1932

Abstract

The phase-field method has recently emerged as a powerful computational approach to modeling and predicting mesoscale morphological and microstructure evolution in materials. It describes a microstructure using a set of conserved and nonconserved field variables that are continuous across the interfacial regions. The temporal and spatial evolution of the field variables is governed by the Cahn-Hilliard nonlinear diffusion equation and the Allen-Cahn relaxation equation. With the fundamental thermodynamic and kinetic information as the input, the phase-field method is able to predict the evolution of arbitrary morphologies and complex microstructures without explicitly tracking the positions of interfaces. This paper briefly reviews the recent advances in developing phase-field models for various materials processes including solidification, solid-state structural phase transformations, grain growth and coarsening, domain evolution in thin films, pattern formation on surfaces, dislocation microstructures, crack propagation, and electromigration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.matsci.32.112001.132041
2002-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/matsci/32/1/annurev.matsci.32.112001.132041.html?itemId=/content/journals/10.1146/annurev.matsci.32.112001.132041&mimeType=html&fmt=ahah

Literature Cited

  1. Rowlinson JS. 1979. J. Stat. Phys. 20:197
  2. van der Waals JD. 1894. Z. Phys. Chem. 13:657
  3. Cahn JW, Hilliard JE. 1958. J. Chem. Phys. 28:258–67
  4. Cahn JW. 1961. Acta Metall. 9:795–801
  5. Allen SM, Cahn JW. 1977. J. Phys. 38:C7–51
  6. Hohenberg PC, Halperin BI. 1977. Rev. Mod. Phys. 49:435–79
  7. Gunton JD, Miguel MS, Sahni PS. 1983. The dynamics of first-order phase transitions. In Phase Transitions and Critical Phenomena, ed. C Domb, JL Lebowitz 267–466 New York: Academic
  8. Elder KR, Grant M, Provatas N, Kosterlitz JM. 2001. Phys. Rev. E 64:021604
  9. Langer JS. 1986. Models of pattern formation in first-order phase transitions. In Directions in Condensed Matter Physics, ed. G Grinstein, G Mazenko 165–86 Singapore: World Scientific
  10. Fix GJ. 1983. In Free Boundary Problems: Theory and Applications, ed. A Fasano, M Primicerio, Boston: Piman 580 pp.
  11. Collins JB, Levine H. 1985. Phys. Rev. B 31:6119
  12. Karma A. 2001. Phase field methods. In Encyclopedia of Materials Science and Technology, ed. KHJ Buschow, RW Cahn, MC Flemings, BB Ilschner, EJ Kramer, et al 6873–86 Oxford, UK: Elsevier
  13. Ode M, Kim SG, Suzuki T. 2001. ISIJ Int. 41:1076–82
  14. Chen LQ, Wang YZ. 1996. J. Miner. Met. Mater. Soc. 48:13–18
  15. Wang YZ, Chen LQ. 1999. Simulation of microstructure evolution. In Methods in Materials Research, ed. EN Kaufmann, R Abbaschian, A Bocarsly, CL Chien, D Dollimore, et al 2a.3.1 New York: Wiley & Sons
  16. Chen LQ, Yang W. 1994. Phys. Rev. B 50:15752–56
  17. Steinbach I, Pezzolla F, Nestler B, Seesselberg M, Prieler R. et al. 1996. Physica D 94:135–47
  18. Lusk MT. 1999. Proc. R. Soc. London Ser. A. 455:677–700
  19. Kobayashi R, Warren JA, Carter WC. 2000. Physica D 140:141–50
  20. Li YL, Hu SY, Liu ZK, Chen LQ. 2001. Appl. Phys. Lett. 78:3878–80
  21. Leo PH, Johnson WC. 2001. Acta Mater. 49:1771–87
  22. Lu W, Suo Z. 2001. J. Mech. Phys. Solids 49:1937–50
