1932

Abstract

Dengue virus affects hundreds of millions of people each year around the world, causing a tremendous social and economic impact on affected countries. The aim of this review is to summarize our current knowledge of the functions, structure, and interactions of the viral capsid protein. The primary role of capsid is to package the viral genome. There are two processes linked to this function: the recruitment of the viral RNA during assembly and the release of the genome during infection. Although particle assembly takes place on endoplasmic reticulum membranes, capsid localizes in nucleoli and lipid droplets. Why capsid accumulates in these locations during infection remains unknown. In this review, we describe available data and discuss new ideas on dengue virus capsid functions and interactions. We believe that a deeper understanding of how the capsid protein works during infection will create opportunities for novel antiviral strategies, which are urgently needed to control dengue virus infections.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-110615-042334
2016-09-29
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/virology/3/1/annurev-virology-110615-042334.html?itemId=/content/journals/10.1146/annurev-virology-110615-042334&mimeType=html&fmt=ahah

Literature Cited

  1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW. 1.  et al. 2013. The global distribution and burden of dengue. Nature 496:504–7 [Google Scholar]
  2. Lindenbach BD, Murray CL, Thiel HJ, Rice CM. 2.  2013. Flaviviridae. Fields Virology DM Knipe, P Howley 712–46 Philadelphia: Lippincott Williams & Wilkins [Google Scholar]
  3. Musso D, Cao-Lormeau VM, Gubler DJ. 3.  2015. Zika virus: following the path of dengue and chikungunya?. Lancet 386:243–44 [Google Scholar]
  4. Blitvich BJ, Firth AE. 4.  2015. Insect-specific flaviviruses: a systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses 7:1927–59 [Google Scholar]
  5. Halstead SB. 5.  2007. Dengue. Lancet 370:1644–52 [Google Scholar]
  6. Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J. 6.  et al. 2002. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–25 [Google Scholar]
  7. Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y. 7.  et al. 2003. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat. Struct. Biol. 10:907–12 [Google Scholar]
  8. Zhang X, Ge P, Yu X, Brannan JM, Bi G. 8.  et al. 2013. Cryo-EM structure of the mature dengue virus at 3.5-Å resolution. Nat. Struct. Mol. Biol. 20:105–10 [Google Scholar]
  9. Perera-Lecoin M, Meertens L, Carnec X, Amara A. 9.  2014. Flavivirus entry receptors: an update. Viruses 6:69–88 [Google Scholar]
  10. Acosta EG, Castilla V, Damonte EB. 10.  2008. Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J. Gen. Virol. 89:474–84 [Google Scholar]
  11. Acosta EG, Castilla V, Damonte EB. 11.  2009. Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. Cell Microbiol 11:1533–49 [Google Scholar]
  12. Acosta EG, Castilla V, Damonte EB. 12.  2012. Differential requirements in endocytic trafficking for penetration of dengue virus. PLOS ONE 7:e44835 [Google Scholar]
  13. Krishnan MN, Sukumaran B, Pal U, Agaisse H, Murray JL. 13.  et al. 2007. Rab 5 is required for the cellular entry of dengue and West Nile viruses. J. Virol. 81:4881–85 [Google Scholar]
  14. Mosso C, Galvan-Mendoza IJ, Ludert JE, del Angel RM. 14.  2008. Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT. Virology 378:193–99 [Google Scholar]
  15. van der Schaar HM, Rust MJ, Chen C, van der Ende-Metselaar H, Wilschut J. 15.  et al. 2008. Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLOS Pathog 4:e1000244 [Google Scholar]
