1932

Abstract

Four proteins have been identified recently as diiron carboxylate proteins on the basis of conservation of six amino acids (four carboxylate residues and two histidines) constituting an iron-binding motif. Unlike previously identified proteins with this motif, biochemical studies indicate that each of these proteins is membrane bound, although homology modeling rules out a transmembrane mode of binding. Therefore, the predicted structure of each protein [the alternative oxidase (AOX), the plastid terminal oxidase (PTOX), the diiron 5-demethoxyquinone hydroxylase (DMQ hydroxylase), and the aerobic Mg-protoporphyrin IX monomethylester hydroxylase (MME hydroxylase)] is that of a protein bound monotopically to one leaflet of the membrane bilayer. Three of these enzymes utilize a quinol substrate, with two oxidizing the quinol (AOX and PTOX) and one hydroxylating it (DMQ hydroxylase). MME hydroxylase is involved in synthesis of the isocyclic ring of chlorophyll. Two enzymes are involved in respiration (AOX and, indirectly, the diiron DMQ hydroxylase through ubiquinone biosynthesis) and two in photosynthesis, through their roles in carotenoid and chlorophyll biosynthesis (PTOX and MME hydroxylase, respectively). We discuss what is known about each enzyme as well as our expectations based on their identification as interfacially bound proteins with a diiron carboxylate active site.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.arplant.54.031902.134915
2003-06-01
2024-04-26
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.arplant.54.031902.134915
Loading
/content/journals/10.1146/annurev.arplant.54.031902.134915
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error