1932

Abstract

Deciphering the many interactions that occur between a virus and host cell over the course of infection is paramount to understanding mechanisms of pathogenesis and to the future development of antiviral therapies. Over the past decade, researchers have started to understand these complicated relationships through the development of methodologies, including advances in RNA interference, proteomics, and the development of genetic tools such as haploid cell lines, allowing high-throughput screening to identify critical contact points between virus and host. These advances have produced a wealth of data regarding host factors hijacked by viruses to promote infection, as well as antiviral factors responsible for subverting viral infection. This review highlights findings from virus-host screens and discusses our thoughts on the direction of screening strategies moving forward.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100114-055238
2015-11-09
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/virology/2/1/annurev-virology-100114-055238.html?itemId=/content/journals/10.1146/annurev-virology-100114-055238&mimeType=html&fmt=ahah

Literature Cited

  1. Hannon GJ, Rossi JJ. 1.  2004. Unlocking the potential of the human genome with RNA interference. Nature 431:371–78 [Google Scholar]
  2. Moffat J, Sabatini DM. 2.  2006. Building mammalian signalling pathways with RNAi screens. Nat. Rev. Mol. Cell Biol. 7:177–87 [Google Scholar]
  3. Falschlehner C, Steinbrink S, Erdmann G, Boutros M. 3.  2010. High-throughput RNAi screening to dissect cellular pathways: a how-to guide. Biotechnol. J. 5:368–76 [Google Scholar]
  4. Yasunaga A, Hanna SL, Li J, Cho H, Rose PP. 4.  et al. 2014. Genome-wide RNAi screen identifies broadly-acting host factors that inhibit arbovirus infection. PLOS Pathog. 10:e1003914 [Google Scholar]
  5. Panda D, Rose PP, Hanna SL, Gold B, Hopkins KC. 5.  et al. 2013. Genome-wide RNAi screen identifies SEC61A and VCP as conserved regulators of Sindbis virus entry. Cell Rep. 5:1737–48 [Google Scholar]
  6. Sessions OM, Barrows NJ, Souza-Neto JA, Robinson TJ, Hershey CL. 6.  et al. 2009. Discovery of insect and human dengue virus host factors. Nature 458:1047–50 [Google Scholar]
  7. Moser TS, Jones RG, Thompson CB, Coyne CB, Cherry S. 7.  2010. A kinome RNAi screen identified AMPK as promoting poxvirus entry through the control of actin dynamics. PLOS Pathog. 6:e1000954 [Google Scholar]
  8. Panda D, Pascual-Garcia P, Dunagin M, Tudor M, Hopkins KC. 8.  et al. 2014. Nup98 promotes antiviral gene expression to restrict RNA viral infection in Drosophila. PNAS 111:E3890–99 [Google Scholar]
  9. Mohr S, Bakal C, Perrimon N. 9.  2010. Genomic screening with RNAi: results and challenges. Annu. Rev. Biochem. 79:37–64 [Google Scholar]
  10. Campeau E, Gobeil S. 10.  2011. RNA interference in mammals: behind the screen. Brief. Funct. Genomics 10:215–26 [Google Scholar]
  11. Boutros M, Ahringer J. 11.  2008. The art and design of genetic screens: RNA interference. Nat. Rev. Genet. 9:554–66 [Google Scholar]
  12. Hao L, He Q, Wang Z, Craven M, Newton MA, Ahlquist P. 12.  2013. Limited agreement of independent RNAi screens for virus-required host genes owes more to false-negative than false-positive factors. PLOS Comput. Biol. 9:e1003235 [Google Scholar]
  13. Bushman FD, Malani N, Fernandes J, D'Orso I, Cagney G, Diamond TL. 13.  et al. 2009. Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLOS Pathog. 5:e1000437 [Google Scholar]
  14. Cherry S. 14.  2009. What have RNAi screens taught us about viral-host interactions?. Curr. Opin. Microbiol. 12:446–52 [Google Scholar]
  15. Panda D, Cherry S. 15.  2012. Cell-based genomic screening: elucidating virus-host interactions. Curr. Opin. Virol. 2:784–92 [Google Scholar]