  23. Aranson IS, Kalatsky VA, Vinokur VM. 2000. Phys. Rev. Lett. 85:118–21
  24. Karma A, Kessler DA, Levine H. 2001. Phys. Rev. Lett. 87:045501
  25. Kassner K, Misbah C, Muller J, Kappey J, Kohlert P. 2001. J. Cryst. Growth 25:289–93
  26. Kassner K, Misbah C, Muller J, Kappey J, Kohlert P. 2001. Phys. Rev. E 63:036117
  27. Leonard F, Desai RC. 1998. Phys. Rev. B 58:8277–88
  28. Hu SY, Chen LQ. 2001. Acta Mater. 49:463–72
  29. Wang YU, Jin YM, Cuitino AM, Khachaturyan AG. 2001. Appl. Phys. Lett. 78:2324–26
  30. Mahadevan M, Bradley RM. 1999. Physica D 126:201–13
  31. Bhate DN, Kumar A, Bower AF. 2000. J. Appl. Phys. 87:1712–21
  32. Wu K, Morral JE, Wang Y. 2001. Acta Mater. 49:3401–8
  33. Oono Y, Puri S. 1988. Phys. Rev. A 38:434–53
  34. Blowey JF, Elliott CM. 1991. Eur. J. Appl. Math. 2:233–79
  35. Caginalp G, Chen X. 1992. Phase field equations in the singular limit of sharp interface problems. In On the Evolution of Phase Boundaries, ed. ME Gurtin, GB McFadden 431–27 New York: Springer-Verlag
  36. Lai ZW. 1990. Phys. Rev. B 41:9239–56
  37. Braun RJ, Cahn JW, McFadden GB, Rushmeier HE, Wheeler AA. 1997. Acta Mater. 46:1–12
  38. Braun RJ, Cahn JW, McFadden GB, Wheeler AA. 1997. Philos. Trans. R. Soc. London Ser. A 355:1787–833
  39. Wang Y, Banerjee D, Su CC, Khachaturyan AG. 1998. Acta Mater. 46:2983–3001
  40. Li DY, Chen LQ. 1998. Acta Mater. 47:247–57
  41. Devonshire AF. 1954. Philos. Mag. Suppl. 3:85
  42. Nambu S, Sagala DA. 1994. Phys. Rev. B 50:5838–47
  43. Hu HL, Chen LQ. 1998. J. Am. Ceram. Soc. 81:492–500
  44. Hu HL, Chen LQ. 1997. Mater. Sci. Eng. A 238:182–91
  45. Landau LD. 1937. J. Exp. Theor. Phys. 7:19
  46. Khachaturyan AG. 1983. Theory of Structural Transformations in Solids. New York: Wiley & Sons [Google Scholar]
  47. Kobayashi R. 1993. Physica D 63:410
  48. Wheeler AA, Murray BT, Schaefer RJ. 1993. Physica D 66:243–62
  49. Eggleston JJ, McFadden GB, Voorhees PW. 2001. Physica D 150:91–103
  50. Taylor JE, Cahn JW. 1998. Physica D 112:381–411
  51. Abinandanan TA, Haider F. 2001. Philos. Mag. A 81:2457–79
  52. Onuki A. 1989. J. Phys. Soc. Jpn. 58:3065–68
  53. Chen LQ. 2000. On the elastic field coupling in the diffuse-interface modeling of coherent microstructures. In Phase Transformations and Evolution in Materials, ed. PEA Turchi, A Gonis 209–20 Warrendale, PA: Miner. Met. Mater. Soc
  54. Khachaturyan AG, Shatalov GA. 1969. Sov. Phys. Solid State 11:118–23
  55. Nishimori H, Onuki A. 1990. Phys. Rev. B 42:980–83
  56. Sagui C, Orlikowski D, Somoza A, Roland C. 1998. Phys. Rev. E. 58:569–77
  57. Hu SY, Chen LQ. 2001. Acta Mater. 49:1879–90
  58. Leo PH, Lowengrub JS, Hou HJ. 1998. Acta Mater. 61:2113–30
  59. Zhu JZ, Chen LQ, Shen J. 2001. Model. Simulat. Mater. Sci. Eng. 9:499–511
  60. Semenovskaya S, Khachaturyan AG. 1998. Ferroelectrics 206:157–80
  61. Wang Y, Chen LQ, Khachaturyan AG. 1993. Acta Metall. Mater. 41:279–96
  62. Fan D, Chen LQ. 1995. J. Am. Ceram. Soc. 78:769–73
  63. Wang YZ, Chen LQ, Khachaturyan AG. 1996. J. Am. Ceram. Soc. 79:987–91
  64. Chen LQ, Shen J. 1998. Comput. Phys. Commun. 108:147–58
  65. Zhu JZ, Chen LQ, Shen J, Tikare V. 1999. Phys. Rev. E 60:3564–72
  66. Shen J. 1994. SIAM J. Sci. Comput. 15:1489–505
  67. Shen J. 1995. SIAM J. Sci. Comput. 16:74–87
  68. Provatas N, Goldenfeld N, Dantzig J. 1998. Phys. Rev. Lett. 80:3308–11
