen HM, Erbs G, Newman MA, Kolb D. 156.  et al. 2011. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc. Natl. Acad. Sci. USA 108:19824–29 [Google Scholar]
  157. Wu KL, Guo ZJ, Wang HH, Li J. 157.  2005. The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res. 12:9–26 [Google Scholar]
  158. Xiang Y, Cao Y, Xu C, Li X, Wang S. 158.  2006. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor. Appl. Genet. 113:1347–55 [Google Scholar]
  159. Xiao J, Cheng H, Li X, Xiao J, Xu C, Wang S. 159.  2013. Rice WRKY13 regulates crosstalk between abiotic and biotic stress signaling pathways by selective binding to different cis-elements. Plant Physiol. 163:1868–82 [Google Scholar]
  160. Xiong L, Yang Y. 160.  2003. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase. Plant Cell 15:745–59 [Google Scholar]
  161. Yalovsky S, Bloch D, Sorek N, Kost B. 161.  2008. Regulation of membrane trafficking, cytoskeleton dynamics, and cell polarity by ROP/RAC GTPases. Plant Physiol. 147:1527–43 [Google Scholar]
  162. Yamaguchi K, Imai K, Akamatsu A, Mihashi M, Hayashi N. 162.  et al. 2012. SWAP70 functions as a Rac/Rop guanine nucleotide-exchange factor in rice. Plant J. 70:389–97 [Google Scholar]
  163. Yamaguchi K, Nakamura Y, Ishikawa K, Yoshimura Y, Tsuge S, Kawasaki T. 163.  2013. Suppression of rice immunity by Xanthomonas oryzae type III effector Xoo2875. Biosci. Biotechnol. Biochem. 77:796–801 [Google Scholar]
  164. Yamaguchi K, Yamada K, Ishikawa K, Yoshimura S, Hayashi N. 164.  et al. 2013. A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microbe 13:347–57 [Google Scholar]
  165. Yamaguchi T, Hirano HY. 165.  2006. Function and diversification of MADS-box genes in rice. Sci. World J. 6:1923–32 [Google Scholar]
  166. Yang B, Sugio A, White FF. 166.  2006. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc. Natl. Acad. Sci. USA 103:10503–8 [Google Scholar]
  167. Yang DL, Yang YN, He ZH. 167.  2013. Roles of plant hormones and their interplay in rice immunity. Mol. Plant 6:675–85 [Google Scholar]
  168. Yang DL, Yao J, Mei CS, Tong XH, Zeng LJ. 168.  et al. 2012. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl. Acad. Sci. USA 109:E1192–200 [Google Scholar]
  169. Yang Y, Shah J, Klessig DF. 169.  1997. Signal perception and transduction in plant defense responses. Genes Dev. 11:1621–39 [Google Scholar]
  170. Yu J, Hu S, Wang J, Wong GK, Li S. 170.  et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92 [Google Scholar]
  171. Yuan B, Zhai C, Wang W, Zeng X, Xu X. 171.  et al. 2011. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor. Appl. Genet. 122:1017–28 [Google Scholar]
  172. Yuan M, Chu Z, Li X, Xu C, Wang S. 172.  2010. The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell 22:3164–76 [Google Scholar]
  173. Zeng L, Velasquez AC, Munkvold KR, Zhang J, Martin GB. 173.  2012. A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB. Plant J. 69:92–103 [Google Scholar]
  174. Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M. 174.  et al. 2004. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795–808 [Google Scholar]
  175. Zeng LR, Vega-Sanchez ME, Zhu T, Wang GL. 175.  2006. Ubiquitination-mediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell Res. 16:413–26 [Google Scholar]
  176. Zhai C, Lin F, Dong Z, He X, Yuan B. 176.  et al. 2011. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol. 189:321–34 [Google Scholar]
  177. Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD. 177.  et al. 2011. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev. 25:2540–53 [Google Scholar]
  178. Zhao B, Ardales EY, Raymundo A, Bai J, Trick HN. 178.  et al. 2004. The avrRxo1 gene from the rice pathogen Xanthomonas oryzae pv. oryzicola confers a nonhost defense reaction on maize with resistance gene Rxo1. Mol. Plant-Microbe Interact. 17:771–79 [Google Scholar]
  179. Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S. 179.  2005. A maize resistance gene functions against bacterial streak disease in rice. Proc. Natl. Acad. Sci. USA 102:15383–88 [Google Scholar]
  180. Zheng A, Lin R, Zhang D, Qin P, Xu L. 180.  et al. 2013. The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat. Commun. 4:1424 [Google Scholar]
  181. Zhou CH, Zhang L, Duan J, Miki B, Wu KQ. 181.  2005. HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17:1196–204 [Google Scholar]
  182. Zipfel C. 182.  2008. Pattern-recognition receptors in plant innate immunity. Curr. Opin. Immunol. 20:10–16 [Google Scholar]
  183. Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD. 183.  et al. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–67 [Google Scholar]
/content/journals/10.1146/annurev-phyto-102313-045926
Loading
/content/journals/10.1146/annurev-phyto-102313-045926
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error