  16. Kotecki M, Reddy PS, Cochran BH. 16.  1999. Isolation and characterization of a near-haploid human cell line. Exp. Cell Res. 252:273–80 [Google Scholar]
  17. Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G. 17.  et al. 2011. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477:340–43 [Google Scholar]
  18. Johnson SA, Hunter T. 18.  2005. Kinomics: methods for deciphering the kinome. Nat. Methods 2:17–25 [Google Scholar]
  19. Hopkins AL, Groom CR. 19.  2002. The druggable genome. Nat. Rev. Drug Discov. 1:727–30 [Google Scholar]
  20. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A. 20.  et al. 2008. Identification of host proteins required for HIV infection through a functional genomic screen. Science 319:921–26 [Google Scholar]
  21. Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM. 21.  et al. 2008. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135:49–60 [Google Scholar]
  22. Zhou H, Xu M, Huang Q, Gates AT, Zhang XD. 22.  et al. 2008. Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4:495–504 [Google Scholar]
  23. Yeung ML, Houzet L, Yedavalli VS, Jeang KT. 23.  2009. A genome-wide short hairpin RNA screening of Jurkat T-cells for human proteins contributing to productive HIV-1 replication. J. Biol. Chem. 284:19463–73 [Google Scholar]
  24. Nguyen DG, Yin H, Zhou Y, Wolff KC, Kuhen KL, Caldwell JS. 24.  2007. Identification of novel therapeutic targets for HIV infection through functional genomic cDNA screening. Virology 362:16–25 [Google Scholar]
  25. Hao L, Sakurai A, Watanabe T, Sorensen E, Nidom CA. 25.  et al. 2008. Drosophila RNAi screen identifies host genes important for influenza virus replication. Nature 454:890–93 [Google Scholar]
  26. Brass AL, Huang IC, Benita Y, John SP, Krishnan MN. 26.  et al. 2009. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139:1243–54 [Google Scholar]
  27. Konig R, Stertz S, Zhou Y, Inoue A, Hoffmann HH. 27.  et al. 2010. Human host factors required for influenza virus replication. Nature 463:813–17 [Google Scholar]
  28. Karlas A, Machuy N, Shin Y, Pleissner KP, Artarini A. 28.  et al. 2010. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 463:818–22 [Google Scholar]
  29. Chin CR, Brass AL. 29.  2013. A genome wide RNA interference screening method to identify host factors that modulate influenza A virus replication. Methods 59:217–24 [Google Scholar]
  30. Stertz S, Shaw ML. 30.  2011. Uncovering the global host cell requirements for influenza virus replication via RNAi screening. Microbes Infect. 13:516–25 [Google Scholar]
  31. Mehle A, Doudna JA. 31.  2010. A host of factors regulating influenza virus replication. Viruses 2:566–73 [Google Scholar]
  32. Min JY, Subbarao K. 32.  2010. Cellular targets for influenza drugs. Nat. Biotechnol. 28:239–40 [Google Scholar]
  33. Watanabe T, Watanabe S, Kawaoka Y. 33.  2010. Cellular networks involved in the influenza virus life cycle. Cell Host Microbe 7:427–39 [Google Scholar]
  34. Watanabe T, Kawakami E, Shoemaker JE, Lopes TJ, Matsuoka Y. 34.  et al. 2014. Influenza virus-host interactome screen as a platform for antiviral drug development. Cell Host Microbe 16:795–805 [Google Scholar]
  35. Shapira SD, Gat-Viks I, Shum BO, Dricot A, de Grace MM. 35.  et al. 2009. A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139:1255–67 [Google Scholar]
  36. Elton D, Simpson-Holley M, Archer K, Medcalf L, Hallam R. 36.  et al. 2001. Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. J. Virol. 75:408–19 [Google Scholar]
  37. Neumann G, Hughes MT, Kawaoka Y. 37.  2000. Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO J. 19:6751–58 [Google Scholar]
  38. Carette JE, Guimaraes CP, Varadarajan M, Park AS, Wuethrich I. 38.  et al. 2009. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326:1231–35 [Google Scholar]
  39. Hopkins KC, McLane LM, Maqbool T, Panda D, Gordesky-Gold B, Cherry S. 39.  2013. A genome-wide RNAi screen reveals that mRNA decapping restricts bunyaviral replication by limiting the pools of Dcp2-accessible targets for cap-snatching. Genes Dev. 27:1511–25 [Google Scholar]
  40. Meier R, Franceschini A, Horvath P, Tetard M, Mancini R. 40.  et al. 2014. Genome-wide small interfering RNA screens reveal VAMP3 as a novel host factor required for Uukuniemi virus late penetration. J. Virol. 88:8565–78 [Google Scholar]
  41. Petersen J, Drake MJ, Bruce EA, Riblett AM, Didigu CA. 41.  et al. 2014. The major cellular sterol regulatory pathway is required for Andes virus infection. PLOS Pathog. 10:e1003911 [Google Scholar]
  42. Emonet SF, de la Torre JC, Domingo E, Sevilla N. 42.  2009. Arenavirus genetic diversity and its biological implications. Infect. Genet. Evol. 9:417–29 [Google Scholar]
  43. Ogbu O, Ajuluchukwu E, Uneke CJ. 43.  2007. Lassa fever in West African sub-region: an overview. J. Vector Borne Dis. 44:1–11 [Google Scholar]
  44. Jae LT, Raaben M, Riemersma M, van Beusekom E, Blomen VA. 44.  et al. 2013. Deciphering the glycosylome of dystroglycanopathies using haploid screens for Lassa virus entry. Science 340:479–83 [Google Scholar]
  45. Jae LT, Raaben M, Herbert AS, Kuehne AI, Wirchnianski AS. 45.  et al. 2014. Lassa virus entry requires a trigger-induced receptor switch. Science 344:1506–10 [Google Scholar]
  46. Lavanya M, Cuevas CD, Thomas M, Cherry S, Ross SR. 46.  2013. siRNA screen for genes that affect Junín virus entry uncovers voltage-gated calcium channels as a therapeutic target. Sci. Transl. Med. 5:204ra131 [Google Scholar]
  47. Panda D, Das A, Dinh PX, Subramaniam S, Nayak D. 47.  et al. 2011. RNAi screening reveals requirement for host cell secretory pathway in infection by diverse families of negative-strand RNA viruses. PNAS 108:19036–41 [Google Scholar]
  48. Lee AS, Burdeinick-Kerr R, Whelan SP. 48.  2014. A genome-wide small interfering RNA screen identifies host factors required for vesicular stomatitis virus infection. J. Virol. 88:8355–60 [Google Scholar]
  49. Tai AW, Benita Y, Peng LF, Kim SS, Sakamoto N. 49.  et al. 2009. A functional genomic screen identifies cellular cofactors of hepatitis C virus replication. Cell Host Microbe 5:298–307 [Google Scholar]
  50. Ooi YS, Stiles KM, Liu CY, Taylor GM, Kielian M. 50.  2013. Genome-wide RNAi screen identifies novel host proteins required for alphavirus entry. PLOS Pathog. 9:e1003835 [Google Scholar]
  51. Lee AS, Burdeinick-Kerr R, Whelan SP. 51.  2013. A ribosome-specialized translation initiation pathway is required for cap-dependent translation of vesicular stomatitis virus mRNAs. PNAS 110:324–29 [Google Scholar]
  52. Clemente R, Sisman E, Aza-Blanc P, de la Torre JC. 52.  2010. Identification of host factors involved in Borna disease virus cell entry through a small interfering RNA functional genetic screen. J. Virol. 84:3562–75 [Google Scholar]
  53. Miller EH, Obernosterer G, Raaben M, Herbert AS, Deffieu MS. 53.  et al. 2012. Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J. 31:1947–60 [Google Scholar]
  54. Cote M, Misasi J, Ren T, Bruchez A, Lee K. 54.  et al. 2011. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477:344–48 [Google Scholar]
  55. Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M. 55.  et al. 2005. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11:791–96 [Google Scholar]
  56. Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T. 56.  et al. 2005. Robust hepatitis C virus infection in vitro. PNAS 102:9294–99 [Google Scholar]
  57. Li Q, Brass AL, Ng A, Hu Z, Xavier RJ. 57.  et al. 2009. A genome-wide genetic screen for host factors required for hepatitis C virus propagation. PNAS 106:16410–15 [Google Scholar]
  58. Randall G, Panis M, Cooper JD, Tellinghuisen TL, Sukhodolets KE. 58.  et al. 2007. Cellular cofactors affecting hepatitis C virus infection and replication. PNAS 104:12884–89 [Google Scholar]
  59. Reiss S, Rebhan I, Backes P, Romero-Brey I, Erfle H. 59.  et al. 2011. Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell Host Microbe 9:32–45 [Google Scholar]
  60. Li Q, Zhang YY, Chiu S, Hu Z, Lan KH. 60.  et al. 2014. Integrative functional genomics of hepatitis C virus infection identifies host dependencies in complete viral replication cycle. PLOS Pathog. 10:e1004163 [Google Scholar]
  61. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. 61.  2005. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309:1577–81 [Google Scholar]
  62. Vaillancourt FH, Pilote L, Cartier M, Lippens J, Liuzzi M. 62.  et al. 2009. Identification of a lipid kinase as a host factor involved in hepatitis C virus RNA replication. Virology 387:5–10 [Google Scholar]
  63. Ng TI, Mo H, Pilot-Matias T, He Y, Koev G. 63.  et al. 2007. Identification of host genes involved in hepatitis C virus replication by small interfering RNA technology. Hepatology 45:1413–21 [Google Scholar]
  64. Berger KL, Cooper JD, Heaton NS, Yoon R, Oakland TE. 64.  et al. 2009. Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis C virus replication. PNAS 106:7577–82 [Google Scholar]
  65. Supekova L, Supek F, Lee J, Chen S, Gray N. 65.  et al. 2008. Identification of human kinases involved in hepatitis C virus replication by small interference RNA library screening. J. Biol. Chem. 283:29–36 [Google Scholar]
  66. Lupberger J, Zeisel MB, Xiao F, Thumann C, Fofana I. 66.  et al. 2011. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat. Med. 17:589–95 [Google Scholar]
  67. Berger KL, Kelly SM, Jordan TX, Tartell MA, Randall G. 67.  2011. Hepatitis C virus stimulates the phosphatidylinositol 4-kinase III alpha-dependent phosphatidylinositol 4-phosphate production that is essential for its replication. J. Virol. 85:8870–83 [Google Scholar]
  68. Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H. 68.  et al. 2009. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457:882–86 [Google Scholar]
  69. Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M. 69.  et al. 2007. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446:801–5 [Google Scholar]
  70. Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F. 70.  et al. 1998. Binding of hepatitis C virus to CD81. Science 282:938–41 [Google Scholar]
  71. Ramage HR, Kumar GR, Verschueren E, Johnson JR, Von Dollen J. 71.  et al. 2015. A combined proteomics/genomics approach links hepatitis C virus infection with nonsense-mediated mRNA decay. Mol. Cell 57:329–40 [Google Scholar]
  72. Germain MA, Chatel-Chaix L, Gagne B, Bonneil E, Thibault P. 72.  et al. 2014. Elucidating novel hepatitis C virus-host interactions using combined mass spectrometry and functional genomics approaches. Mol. Cell. Proteomics 13:184–203 [Google Scholar]
  73. Balistreri G, Horvath P, Schweingruber C, Zund D, McInerney G. 73.  et al. 2014. The host nonsense-mediated mRNA decay pathway restricts mammalian RNA virus replication. Cell Host Microbe 16:403–11 [Google Scholar]
  74. Garcia D, Garcia S, Voinnet O. 74.  2014. Nonsense-mediated decay serves as a general viral restriction mechanism in plants. Cell Host Microbe 16:391–402 [Google Scholar]
  75. Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD. 75.  et al. 2008. RNA interference screen for human genes associated with West Nile virus infection. Nature 455:242–45 [Google Scholar]
  76. Gilfoy F, Fayzulin R, Mason PW. 76.  2009. West Nile virus genome amplification requires the functional activities of the proteasome. Virology 385:74–84 [Google Scholar]
  77. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW. 77.  et al. 2013. The global distribution and burden of dengue. Nature 496:504–7 [Google Scholar]
  78. Li C, Wei J, Li Y, He X, Zhou Q. 78.  et al. 2013. Transmembrane protein 214 (TMEM214) mediates endoplasmic reticulum stress-induced caspase 4 enzyme activation and apoptosis. J. Biol. Chem. 288:17908–17 [Google Scholar]
  79. Le Sommer C, Barrows NJ, Bradrick SS, Pearson JL, Garcia-Blanco MA. 79.  2012. G protein-coupled receptor kinase 2 promotes Flaviviridae entry and replication. PLOS Negl. Trop. Dis. 6:e1820 [Google Scholar]
  80. Schwartz O, Albert ML. 80.  2010. Biology and pathogenesis of chikungunya virus. Nat. Rev. Microbiol. 8:491–500 [Google Scholar]
  81. Rose PP, Hanna SL, Spiridigliozzi A, Wannissorn N, Beiting DP. 81.  et al. 2011. Natural resistance-associated macrophage protein is a cellular receptor for Sindbis virus in both insect and mammalian hosts. Cell Host Microbe 10:97–104 [Google Scholar]
  82. Whitton JL, Cornell CT, Feuer R. 82.  2005. Host and virus determinants of picornavirus pathogenesis and tropism. Nat. Rev. Microbiol. 3:765–76 [Google Scholar]
  83. Cherry S, Doukas T, Armknecht S, Whelan S, Wang H. 83.  et al. 2005. Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation inhibition. Genes Dev. 19:445–52 [Google Scholar]
  84. Huang JY, Su WC, Jeng KS, Chang TH, Lai MM. 84.  2012. Attenuation of 40S ribosomal subunit abundance differentially affects host and HCV translation and suppresses HCV replication. PLOS Pathog. 8:e1002766 [Google Scholar]
  85. Majzoub K, Hafirassou ML, Meignin C, Goto A, Marzi S. 85.  et al. 2014. RACK1 controls IRES-mediated translation of viruses. Cell 159:1086–95 [Google Scholar]
  86. Coyne CB, Bozym R, Morosky SA, Hanna SL, Mukherjee A. 86.  et al. 2011. Comparative RNAi screening reveals host factors involved in enterovirus infection of polarized endothelial monolayers. Cell Host Microbe 9:70–82 [Google Scholar]
  87. Swanson JA. 87.  2008. Shaping cups into phagosomes and macropinosomes. Nat. Rev. Mol. Cell Biol. 9:639–49 [Google Scholar]
  88. Bengali Z, Satheshkumar PS, Yang Z, Weisberg AS, Paran N, Moss B. 88.  2011. Drosophila S2 cells are non-permissive for vaccinia virus DNA replication following entry via low pH-dependent endocytosis and early transcription. PLOS ONE 6:e17248 [Google Scholar]
  89. Mercer J, Helenius A. 89.  2008. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–35 [Google Scholar]
  90. Mercer J, Snijder B, Sacher R, Burkard C, Bleck CK. 90.  et al. 2012. RNAi screening reveals proteasome- and Cullin3-dependent stages in vaccinia virus infection. Cell Rep. 2:1036–47 [Google Scholar]
  91. Sivan G, Martin SE, Myers TG, Buehler E, Szymczyk KH. 91.  et al. 2013. Human genome-wide RNAi screen reveals a role for nuclear pore proteins in poxvirus morphogenesis. PNAS 110:3519–24 [Google Scholar]
  92. Blasco R, Sisler JR, Moss B. 92.  1993. Dissociation of progeny vaccinia virus from the cell membrane is regulated by a viral envelope glycoprotein: effect of a point mutation in the lectin homology domain of the A34R gene. J. Virol. 67:3319–25 [Google Scholar]
  93. Hruby DE, Guarino LA, Kates JR. 93.  1979. Vaccinia virus replication. I. Requirement for the host-cell nucleus. J. Virol. 29:705–15 [Google Scholar]
  94. Filone CM, Caballero IS, Dower K, Mendillo ML, Cowley GS. 94.  et al. 2014. The master regulator of the cellular stress response (HSF1) is critical for orthopoxvirus infection. PLOS Pathog. 10:e1003904 [Google Scholar]
  95. Kilcher S, Schmidt FI, Schneider C, Kopf M, Helenius A, Mercer J. 95.  2014. siRNA screen of early poxvirus genes identifies the AAA+ ATPase D5 as the virus genome-uncoating factor. Cell Host Microbe 15:103–12 [Google Scholar]
  96. Moody CA, Laimins LA. 96.  2010. Human papillomavirus oncoproteins: pathways to transformation. Nat. Rev. Cancer 10:550–60 [Google Scholar]
  97. Aydin I, Weber S, Snijder B, Samperio Ventayol P, Kuhbacher A. 97.  et al. 2014. Large scale RNAi reveals the requirement of nuclear envelope breakdown for nuclear import of human papillomaviruses. PLOS Pathog. 10:e1004162 [Google Scholar]
  98. Lipovsky A, Popa A, Pimienta G, Wyler M, Bhan A. 98.  et al. 2013. Genome-wide siRNA screen identifies the retromer as a cellular entry factor for human papillomavirus. PNAS 110:7452–57 [Google Scholar]
  99. Davis ZH, Verschueren E, Jang GM, Kleffman K, Johnson JR. 99.  et al. 2015. Global mapping of herpesvirus-host protein complexes reveals a transcription strategy for late genes. Mol. Cell 57:349–60 [Google Scholar]
  100. Schneider WM, Chevillotte MD, Rice CM. 100.  2014. Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol. 32:513–45 [Google Scholar]
  101. Zhang Y, Burke CW, Ryman KD, Klimstra WB. 101.  2007. Identification and characterization of interferon-induced proteins that inhibit alphavirus replication. J. Virol. 81:11246–55 [Google Scholar]
  102. Li J, Ding SC, Cho H, Chung BC, Gale M Jr. 102.  2013. A short hairpin RNA screen of interferon-stimulated genes identifies a novel negative regulator of the cellular antiviral response. mBio 4:e00385–13 [Google Scholar]
  103. Zhao H, Lin W, Kumthip K, Cheng D, Fusco DN. 103.  et al. 2012. A functional genomic screen reveals novel host genes that mediate interferon-alpha's effects against hepatitis C virus. J. Hepatol. 56:326–33 [Google Scholar]
  104. Varble A, Benitez AA, Schmid S, Sachs D, Shim JV. 104.  et al. 2013. An in vivo RNAi screening approach to identify host determinants of virus replication. Cell Host Microbe 14:346–56 [Google Scholar]
  105. Metz P, Dazert E, Ruggieri A, Mazur J, Kaderali L. 105.  et al. 2012. Identification of type I and type II interferon-induced effectors controlling hepatitis C virus replication. Hepatology 56:2082–93 [Google Scholar]
  106. Lenschow DJ, Giannakopoulos NV, Gunn LJ, Johnston C, O'Guin AK. 106.  et al. 2005. Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J. Virol. 79:13974–83 [Google Scholar]
  107. Jiang D, Guo H, Xu C, Chang J, Gu B. 107.  et al. 2008. Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus. J. Virol. 82:1665–78 [Google Scholar]
  108. Jiang D, Weidner JM, Qing M, Pan XB, Guo H. 108.  et al. 2010. Identification of five interferon-induced cellular proteins that inhibit West Nile virus and dengue virus infections. J. Virol. 84:8332–41 [Google Scholar]
  109. Itsui Y, Sakamoto N, Kurosaki M, Kanazawa N, Tanabe Y. 109.  et al. 2006. Expressional screening of interferon-stimulated genes for antiviral activity against hepatitis C virus replication. J. Viral Hepat. 13:690–700 [Google Scholar]
  110. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT. 110.  et al. 2011. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472:481–85 [Google Scholar]
  111. Liu SY, Sanchez DJ, Aliyari R, Lu S, Cheng G. 111.  2012. Systematic identification of type I and type II interferon-induced antiviral factors. PNAS 109:4239–44 [Google Scholar]
  112. Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B. 112.  et al. 2014. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505:691–95 [Google Scholar]
  113. Ooi EL, Chan ST, Cho NE, Wilkins C, Woodward J. 113.  et al. 2014. Novel antiviral host factor, TNK1, regulates IFN signaling through serine phosphorylation of STAT1. PNAS 111:1909–14 [Google Scholar]
  114. Schoggins JW, Dorner M, Feulner M, Imanaka N, Murphy MY. 114.  et al. 2012. Dengue reporter viruses reveal viral dynamics in interferon receptor-deficient mice and sensitivity to interferon effectors in vitro. PNAS 109:14610–15 [Google Scholar]
  115. Karki S, Li MM, Schoggins JW, Tian S, Rice CM, MacDonald MR. 115.  2012. Multiple interferon stimulated genes synergize with the zinc finger antiviral protein to mediate anti-alphavirus activity. PLOS ONE 7:e37398 [Google Scholar]
  116. Sen GC, Sarkar SN. 116.  2007. The interferon-stimulated genes: targets of direct signaling by interferons, double-stranded RNA, and viruses. Curr. Top. Microbiol. Immunol. 316:233–50 [Google Scholar]
  117. Schoggins JW. 117.  2014. Interferon-stimulated genes: roles in viral pathogenesis. Curr. Opin. Virol. 6:40–46 [Google Scholar]
  118. Randall RE, Goodbourn S. 118.  2008. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J. Gen. Virol. 89:1–47 [Google Scholar]
  119. Schoggins JW, Rice CM. 119.  2011. Interferon-stimulated genes and their antiviral effector functions. Curr. Opin. Virol. 1:519–25 [Google Scholar]
  120. Iwasaki A, Pillai PS. 120.  2014. Innate immunity to influenza virus infection. Nat. Rev. Immunol. 14:315–28 [Google Scholar]
  121. Horner SM, Gale M Jr. 121.  2013. Regulation of hepatic innate immunity by hepatitis C virus. Nat. Med. 19:879–88 [Google Scholar]
  122. Metz P, Reuter A, Bender S, Bartenschlager R. 122.  2013. Interferon-stimulated genes and their role in controlling hepatitis C virus. J. Hepatol. 59:1331–41 [Google Scholar]
  123. Suthar MS, Aguirre S, Fernandez-Sesma A. 123.  2013. Innate immune sensing of flaviviruses. PLOS Pathog. 9:e1003541 [Google Scholar]
  124. Rathinam VA, Fitzgerald KA. 124.  2011. Innate immune sensing of DNA viruses. Virology 411:153–62 [Google Scholar]
  125. Sharma S, Fitzgerald KA. 125.  2011. Innate immune sensing of DNA. PLOS Pathog. 7:e1001310 [Google Scholar]
  126. Chevrier N, Mertins P, Artyomov MN, Shalek AK, Iannacone M. 126.  et al. 2011. Systematic discovery of TLR signaling components delineates viral-sensing circuits. Cell 147:853–67 [Google Scholar]
  127. Amit I, Garber M, Chevrier N, Leite AP, Donner Y. 127.  et al. 2009. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326:257–63 [Google Scholar]
  128. Lee MN, Roy M, Ong SE, Mertins P, Villani AC. 128.  et al. 2013. Identification of regulators of the innate immune response to cytosolic DNA and retroviral infection by an integrative approach. Nat. Immunol. 14:179–85 [Google Scholar]
  129. Bürckstümmer T, Baumann C, Bluml S, Dixit E, Dürnberger G. 129.  et al. 2009. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10:266–72 [Google Scholar]
  130. Tanaka Y, Chen ZJ. 130.  2012. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal. 5:ra20 [Google Scholar]
  131. Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T. 131.  et al. 2010. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33:765–76 [Google Scholar]
  132. Beiting DP, Hidano S, Baggs JE, Geskes JM, Fang Q. 132.  et al. 2015. The orphan nuclear receptor TLX is an enhancer of STAT1-mediated transcription and immunity to Toxoplasma gondii. PLOS Biol. 13:e1002200 [Google Scholar]
  133. Lancaster KZ, Pfeiffer JK. 133.  2010. Limited trafficking of a neurotropic virus through inefficient retrograde axonal transport and the type I interferon response. PLOS Pathog. 6:e1000791 [Google Scholar]
  134. Sabin LR, Zhou R, Gruber JJ, Lukinova N, Bambina S. 134.  et al. 2009. Ars2 regulates both miRNA- and siRNA-dependent silencing and suppresses RNA virus infection in Drosophila. Cell 138:340–51 [Google Scholar]
  135. Gruber JJ, Zatechka DS, Sabin LR, Yong J, Lum JJ. 135.  et al. 2009. Ars2 links the nuclear cap-binding complex to RNA interference and cell proliferation. Cell 138:328–39 [Google Scholar]
  136. Hopkins KC, Tartell MA, Herrmann C, Hackett BA, Taschuk F. 136.  et al. 2015. Virus-induced translational arrest through 4EBP1/2-dependent decay of 5′-TOP mRNAs restricts viral infection. PNAS 112:E2920–29 [Google Scholar]
  137. Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ. 137.  2011. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12:959–65 [Google Scholar]
  138. Zhang Z, Kim T, Bao M, Facchinetti V, Jung SY. 138.  et al. 2011. DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity 34:866–78 [Google Scholar]
  139. Miyashita M, Oshiumi H, Matsumoto M, Seya T. 139.  2011. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol. Cell. Biol. 31:3802–19 [Google Scholar]
  140. Moy RH, Cole BS, Yasunaga A, Gold B, Shankarling G. 140.  et al. 2014. Stem-loop recognition by DDX17 facilitates miRNA processing and antiviral defense. Cell 158:764–77 [Google Scholar]
  141. Poenisch M, Metz P, Blankenburg H, Ruggieri A, Lee JY. 141.  et al. 2015. Identification of HNRNPK as regulator of hepatitis C virus particle production. PLOS Pathog. 11:e1004573 [Google Scholar]
  142. Gilsdorf M, Horn T, Arziman Z, Pelz O, Kiner E, Boutros M. 142.  2010. GenomeRNAi: a database for cell-based RNAi phenotypes. 2009 update. Nucleic Acids Res. 38:D448–52 [Google Scholar]
  143. Ramo P, Drewek A, Arrieumerlou C, Beerenwinkel N, Ben-Tekaya H. 143.  et al. 2014. Simultaneous analysis of large-scale RNAi screens for pathogen entry. BMC Genomics 15:1162 [Google Scholar]
  144. Zhu J, Davoli T, Perriera JM, Chin CR, Gaiha GD. 144.  et al. 2014. Comprehensive identification of host modulators of HIV-1 replication using multiple orthologous RNAi reagents. Cell Rep. 9:752–66 [Google Scholar]
  145. Luo B, Cheung HW, Subramanian A, Sharifnia T, Okamoto M. 145.  et al. 2008. Highly parallel identification of essential genes in cancer cells. PNAS 105:20380–85 [Google Scholar]
  146. Bürckstümmer T, Banning C, Hainzl P, Schobesberger R, Kerzendorfer C. 146.  et al. 2013. A reversible gene trap collection empowers haploid genetics in human cells. Nat. Methods 10:965–71 [Google Scholar]
  147. Hsu PD, Lander ES, Zhang F. 147.  2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–78 [Google Scholar]
  148. Sander JD, Joung JK. 148.  2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32:347–55 [Google Scholar]
  149. Doudna JA, Charpentier E. 149.  2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096 [Google Scholar]
  150. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA. 150.  et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87 [Google Scholar]
  151. Yang X, Boehm JS, Yang X, Salehi-Ashtiani K, Hao T. 151.  et al. 2011. A public genome-scale lentiviral expression library of human ORFs. Nat. Methods 8:659–61 [Google Scholar]
  152. Wang Z, Gerstein M, Snyder M. 152.  2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57–63 [Google Scholar]
  153. Greco TM, Diner BA, Cristea IM. 153.  2014. The impact of mass spectrometry–based proteomics on fundamental discoveries in virology. Annu. Rev. Virol. 1:581–604 [Google Scholar]
  154. Vinayavekhin N, Saghatelian A. 154.  2010. Untargeted metabolomics. Curr. Protoc. Mol. Biol. 90:30.1.1–30.1.24 [Google Scholar]
  155. Davila S, Hibberd ML. 155.  2009. Genome-wide association studies are coming for human infectious diseases. Genome Med. 1:19 [Google Scholar]
  156. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ. 156.  et al. 2011. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 12:745–55 [Google Scholar]
/content/journals/10.1146/annurev-virology-100114-055238
Loading
/content/journals/10.1146/annurev-virology-100114-055238
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error