  69. Jeong JH, Goldenfeld N, Dantzig JA. 2001. Phys. Rev. E. 64:041602
  70. Plapp M, Karma A. 2000. J. Comput. Phys. 165:592–619
  71. Karma A, Rappel WJ. 1999. Phys. Rev. E 60:3614–25
  72. Bragard J, Karma A, Lee YH, Plapp M. 2001. Interface Sci. Preprint
  73. Anderson DM, McFadden GB, Wheeler AA. 1998. Annu. Rev. Fluid Mech. 30:139–65
  74. Denniston C, Yeomans JM. 1999. Phys. Chem. Chem. Phys. 1:2157–61
  75. Jacqmin D. 1999. J. Comput. Phys. 155:96–127
  76. Folch R, Casademunt J, Hernandez-Machado A, Ramirez-Piscina L. 1999. Phys. Rev. E 60:1724–33
  77. Beckermann C, Diepers HJ, Steinbach I, Karma A, Tong X. 1999. J. Comput. Phys. 154:468–96
  78. Diepers HJ, Beckermann C, Steinbach I. 1999. Acta Mater. 47:3663–78
  79. Pismen LM, Pomeau Y. 2000. Phys. Rev. E 62:2480–92
  80. Nestler B, Wheeler AA, Ratke L, Stocker C. 2000. Physica D 141:133–54
  81. Ganesan V, Brenner H. 2000. Proc. R. Soc. London Ser. A 456:731–803
  82. Boettinger WJ, Coriell SR, Greer AL, Karma A, Kurz W. et al. 2000. Acta Mater. 48:43–70
  83. Lo TS, Karma A, Plapp M. 2001. Phys. Rev. E 63:031504
  84. Tong X, Beckermann C, Karma A, Li Q. 2001. Phys. Rev. E 63:061601
  85. Wheeler AA, Boettinger WJ, McFadden GB. 1992. Phys. Rev. A 45:7424–39
  86. Caginalp G, Xie W. 1993. Phys. Rev. E 48:1897–909
  87. Boettinger WJ, Wheeler AA, Murray BT, McFadden GB. 1994. Mater. Sci. Eng. A 178:217–23
  88. Warren JA, Boettinger WJ. 1995. Acta Metall. Mater. 43:689–703
  89. Bi ZQ, Sekerka RF. 1998. Physica A 261:95–106
  90. Tiaden J, Nestler B, Diepers HJ, Steinbach I. 1998. Physica D 115:73–86
  91. Ahmad NA, Wheeler AA, Boettinger WJ, McFadden GB. 1998. Phys. Rev. E 58:3436–50
  92. Charach C, Fife PC. 1999. J. Cryst. Growth 199:1267–74
  93. Kim SG, Kim WT, Suzuki T. 1999. Phys. Rev. E 60:7186–97
  94. Muller I. 2001. Int. J. Solids Struct. 38:1105–13
  95. Galenko P. 2001. Phys. Lett. A 287:190–97
  96. Kim WT, Kim SG, Lee JS, Suzuki T. 2001. Metall. Mater. Trans. A 32:961–69
  97. Wheeler AA, McFadden GB, Boettinger WJ. 1996. Proc. R. Soc. London Ser. A. 452:495–525
  98. Plapp M, Karma A. 1999. Phys. Rev. E 60:6865–89
  99. Drolet F, Elder KR, Grant M, Kosterlitz JM. 2000. Phys. Rev. E 61:6705–20
  100. Nestler B, Wheeler AA. 2000. Physica D 138:114–33
  101. Lee JS, Kim SG, Kim WT, Suzuki T. 1999. ISIJ Int. 39:730–36
  102. Tiaden J. 1999. J. Cryst. Growth 199:1275–80
  103. Bottger B, Grafe U, Ma D, Fries SG. 2000. Mater. Sci. Technol. 16:1425–28
  104. Ode M, Lee JS, Kim SG, Kim WT, Suzuki T. 2000. ISIJ Int. 40:870–76
  105. Cha PR, Yeon DH, Yoon JK. 2001. Acta Mater. 49:3295–307
  106. Grafe U, Bottger B, Tiaden J, Fries SG. 2000. Scripta Mater. 42:1179–86
  107. Grafe U, Bottger B, Tiaden J, Fries SG. 2000. Model. Simul. Mater. Sci. Eng. 8:871–79
  108. Loginova I, Amberg G, Agren J. 2001. Acta Mater. 49:573–81
  109. McFadden GB, Wheeler AA, Braun RJ, Coriell SR, Sekerka RF. 1993. Phys. Rev. E 48:2016–24
  110. Fried E. 1997. Continuum Mech. Thermodyn. 9:33–60
  111. Fabbri M, Voller VR. 1997. J. Comput. Phys. 130:256–65
  112. Garcke H, Nestler B, Stoth B. 1998. Physica D 115:87–108
  113. Karma A, Rappel WJ. 1998. Phys. Rev. E 57:4323–49
  114. McFadden GB, Wheeler AA, Anderson DM. 2000. Physica D 144:154–68
  115. Anderson DM, McFadden GB, