1932

Abstract

Ophthalmology was the first medical specialty to adopt lasers right after their invention more than 50 years ago, and they gradually revolutionized ocular imaging, diagnostics, therapy, and surgery. Challenging precision, safety, and selectivity requirements for ocular therapeutic and surgical procedures keep advancing the laser technologies, which in turn continue enabling novel applications for the preservation and restoration of sight. Modern lasers can provide single-cell-layer selectivity in therapy, submicrometer precision in three-dimensional image-guided surgery, and nondamaging retinal therapy under optoacoustic temperature control. This article reviews the evolution of laser technologies; progress in understanding of the laser–tissue interactions; and concepts, misconceptions, and accidental discoveries that led to modern therapeutic and surgical applications of lasers in ophthalmology. It begins with a brief historical overview, followed by a description of the laser–tissue interactions and corresponding ophthalmic applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-111815-114358
2016-10-14
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/vision/2/1/annurev-vision-111815-114358.html?itemId=/content/journals/10.1146/annurev-vision-111815-114358&mimeType=html&fmt=ahah

Literature Cited

  1. Apple DJ, Solomon KD, Tetz MR, Assia EI, Holland EY. et al. 1992. Posterior capsule opacification. Surv. Ophthalmol. 37:73–116 [Google Scholar]
  2. Aron-Rosa D, Aron JJ, Griesemann M, Thyzel R. 1980. Use of the neodymium-YAG laser to open the posterior capsule after lens implant surgery: a preliminary report. Am. Intraocul. Implant. Soc. J. 6:352–54 [Google Scholar]
  3. Barbu CE, Rasche W, Wiedemann P, Dawczynski J, Unterlauft JD. 2014. Pattern-Laser-Trabekuloplastik und Argon-Laser-Trabekuloplastik zur Glaukombehandlung [Pattern laser trabeculoplasty and argon laser trabeculoplasty for treatment of glaucoma]. Ophthalmologe 111:948–53 [Google Scholar]
  4. Beckman H, Sugar HS. 1973. Laser iridectomy therapy of glaucoma. Arch. Ophthalmol. 90:453–55 [Google Scholar]
  5. Beetham WP, Aiello LM, Balodimos MC, Koncz L. 1970. Ruby laser photocoagulation of early diabetic neovascular retinopathy: preliminary report of a long-term controlled study. Arch. Ophthalmol. 83:261–72 [Google Scholar]
  6. Belokopytov M, Belkin M, Dubinsky G, Epstein Y, Rosner M. 2010. Development and recovery of laser-induced retinal lesion in rats. Retina 30:662–70 [Google Scholar]
  7. Benner JD, Ahuja RM, Butler JW. 2002. Macular infarction after transpupillary thermotherapy for subfoveal choroidal neovascularization in age-related macular degeneration. Am. J. Ophthalmol. 134:765–68 [Google Scholar]
  8. Blumenkranz MS, Yellachich D, Andersen DE, Wiltberger MW, Mordaunt D. et al. 2006. Semiautomated patterned scanning laser for retinal photocoagulation. Retina 26:370–76 [Google Scholar]
  9. Bridges WB. 1964. Laser oscillation in singly ionized argon in visible spectrum (method: pulsed d-c discharge; transitions: 4p→4s, 4p′→3d; E). Appl. Phys. Lett. 4:128–30 [Google Scholar]
  10. Brinkmann R, Hüttmann G, Rögener J, Roider J, Birngruber R, Lin CP. 2000. Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen. Laser Surg. Med. 27:451–64 [Google Scholar]
  11. Brinkmann R, Roider J, Birngruber R. 2006. Selective retina therapy (SRT): a review on methods, techniques, preclinical and first clinical results. Bull. Soc. Belge. Ophtalmol. 302:51–69 [Google Scholar]
  12. Brinkmann R, Schuele G, Joachimmeyer E, Roider J, Birngruber R. 2001. Determination of absolute fundus temperatures during retinal laser photocoagulation and selective RPE treatment. Investig. Ophthalmol. Vis. Sci. 42:S696 [Google Scholar]
  13. Cent. Medicare Medicaid Serv 2009. Centers for Medicare & Medicaid Services Bulletin July 16, Baltimore, MD
  14. Cohen BZ, Wald KJ, Toyama K. 1997. Neodymium:YLF picosecond laser segmentation for retinal traction associated with proliferative diabetic retinopathy. Am. J. Ophthalmol. 123:515–23 [Google Scholar]
  15. D'Amico DJ, Blumenkranz MS, Lavin MJ, Quiroz-Mercado H, Pallikaris IG. et al. 1996a. Multicenter clinical experience using an erbium:YAG laser for vitreoretinal surgery. Ophthalmology 103:1575–85 [Google Scholar]
  16. D'Amico DJ, Brazitikos PD, Marcellino GR, Finn SM, Hobart JL. 1996b. Initial clinical experience with an erbium:YAG laser for vitreoretinal surgery. Am. J. Ophthalmol. 121:414–25 [Google Scholar]
  17. Diabet. Retinopathy Study Res. Group 1981. Photocoagulation treatment for proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS report number 8. Ophthalmology 88:583–600 [Google Scholar]
  18. Ding L, Knox WH, Buhren J, Nagy LJ, Huxlin KR. 2008. Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator. Investig. Ophthalmol. Vis. Sci. 49:5332–39 [Google Scholar]
  19. Dorin G. 2004. Evolution of retinal laser therapy: minimum intensity photocoagulation (MIP). Can the laser heal the retina without harming it?. Semin. Ophthalmol. 19:62–68 [Google Scholar]
  20. Dougherty TJ, Mang TS. 1987. Characterization of intra-tumoral porphyrin following injection of hematoporphyrin derivative or its purified component. Photochem. Photobiol. 46:67–70 [Google Scholar]
  21. Early Treat. Diabet. Retinopathy Study Res. Group 1991. Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Ophthalmology 98:766–85 [Google Scholar]
  22. Elsner H, Pörksen E, Klatt C, Bunse A, Theisen-Kunde D. et al. 2006. Selective retina therapy in patients with central serous chorioretinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 244:1638–45 [Google Scholar]
  23. Ertan A, Bahadir M. 2006. Intrastromal ring segment insertion using a femtosecond laser to correct pellucid marginal corneal degeneration. J. Cataract Refract. Surg. 32:1710–16 [Google Scholar]
  24. Figueira J, Khan J, Nunes S, Sivaprasad S, Rosa A. et al. 2009. Prospective randomised controlled trial comparing sub-threshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema. Br. J. Ophthalmol. 93:1341–44 [Google Scholar]
  25. Framme C, Alt C, Schnell S, Sherwood M, Brinkmann R, Lin CP. 2007. Selective targeting of the retinal pigment epithelium in rabbit eyes with a scanning laser beam. Investig. Ophthalmol. Vis. Sci. 48:1782–92 [Google Scholar]
  26. Friedman NJ, Palanker DV, Schuele G, Andersen D, Marcellino G. et al. 2011. Femtosecond laser capsulotomy. J. Cataract Refract. Surg. 37:1189–98 [Google Scholar]
  27. Garrison BJ, Srinivasan R. 1985. Laser ablation of organic polymers: microscopic models for photochemical and thermal processes. J. Appl. Phys. 57:2909–14 [Google Scholar]
  28. Gass JD. 1971. Photocoagulation of macular lesions. Trans. Am. Acad. Ophthalmol. Otolaryngol. 75:580–608 [Google Scholar]
  29. Glaucoma Laser Trial Res. Group 1995. The Glaucoma Laser Trial (GLT) and Glaucoma Laser Trial Follow-Up Study: 7. Results. Am. J. Ophthalmol. 120:718–31 [Google Scholar]
  30. Gupta R, Pannu BK, Bhargav S, Narang S, Sood S. 2003. Nd:YAG laser photocystotomy of a free-floating pigmented anterior vitreous cyst. Ophthalmic Surg. Lasers Imaging 34:203–5 [Google Scholar]
  31. Hahn J, Fromm M, Al Halabi F, Besdo S, Lubatschowski H. et al. 2015. Measurement of ex vivo porcine lens shape during simulated accommodation, before and after fs-laser treatment. Investig. Ophthalmol. Vis. Sci. 56:5332–43 [Google Scholar]
  32. Heisterkamp A, Mamom T, Drommer W, Ertmer W, Lubatschowski H. 2003. Photodisruption with ultrashort laser pulses for intrastromal refractive surgery. Laser Phys. 13:743–48 [Google Scholar]
  33. Hemo I, Palanker D, Turovets I, Lewis A, Zauberman H. 1997. Vitreoretinal surgery assisted by the 193-nm excimer laser. Investig. Ophthalmol. Vis. Sci. 38:1825–29 [Google Scholar]
  34. Isner J, Clarke R. 1987. The paradox of thermal ablation without thermal injury. Laser Med. Sci. 2:165–73 [Google Scholar]
  35. Jain A, Blumenkranz MS, Paulus Y, Wiltberger MW, Andersen DE. et al. 2008. Effect of pulse duration on size and character of the lesion in retinal photocoagulation. Arch. Ophthalmol. 126:78–85 [Google Scholar]
  36. Jonas JB. 2004. Corneal endothelial transplantation using femtosecond laser technology. Eye 18:657–58 [Google Scholar]
  37. Kitai MS, Popkov VL, Semchishen VA, Kharizov AA. 1991. The physics of UV laser cornea ablation. IEEE J. Quantum Elect. 27:302–7 [Google Scholar]
  38. Koinzer S, Baade A, Schlott K, Hesse C, Caliebe A. et al. 2015. Temperature-controlled retinal photocoagulation reliably generates uniform subvisible, mild, or moderate lesions. Transl. Vis. Sci. Technol. 4:9 [Google Scholar]
  39. Koinzer S, Elsner H, Klatt C, Pörksen E, Brinkmann R. et al. 2008. Selective retina therapy (SRT) of chronic subfoveal fluid after surgery of rhegmatogenous retinal detachment: three case reports. Graefes Arch. Clin. Exp. Ophthalmol. 246:1373–78 [Google Scholar]
  40. Kozak I, Oster SF, Cortes MA, Dowell D, Hartmann K. et al. 2011. Clinical evaluation and treatment accuracy in diabetic macular edema using navigated laser photocoagulator NAVILAS. Ophthalmology 118:1119–24 [Google Scholar]
  41. Kramer M, Miller JW, Michaud N, Moulton RS, Hasan T. et al. 1996. Liposomal benzoporphyrin derivative verteporfin photodynamic therapy. Selective treatment of choroidal neovascularization in monkeys. Ophthalmology 103:427–38 [Google Scholar]
  42. Krasnov MM. 1974. Q-switched laser goniopuncture. Arch. Ophthalmol. 92:37–41 [Google Scholar]
  43. Krueger RR, Sun XK, Stroh J, Myers R. 2001. Experimental increase in accommodative potential after neodymium: yttrium-aluminum-garnet laser photodisruption of paired cadaver lenses. Ophthalmology 108:2122–29 [Google Scholar]
  44. Krueger RR, Uy H, McDonald J, Edwards K. 2012. Ultrashort-pulse lasers treating the crystalline lens: Will they cause vision-threatening cataract? (An American Ophthalmological Society thesis). Trans. Am. Ophthalmol. Soc. 110130–65 [Google Scholar]
  45. Kurtz RM, Horvath C, Liu HH, Krueger RR, Juhasz T. 1998. Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes. J. Refract. Surg. 14:541–48 [Google Scholar]
  46. Latina MA, Park C. 1995. Selective targeting of trabecular meshwork cells: in vitro studies of pulsed and CW laser interactions. Exp. Eye Res. 60:359–71 [Google Scholar]
  47. Latina MA, Sibayan SA, Shin DH, Noecker RJ, Marcellino G. 1998. Q-switched 532-nm Nd:YAG laser trabeculoplasty (selective laser trabeculoplasty): a multicenter, pilot, clinical study. Ophthalmology 105:2082–88 [Google Scholar]
  48. Lavinsky D, Cardillo JA, Melo LA Jr., Dare A, Farah ME, Belfort R Jr. 2011. Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema. Investig. Ophthalmol. Vis. Sci. 52:4314–23 [Google Scholar]
  49. Lavinsky D, Palanker D. 2015. Nondamaging photothermal therapy for the retina: initial clinical experience with chronic central serous retinopathy. Retina 35:213–22 [Google Scholar]
  50. Lavinsky D, Sramek C, Wang J, Huie P, Dalal R. et al. 2014. Subvisible retinal laser therapy: titration algorithm and tissue response. Retina 34:87–97 [Google Scholar]
  51. Lavinsky D, Wang J, Huie P, Dalal R, Lee SJ, Lee DY, Palanker D. 2016. Nondamaging retinal laser therapy: rationale and applications to the macula. Investig. Ophthalmol. Vis. Sci. 57:2488–500 [Google Scholar]
  52. L'Esperance FA Jr. 1968. An opthalmic argon laser photocoagulation system: design, construction, and laboratory investigations. Trans. Am. Ophthalmol. Soc. 66:827–904 [Google Scholar]
  53. L'Esperance FA Jr. 1969. The treatment of ophthalmic vascular disease by argon laser photocoagulation. Trans. Am. Acad. Ophthalmol. Otolaryngol. 73:1077–96 [Google Scholar]
  54. Lindstrom RL, MacRae SM, Pepose JS, Hoopes PC Sr. 2013. Corneal inlays for presbyopia correction. Curr. Opin. Ophthalmol. 24:281–87 [Google Scholar]
  55. Little HL, Zweng HC, Peabody RR. 1970. Argon laser slit-lamp retinal photocoagulation. Trans. Am. Acad. Ophthalmol. Otolaryngol. 74:85–97 [Google Scholar]
  56. Luttrull JK, Sramek C, Palanker D, Spink CJ, Musch DC. 2012. Long-term safety, high-resolution imaging, and tissue temperature modeling of subvisible diode micropulse photocoagulation for retinovascular macular edema. Retina 32:375–86 [Google Scholar]
  57. Maeshima K, Utsugi-Sutoh N, Otani T, Kishi S. 2004. Progressive enlargement of scattered photocoagulation scars in diabetic retinopathy. Retina 24:507–11 [Google Scholar]
  58. Maiman TH. 1960. Stimulated optical radiation in ruby. Nature 187:493–94 [Google Scholar]
  59. Mainster MA, Reichel E. 2000. Transpupillary thermotherapy for age-related macular degeneration: long-pulse photocoagulation, apoptosis, and heat shock proteins. Ophthalmic Surg. Lasers 31:359–73 [Google Scholar]
  60. Melamed S, Ben Simon GJ, Levkovitch-Verbin H. 2003. Selective laser trabeculoplasty as primary treatment for open-angle glaucoma: a prospective, nonrandomized pilot study. Arch. Ophthalmol. 121:957–60 [Google Scholar]
  61. Merigan WH, Strazzeri J, DiLoreto DA. Fischer W, Hunter JJ. Jr., et al. 2011. Visual recovery after outer retinal damage in the macaque. Investig. Ophthalmol. Vis. Sci. 52:3202 [Google Scholar]
  62. Meyer-Schwickerath G. 1960. Light Coagulation St. Louis, MO: Mosby
  63. Miller JW, Walsh AW, Kramer M, Hasan T, Michaud N. et al. 1995. Photodynamic therapy of experimental choroidal neovascularization using lipoprotein-delivered benzoporphyrin. Arch. Ophthalmol. 113:810–18 [Google Scholar]
  64. Muqit MM, Marcellino GR, Gray JC, McLauchlan R, Henson DB. et al. 2010. Pain responses of Pascal 20 ms multi-spot and 100 ms single-spot panretinal photocoagulation: Manchester Pascal Study, MAPASS report 2. Br. J. Ophthalmol. 94:1493–98 [Google Scholar]
  65. Myers RI, Krueger RR. 1998. Novel approaches to correction of presbyopia with laser modification of the crystalline lens. J. Refract. Surg. 14:136–39 [Google Scholar]
  66. Nagar M, Ogunyomade A, O'Brart DP, Howes F, Marshall J. 2005. A randomised, prospective study comparing selective laser trabeculoplasty with latanoprost for the control of intraocular pressure in ocular hypertension and open angle glaucoma. Br. J. Ophthalmol. 89:1413–17 [Google Scholar]
  67. Nagpal M, Marlecha S, Nagpal K. 2010. Comparison of laser photocoagulation for diabetic retinopathy using 532-nm standard laser versus multispot pattern scan laser. Retina 30:452–58 [Google Scholar]
  68. Nagy Z, Takacs A, Filkorn T, Sarayba M. 2009. Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. J. Refract. Surg. 25:1053–60 [Google Scholar]
  69. Newsom RSB, McAlister JC, Saeed M, McHugh JDA. 2001. Transpupillary thermotherapy (TTT) for the treatment of choroidal neovascularisation. Br. J. Ophthalmol. 85:173–78 [Google Scholar]
  70. Niemz M. 2002. Laser-Tissue Interactions. Fundamentals and Applications Berlin: Springer
  71. Nordan LT, Slade SG, Baker RN, Suarez C, Juhasz T, Kurtz R. 2003. Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial U.S. clinical series. J. Refract. Surg. 19:8–14 [Google Scholar]
  72. Oh B-L, Yu HG. 2015. Choroidal thickness after full-fluence and half-fluence photodynamic therapy in chronic central serous chorioretinopathy. Retina 35:1555–60 [Google Scholar]
  73. Palanker D, Hemo I, Turovets I, Zauberman H, Fish G, Lewis A. 1994. Vitreoretinal ablation with the 193-nm excimer laser in fluid media. Investig. Ophthalmol. Vis. Sci. 35:3835–40 [Google Scholar]
  74. Palanker D, Lavinsky D, Blumenkranz MS, Marcellino G. 2011. The impact of pulse duration and burn grade on size of retinal photocoagulation lesion: implications for pattern density. Retina 31:1664–69 [Google Scholar]
  75. Palanker DV, Blumenkranz MS, Andersen D, Wiltberger M, Marcellino G. et al. 2010. Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography. Sci. Transl. Med. 2:58ra85 [Google Scholar]
  76. Pallikaris IG, Papatzanaki ME, Siganos DS, Tsilimbaris MK. 1991. A corneal flap technique for laser in situ keratomileusis. Human studies. Arch. Ophthalmol. 109:1699–702 [Google Scholar]
  77. Parodi MB, Spasse S, Iacono P, Di Stefano G, Canziani T, Ravalico G. 2006. Subthreshold grid laser treatment of macular edema secondary to branch retinal vein occlusion with micropulse infrared (810 nanometer) diode laser. Ophthalmology 113:2237–42 [Google Scholar]
  78. Patz A, Maumenee AE, Ryan SJ. 1971. Argon laser photocoagulation. Advantages and limitations. Trans. Am. Acad. Ophthalmol. Otolaryngol. 75:569–79 [Google Scholar]
  79. Paulus YM, Jain A, Gariano RF, Nomoto H, Schuele G. et al. 2010. Selective retinal therapy with a continuous line scanning laser. Proc. SPIE 7550, San Francisco Bellingham, WA: SPIE [Google Scholar]
  80. Paulus YM, Jain A, Gariano RF, Stanzel BV, Marmor M, Blumenkranz MS, Palanker D. 2008. Healing of retinal photocoagulation lesions. Investig. Ophthalmol. Vis. Sci. 49:5540–45 [Google Scholar]
  81. Pomerantzeff O, Lee PF, Hamada S, Donovan RH, Mukai N, Schepens CL. 1971. Clinical importance of wavelengths in photocoagulation. Trans. Am. Acad. Ophthalmol. Otolaryngol. 75:557–68 [Google Scholar]
  82. Ratkay-Traub I, Juhasz T, Horvath C, Suarez C, Kiss K. et al. 2001. Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation. Ophthalmol. Clin. North Am. 14:347–55 [Google Scholar]
  83. Reichel E, Berrocal AM, Ip M, Kroll AJ, Desai V. et al. 1999. Transpupillary thermotherapy of occult subfoveal choroidal neovascularization in patients with age-related macular degeneration. Ophthalmology 106:1908–14 [Google Scholar]
  84. Ripken T, Oberheide U, Fromm M, Schumacher S, Gerten G, Lubatschowski H. 2008. fs-Laser induced elasticity changes to improve presbyopic lens accommodation. Graefes Arch. Clin. Exp. Ophthalmol. 246:897–906 [Google Scholar]
  85. Roider J, Hillenkamp F, Flotte T, Birngruber R. 1993. Microphotocoagulation: selective effects of repetitive short laser pulses. PNAS 90:8643–47 [Google Scholar]
  86. Roider J, Michaud NA, Flotte TJ, Birngruber R. 1992. Response of the retinal pigment epithelium to selective photocoagulation. Arch. Ophthalmol. 110:1786–92 [Google Scholar]
  87. Roisman L, Magalhaes FP, Lavinsky D, Moraes N, Hirai FE. et al. 2013. Micropulse diode laser treatment for chronic central serous chorioretinopathy: a randomized pilot trial. Ophthalmic Surg. Lasers Imaging Retina 44:465–70 [Google Scholar]
  88. Savage DE, Brooks DR, DeMagistris M, Xu L, MacRae S. et al. 2014. First demonstration of ocular refractive change using blue-IRIS in live cats. Investig. Ophthalmol. Vis. Sci. 55:4603–12 [Google Scholar]
  89. Schatz H, Madeira D, McDonald HR, Johnson RN. 1991. Progressive enlargement of laser scars following grid laser photocoagulation for diffuse diabetic macular edema. Arch. Ophthalmol. 109:1549–51 [Google Scholar]
  90. Schmidt U, Birngruber R, Hasan T. 1992. [Selective occlusion of ocular neovascularization by photodynamic therapy]. Ophthalmologe 89:391–94 [Google Scholar]
  91. Schmidt-Erfurth U, Hasan T, Gragoudas E, Michaud N, Flotte TJ, Birngruber R. 1994. Vascular targeting in photodynamic occlusion of subretinal vessels. Ophthalmology 101:1953–61 [Google Scholar]
  92. Schuele G, Rumohr M, Huettmann G, Brinkmann R. 2005. RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen. Investig. Ophthalmol. Vis. Sci. 46:714–19 [Google Scholar]
  93. Schuele G, Huttmann G, Framme C, Roider J, Brinkmann R. 2004. Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation. J. Biomed. Opt. 9:173–79 [Google Scholar]
  94. Sher A, Jones BW, Huie P, Paulus YM, Lavinsky D. et al. 2013. Restoration of retinal structure and function after selective photocoagulation. J. Neurosci. 33:6800–8 [Google Scholar]
  95. Sivaprasad S, Elagouz M, McHugh D, Shona O, Dorin G. 2010. Micropulsed diode laser therapy: evolution and clinical applications. Surv. Ophthalmol. 55:516–30 [Google Scholar]
  96. Sramek C, Mackanos M, Spitler R, Leung LS, Nomoto H. et al. 2011. Non-damaging retinal phototherapy: dynamic range of heat shock protein expression. Investig. Ophthalmol. Vis. Sci. 52:1780–87 [Google Scholar]
  97. Sramek C, Paulus Y, Nomoto H, Huie P, Brown J, Palanker D. 2009. Dynamics of retinal photocoagulation and rupture. J. Biomed. Opt. 14:034007 [Google Scholar]
  98. Sramek CK, Leung L-S, Paulus YM, Palanker DV. 2012. Therapeutic window of retinal photocoagulation with green (532-nm) and yellow (577-nm) lasers. Ophthalmic Surg. Lasers Imaging 4:341–47 [Google Scholar]
  99. Srinivasan R, Leigh WJ. 1982. Ablative photodecomposition: action of far-ultraviolet (193 nm) laser radiation on poly(ethylene terephthalate) films. J. Am. Chem. Soc. 104:6784–85 [Google Scholar]
  100. Srinivasan R, Wynne JJ, Blum SE. 1983. Far-UV photoetching of organic material. Laser Focus May:62–66 [Google Scholar]
  101. Teichmann I, Teichmann KD, Fechner PU. 1976. Glaucoma operation with the argon laser. Eye Ear Nose Throat Mon. 55:58–62 [Google Scholar]
  102. Telfair WB, Bekker C, Hoffman HJ, Yoder PR, Nordquist RE. et al. 2000. Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser. J. Refract. Surg. 16:40–50 [Google Scholar]
  103. Trokel SL, Srinivasan R, Braren B. 1983. Excimer laser-surgery of the cornea. Am. J. Ophthalmol. 96:710–15 [Google Scholar]
  104. Turati M, Gil-Carrasco F, Morales A, Quiroz-Mercado H, Andersen D. et al. 2010. Patterned laser trabeculoplasty. Ophthalmic Surg. Lasers Imaging 41:538–45 [Google Scholar]
  105. Venkatesh P, Ramanjulu R, Azad R, Vohra R, Garg S. 2011. Subthreshold micropulse diode laser and double frequency neodymium: YAG laser in treatment of diabetic macular edema: a prospective, randomized study using multifocal electroretinography. Photomed. Laser Surg. 29:727–33 [Google Scholar]
  106. Verteporfin Photodyn. Ther. Study Group 2001. Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization—verteporfin in photodynamic therapy report 2. Am. J. Ophthalmol. 131:541–60 [Google Scholar]
  107. Vogel A, Venugopalan V. 2003. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103:577–644 [Google Scholar]
  108. Wise JB, Witter SL. 1979. Argon laser therapy for open-angle glaucoma. A pilot study. Arch. Ophthalmol. 97:319–22 [Google Scholar]
  109. Woodburn KW, Engelman CJ, Blumenkranz MS. 2002. Photodynamic therapy for choroidal neovascularization: a review. Retina 22:391–405 [Google Scholar]
  110. Wright CHG, Barrett SF, Ferguson RD, Rylander HG, Welch AJ. 2000. Initial in vivo results of a hybrid retinal photocoagulation system. J. Biomed. Opt. 5:56–61 [Google Scholar]
  111. Writ. Comm. Diabet. Retinopathy Clinic. Res. Netw 2007. Comparison of the modified Early Treatment Diabetic Retinopathy Study and mild macular grid laser photocoagulation strategies for diabetic macular edema. Arch. Ophthalmol. 125:469–80 [Google Scholar]
  112. Young FR. 1989. Cavitation Maidenhead, UK: McGraw-Hill Book Co.
  113. Zaret MM, Breinin GM, Schmidt H, Ripps H, Siegel IM, Solon LR. 1961. Ocular lesions produced by an optical maser (laser). Science 134:1525–26 [Google Scholar]
/content/journals/10.1146/annurev-vision-111815-114358
Loading
/content/journals/10.1146/annurev-vision-111815-114358
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error