  16. Modis Y, Ogata S, Clements D, Harrison SC. 16.  2004. Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313–19 [Google Scholar]
  17. Nayak V, Dessau M, Kucera K, Anthony K, Ledizet M, Modis Y. 17.  2009. Crystal structure of dengue virus type 1 envelope protein in the postfusion conformation and its implications for membrane fusion. J. Virol. 83:4338–44 [Google Scholar]
  18. Harrison SC. 18.  2008. Viral membrane fusion. Nat. Struct. Mol. Biol. 15:690–98 [Google Scholar]
  19. Smit JM, Moesker B, Rodenhuis-Zybert I, Wilschut J. 19.  2011. Flavivirus cell entry and membrane fusion. Viruses 3:160–71 [Google Scholar]
  20. Miller S, Kastner S, Krijnse-Locker J, Buhler S, Bartenschlager R. 20.  2007. The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J. Biol. Chem. 282:8873–82 [Google Scholar]
  21. Miller S, Sparacio S, Bartenschlager R. 21.  2006. Subcellular localization and membrane topology of the Dengue virus type 2 non-structural protein 4B. J. Biol. Chem. 281:8854–63 [Google Scholar]
  22. Xie X, Gayen S, Kang C, Yuan Z, Shi PY. 22.  2013. Membrane topology and function of dengue virus NS2A protein. J. Virol. 87:4609–22 [Google Scholar]
  23. Gillespie LK, Hoenen A, Morgan G, Mackenzie JM. 23.  2010. The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J. Virol. 84:10438–47 [Google Scholar]
  24. Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CK. 24.  et al. 2009. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5:365–75 [Google Scholar]
  25. Mackenzie JM, Jones MK, Young PR. 25.  1996. Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology 220:232–40 [Google Scholar]
  26. Junjhon J, Pennington JG, Edwards TJ, Perera R, Lanman J, Kuhn RJ. 26.  2014. Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells. J. Virol. 88:4687–97 [Google Scholar]
  27. Miorin L, Romero-Brey I, Maiuri P, Hoppe S, Krijnse-Locker J. 27.  et al. 2013. Three-dimensional architecture of tick-borne encephalitis virus replication sites and trafficking of the replicated RNA. J. Virol. 87:6469–81 [Google Scholar]
  28. Alvarez DE, Lodeiro MF, Luduena SJ, Pietrasanta LI, Gamarnik AV. 28.  2005. Long-range RNA-RNA interactions circularize the dengue virus genome. J. Virol. 79:6631–43 [Google Scholar]
  29. Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV. 29.  2006. A 5′ RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev 20:2238–49 [Google Scholar]
  30. Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA. 30.  et al. 2008. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319:1834–37 [Google Scholar]
  31. Wang SH, Syu WJ, Hu ST. 31.  2004. Identification of the homotypic interaction domain of the core protein of dengue virus type 2. J. Gen. Virol. 85:2307–14 [Google Scholar]
  32. Jones CT, Ma L, Burgner JW, Groesch TD, Post CB, Kuhn RJ. 32.  2003. Flavivirus capsid is a dimeric α-helical protein. J. Virol. 77:7143–49 [Google Scholar]
  33. Ma L, Jones CT, Groesch TD, Kuhn RJ, Post CB. 33.  2004. Solution structure of dengue virus capsid protein reveals another fold. PNAS 101:3414–19 [Google Scholar]
  34. Dokland T, Walsh M, Mackenzie JM, Khromykh AA, Ee KH, Wang S. 34.  2004. West Nile virus core protein; tetramer structure and ribbon formation. Structure 12:1157–63 [Google Scholar]
  35. Teoh PG, Huang ZS, Pong WL, Chen PC, Wu HN. 35.  2014. Maintenance of dimer conformation by the dengue virus core protein α4-α4′ helix pair is critical for nucleocapsid formation and virus production. J. Virol. 88:7998–8015 [Google Scholar]
  36. Nemesio H, Palomares-Jerez MF, Villalain J. 36.  2013. Hydrophobic segment of dengue virus C protein. Interaction with model membranes. Mol. Membr. Biol. 30:273–87 [Google Scholar]
  37. Markoff L, Falgout B, Chang A. 37.  1997. A conserved internal hydrophobic domain mediates the stable membrane integration of the dengue virus capsid protein. Virology 233:105–17 [Google Scholar]
  38. Samsa MM, Mondotte JA, Caramelo JJ, Gamarnik AV. 38.  2012. Uncoupling cis-acting RNA elements from coding sequences revealed a requirement of the N-terminal region of dengue virus capsid protein in virus particle formation. J. Virol. 86:1046–58 [Google Scholar]
  39. Khromykh AA, Westaway EG. 39.  1996. RNA binding properties of core protein of the flavivirus Kunjin. Arch. Virol. 141:685–99 [Google Scholar]
  40. Cheong YK, Ng ML. 40.  2011. Dephosphorylation of West Nile virus capsid protein enhances the processes of nucleocapsid assembly. Microbes Infect 13:76–84 [Google Scholar]
  41. Samsa MM, Mondotte JA, Iglesias NG, Assuncao-Miranda I, Barbosa-Lima G. 41.  et al. 2009. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLOS Pathog 5:e1000632 [Google Scholar]
  42. Pong WL, Huang ZS, Teoh PG, Wang CC, Wu HN. 42.  2011. RNA binding property and RNA chaperone activity of dengue virus core protein and other viral RNA-interacting proteins. FEBS Lett 585:2575–81 [Google Scholar]
  43. Ivanyi-Nagy R, Lavergne JP, Gabus C, Ficheux D, Darlix JL. 43.  2008. RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae. Nucleic Acids Res 36:712–25 [Google Scholar]
  44. Rajkowitsch L, Chen D, Stampfl S, Semrad K, Waldsich C. 44.  et al. 2007. RNA chaperones, RNA annealers and RNA helicases. RNA Biol 4:118–30 [Google Scholar]
  45. Herschlag D. 45.  1995. RNA chaperones and the RNA folding problem. J. Biol. Chem. 270:20871–74 [Google Scholar]
  46. Ivanyi-Nagy R, Darlix JL. 46.  2012. Core protein-mediated 5′-3′ annealing of the West Nile virus genomic RNA in vitro. Virus Res 167:226–35 [Google Scholar]
  47. Yamshchikov VF, Compans RW. 47.  1994. Processing of the intracellular form of the West Nile virus capsid protein by the viral NS2B-NS3 protease: an in vitro study. J. Virol. 68:5765–71 [Google Scholar]
  48. Amberg SM, Nestorowicz A, McCourt DW, Rice CM. 48.  1994. NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies. J. Virol. 68:3794–802 [Google Scholar]
  49. Lobigs M, Lee E, Ng ML, Pavy M, Lobigs P. 49.  2010. A flavivirus signal peptide balances the catalytic activity of two proteases and thereby facilitates virus morphogenesis. Virology 401:80–89 [Google Scholar]
  50. Stocks CE, Lobigs M. 50.  1998. Signal peptidase cleavage at the flavivirus C-prM junction: dependence on the viral NS2B-3 protease for efficient processing requires determinants in C, the signal peptide, and prM. J. Virol. 72:2141–49 [Google Scholar]
  51. Lee E, Stocks CE, Amberg SM, Rice CM, Lobigs M. 51.  2000. Mutagenesis of the signal sequence of yellow fever virus prM protein: Enhancement of signalase cleavage in vitro is lethal for virus production. J. Virol. 74:24–32 [Google Scholar]
  52. Lobigs M, Lee E. 52.  2004. Inefficient signalase cleavage promotes efficient nucleocapsid incorporation into budding flavivirus membranes. J. Virol. 78:178–86 [Google Scholar]
  53. Zhang Y, Kostyuchenko VA, Rossmann MG. 53.  2007. Structural analysis of viral nucleocapsids by subtraction of partial projections. J. Struct. Biol. 157:356–64 [Google Scholar]
  54. Schalich J, Allison SL, Stiasny K, Mandl CW, Kunz C, Heinz FX. 54.  1996. Recombinant subviral particles from tick-borne encephalitis virus are fusogenic and provide a model system for studying flavivirus envelope glycoprotein functions. J. Virol. 70:4549–57 [Google Scholar]
  55. Khromykh AA, Varnavski AN, Sedlak PL, Westaway EG. 55.  2001. Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. J. Virol. 75:4633–40 [Google Scholar]
  56. Pijlman GP, Kondratieva N, Khromykh AA. 56.  2006. Translation of the flavivirus Kunjin NS3 gene in cis but not its RNA sequence or secondary structure is essential for efficient RNA packaging. J. Virol. 80:11255–64 [Google Scholar]
  57. Patkar CG, Kuhn RJ. 57.  2008. Yellow fever virus NS3 plays an essential role in virus assembly independent of its known enzymatic functions. J. Virol. 82:3342–52 [Google Scholar]
  58. Gebhard LG, Iglesias NG, Byk LA, Filomatori CV, De Maio FA, Gamarnik AV. 57a.  2016. A proline-rich N-terminal region of the dengue virus NS3 is crucial for infectious particle production. J. Virol. 90:5451–61 [Google Scholar]
  59. Kummerer BM, Rice CM. 58.  2002. Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles. J. Virol. 76:4773–84 [Google Scholar]
  60. Scaturro P, Cortese M, Chatel-Chaix L, Fischl W, Bartenschlager R. 59.  2015. Dengue virus non-structural protein 1 modulates infectious particle production via interaction with the structural proteins. PLOS Pathog 11:e1005277 [Google Scholar]
  61. de Borba L, Villordo SM, Iglesias NG, Filomatori CV, Gebhard LG, Gamarnik AV. 60.  2015. Overlapping local and long-range RNA-RNA interactions modulate dengue virus genome cyclization and replication. J. Virol. 89:3430–37 [Google Scholar]
  62. Villordo SM, Gamarnik AV. 61.  2009. Genome cyclization as strategy for flavivirus RNA replication. Virus Res 139:230–39 [Google Scholar]
  63. Clyde K, Barrera J, Harris E. 62.  2008. The capsid-coding region hairpin element (cHP) is a critical determinant of dengue virus and West Nile virus RNA synthesis. Virology 379:314–23 [Google Scholar]
  64. Liu ZY, Li XF, Jiang T, Deng YQ, Zhao H. 63.  et al. 2013. Novel cis-acting element within the capsid-coding region enhances flavivirus viral-RNA replication by regulating genome cyclization. J. Virol. 87:6804–18 [Google Scholar]
  65. Patkar CG, Jones CT, Chang YH, Warrier R, Kuhn RJ. 64.  2007. Functional requirements of the yellow fever virus capsid protein. J. Virol. 81:6471–81 [Google Scholar]
  66. Kofler RM, Heinz FX, Mandl CW. 65.  2002. Capsid protein C of tick-borne encephalitis virus tolerates large internal deletions and is a favorable target for attenuation of virulence. J. Virol. 76:3534–43 [Google Scholar]
  67. Zhu W, Qin C, Chen S, Jiang T, Yu M. 66.  et al. 2007. Attenuated dengue 2 viruses with deletions in capsid protein derived from an infectious full-length cDNA clone. Virus Res 126:226–32 [Google Scholar]
  68. Schlick P, Taucher C, Schittl B, Tran JL, Kofler RM. 67.  et al. 2009. Helices α2 and α3 of West Nile virus capsid protein are dispensable for assembly of infectious virions. J. Virol. 83:5581–91 [Google Scholar]
  69. Kofler RM, Leitner A, O'Riordain G, Heinz FX, Mandl CW. 68.  2003. Spontaneous mutations restore the viability of tick-borne encephalitis virus mutants with large deletions in protein C. J. Virol. 77:443–51 [Google Scholar]
  70. Bulich R, Aaskov JG. 69.  1992. Nuclear localization of dengue 2 virus core protein detected with monoclonal antibodies. J. Gen. Virol. 73:Pt. 112999–3003 [Google Scholar]
  71. Tadano M, Makino Y, Fukunaga T, Okuno Y, Fukai K. 70.  1989. Detection of dengue 4 virus core protein in the nucleus. I. A monoclonal antibody to dengue 4 virus reacts with the antigen in the nucleus and cytoplasm. J. Gen. Virol. 70:Pt. 61409–15 [Google Scholar]
  72. Wang SH, Syu WJ, Huang KJ, Lei HY, Yao CW. 71.  et al. 2002. Intracellular localization and determination of a nuclear localization signal of the core protein of dengue virus. J. Gen. Virol. 83:3093–102 [Google Scholar]
  73. Netsawang J, Noisakran S, Puttikhunt C, Kasinrerk W, Wongwiwat W. 72.  et al. 2010. Nuclear localization of dengue virus capsid protein is required for DAXX interaction and apoptosis. Virus Res 147:275–83 [Google Scholar]
  74. Iglesias N, Mondotte JA, Byk LA, De Maio FA, Samsa MM. 73.  et al. 2015. Dengue virus uses a non-canonical function of the host GBF1-Arf-COPI system for capsid protein accumulation on lipid droplets. Traffic 16:962–77 [Google Scholar]
  75. Sangiambut S, Keelapang P, Aaskov J, Puttikhunt C, Kasinrerk W. 74.  et al. 2008. Multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection. J. Gen. Virol. 89:1254–64 [Google Scholar]
  76. Mackenzie JM, Westaway EG. 75.  2001. Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J. Virol. 75:10787–99 [Google Scholar]
  77. Westaway EG, Mackenzie JM, Khromykh AA. 76.  2002. Replication and gene function in Kunjin virus. Curr. Top. Microbiol. Immunol. 267:323–51 [Google Scholar]
  78. Mori Y, Okabayashi T, Yamashita T, Zhao Z, Wakita T. 77.  et al. 2005. Nuclear localization of Japanese encephalitis virus core protein enhances viral replication. J. Virol. 79:3448–58 [Google Scholar]
  79. Westaway EG, Khromykh AA, Kenney MT, Mackenzie JM, Jones MK. 78.  1997. Proteins C and NS4B of the flavivirus Kunjin translocate independently into the nucleus. Virology 234:31–41 [Google Scholar]
  80. Bhuvanakantham R, Chong MK, Ng ML. 79.  2009. Specific interaction of capsid protein and importin-α/β influences West Nile virus production. Biochem. Biophys. Res. Commun. 389:63–69 [Google Scholar]
  81. Bhuvanakantham R, Cheong YK, Ng ML. 80.  2010. West Nile virus capsid protein interaction with importin and HDM2 protein is regulated by protein kinase C-mediated phosphorylation. Microbes Infect 12:615–25 [Google Scholar]
  82. Martins IC, Gomes-Neto F, Faustino AF, Carvalho FA, Carneiro FA. 81.  et al. 2012. The disordered N-terminal region of dengue virus capsid protein contains a lipid-droplet-binding motif. Biochem. J. 444:405–15 [Google Scholar]
  83. Faustino AF, Guerra GM, Huber RG, Hollmann A, Domingues MM. 82.  et al. 2015. Understanding dengue virus capsid protein disordered N-terminus and pep14-23-based inhibition. ACS Chem. Biol. 10:517–26 [Google Scholar]
  84. Carvalho FA, Carneiro FA, Martins IC, Assuncao-Miranda I, Faustino AF. 83.  et al. 2012. Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. J. Virol. 86:2096–108 [Google Scholar]
  85. Cermelli S, Guo Y, Gross SP, Welte MA. 84.  2006. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr. Biol. 16:1783–95 [Google Scholar]
  86. Martin S, Parton RG. 85.  2006. Lipid droplets: a unified view of a dynamic organelle. Nat. Rev. Mol. Cell Biol. 7:373–78 [Google Scholar]
  87. Walther TC, Farese RV Jr. 86.  2012. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81:687–714 [Google Scholar]
  88. Hodges BD, Wu CC. 87.  2010. Proteomic insights into an expanded cellular role for cytoplasmic lipid droplets. J. Lipid Res. 51:262–73 [Google Scholar]
  89. Saka HA, Valdivia R. 88.  2012. Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annu. Rev. Cell Dev. Biol. 28:411–37 [Google Scholar]
  90. Assuncao-Miranda I, Amaral FA, Bozza FA, Fagundes CT, Sousa LP. 89.  et al. 2010. Contribution of macrophage migration inhibitory factor to the pathogenesis of dengue virus infection. FASEB J 24:218–28 [Google Scholar]
  91. Scaturro P, Trist IM, Paul D, Kumar A, Acosta EG. 90.  et al. 2014. Characterization of the mode of action of a potent dengue virus capsid inhibitor. J. Virol. 88:11540–55 [Google Scholar]
  92. Tang WC, Lin RJ, Liao CL, Lin YL. 91.  2014. Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication. J. Virol. 88:6793–804 [Google Scholar]
  93. Heaton NS, Perera R, Berger KL, Khadka S, Lacount DJ. 92.  et al. 2010. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. PNAS 107:17345–50 [Google Scholar]
  94. Heaton NS, Randall G. 93.  2010. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8:422–32 [Google Scholar]
  95. Mateo R, Nagamine CM, Spagnolo J, Mendez E, Rahe M. 94.  et al. 2013. Inhibition of cellular autophagy deranges dengue virion maturation. J. Virol. 87:1312–21 [Google Scholar]
  96. Herker E, Ott M. 95.  2012. Emerging role of lipid droplets in host/pathogen interactions. J. Biol. Chem. 287:2280–87 [Google Scholar]
  97. Syed GH, Amako Y, Siddiqui A. 96.  2010. Hepatitis C virus hijacks host lipid metabolism. Trends Endocrinol. Metab. 21:33–40 [Google Scholar]
  98. Moradpour D, Englert C, Wakita T, Wands JR. 97.  1996. Characterization of cell lines allowing tightly regulated expression of hepatitis C virus core protein. Virology 222:51–63 [Google Scholar]
  99. Barba G, Harper F, Harada T, Kohara M, Goulinet S. 98.  et al. 1997. Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. PNAS 94:1200–5 [Google Scholar]
  100. Hope RG, McLauchlan J. 99.  2000. Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein. J. Gen. Virol. 81:1913–25 [Google Scholar]
  101. McLauchlan J, Lemberg MK, Hope G, Martoglio B. 100.  2002. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J 21:3980–88 [Google Scholar]
  102. Shavinskaya A, Boulant S, Penin F, McLauchlan J, Bartenschlager R. 101.  2007. The lipid droplet binding domain of hepatitis C virus core protein is a major determinant for efficient virus assembly. J. Biol. Chem. 282:37158–69 [Google Scholar]
  103. Boulant S, Targett-Adams P, McLauchlan J. 102.  2007. Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus. J. Gen. Virol. 88:2204–13 [Google Scholar]
  104. Boulant S, Douglas MW, Moody L, Budkowska A, Targett-Adams P, McLauchlan J. 103.  2008. Hepatitis C virus core protein induces lipid droplet redistribution in a microtubule- and dynein-dependent manner. Traffic 9:1268–82 [Google Scholar]
  105. Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T. 104.  et al. 2007. The lipid droplet is an important organelle for hepatitis C virus production. Nat. Cell Biol. 9:1089–97 [Google Scholar]
  106. Boulant S, Montserret R, Hope RG, Ratinier M, Targett-Adams P. 105.  et al. 2006. Structural determinants that target the hepatitis C virus core protein to lipid droplets. J. Biol. Chem. 281:22236–47 [Google Scholar]
  107. Counihan NA, Rawlinson SM, Lindenbach BD. 106.  2011. Trafficking of hepatitis C virus core protein during virus particle assembly. PLOS Pathog 7:e1002302 [Google Scholar]
  108. Camus G, Schweiger M, Herker E, Harris C, Kondratowicz AS. 107.  et al. 2014. The hepatitis C virus core protein inhibits adipose triglyceride lipase (ATGL)-mediated lipid mobilization and enhances the ATGL interaction with comparative gene identification 58 (CGI-58) and lipid droplets. J. Biol. Chem. 289:35770–80 [Google Scholar]
  109. Soni KG, Mardones GA, Sougrat R, Smirnova E, Jackson CL, Bonifacino JS. 108.  2009. Coatomer-dependent protein delivery to lipid droplets. J. Cell Sci. 122:1834–41 [Google Scholar]
  110. Guo Y, Walther TC, Rao M, Stuurman N, Goshima G. 109.  et al. 2008. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453:657–61 [Google Scholar]
  111. Beller M, Sztalryd C, Southall N, Bell M, Jackle H. 110.  et al. 2008. COPI complex is a regulator of lipid homeostasis. PLOS Biol 6:e292 [Google Scholar]
  112. Wilfling F, Haas JT, Walther TC, Farese RV Jr. 111.  2014. Lipid droplet biogenesis. Curr. Opin. Cell Biol. 29:39–45 [Google Scholar]
  113. Colpitts TM, Barthel S, Wang P, Fikrig E. 112.  2011. Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells. PLOS ONE 6:e24365 [Google Scholar]
  114. Chang CJ, Luh HW, Wang SH, Lin HJ, Lee SC, Hu ST. 113.  2001. The heterogeneous nuclear ribonucleoprotein K (hnRNP K) interacts with dengue virus core protein. DNA Cell Biol 20:569–77 [Google Scholar]
  115. Balinsky CA, Schmeisser H, Ganesan S, Singh K, Pierson TC, Zoon KC. 114.  2013. Nucleolin interacts with the dengue virus capsid protein and plays a role in formation of infectious virus particles. J. Virol. 87:13094–106 [Google Scholar]
  116. Li J, Huang R, Liao W, Chen Z, Zhang S. 115.  2012. Dengue virus utilizes calcium modulating cyclophilin-binding ligand to subvert apoptosis. Biochem. Biophys. Res. Commun. 418:622–27 [Google Scholar]
  117. Yang JS, Ramanathan MP, Muthumani K, Choo AY, Jin SH. 116.  et al. 2002. Induction of inflammation by West Nile virus capsid through the caspase-9 apoptotic pathway. Emerg. Infect. Dis. 8:1379–84 [Google Scholar]
  118. Yang MR, Lee SR, Oh W, Lee EW, Yeh JY. 117.  et al. 2008. West Nile virus capsid protein induces p53-mediated apoptosis via the sequestration of HDM2 to the nucleolus. Cell Microbiol 10:165–76 [Google Scholar]
  119. van Marle G, Antony J, Ostermann H, Dunham C, Hunt T. 118.  et al. 2007. West Nile virus-induced neuroinflammation: glial infection and capsid protein-mediated neurovirulence. J. Virol. 81:10933–49 [Google Scholar]
  120. Bhuvanakantham R, Li J, Tan TT, Ng ML. 119.  2010. Human Sec 3 protein is a novel transcriptional and translational repressor of flavivirus. Cell Microbiol 12:453–72 [Google Scholar]
  121. Bhuvanakantham R, Ng ML. 120.  2013. West Nile virus and dengue virus capsid protein negates the antiviral activity of human Sec 3 protein through the proteasome pathway. Cell Microbiol 15:1688–706 [Google Scholar]
  122. Oh W, Yang MR, Lee EW, Park KM, Pyo S. 121.  et al. 2006. Jab1 mediates cytoplasmic localization and degradation of West Nile virus capsid protein. J. Biol. Chem. 281:30166–74 [Google Scholar]
  123. Hunt TA, Urbanowski MD, Kakani K, Law LM, Brinton MA, Hobman TC. 122.  2007. Interactions between the West Nile virus capsid protein and the host cell-encoded phosphatase inhibitor, I2PP2A. Cell Microbiol 9:2756–66 [Google Scholar]
  124. Xu Z, Anderson R, Hobman TC. 123.  2011. The capsid-binding nucleolar helicase DDX56 is important for infectivity of West Nile virus. J. Virol. 85:5571–80 [Google Scholar]
  125. Xu Z, Hobman TC. 124.  2012. The helicase activity of DDX56 is required for its role in assembly of infectious West Nile virus particles. Virology 433:226–35 [Google Scholar]
  126. Faustino AF, Carvalho FA, Martins IC, Castanho MA, Mohana-Borges R. 125.  et al. 2014. Dengue virus capsid protein interacts specifically with very low-density lipoproteins. Nanomedicine 10:247–55 [Google Scholar]
  127. Katoh H, Okamoto T, Fukuhara T, Kambara H, Morita E. 126.  et al. 2013. Japanese encephalitis virus core protein inhibits stress granule formation through an interaction with Caprin-1 and facilitates viral propagation. J. Virol. 87:489–502 [Google Scholar]
  128. You J, Hou S, Malik-Soni N, Xu Z, Kumar A. 127.  et al. 2015. Flavivirus infection impairs peroxisome biogenesis and early antiviral signaling. J. Virol. 89:12349–61 [Google Scholar]
  129. Klumpp K, Crepin T. 128.  2014. Capsid proteins of enveloped viruses as antiviral drug targets. Curr. Opin. Virol. 5:63–71 [Google Scholar]
  130. Byrd CM, Dai D, Grosenbach DW, Berhanu A, Jones KF. 129.  et al. 2013. A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrob. Agents Chemother. 57:15–25 [Google Scholar]
  131. Mateo R, Nagamine CM, Kirkegaard K. 130.  2015. Suppression of drug resistance in dengue virus. mBio 6:e01960–15 [Google Scholar]
/content/journals/10.1146/annurev-virology-110615-042334
Loading
/content/journals/10.1146/annurev-virology-110615-042334
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error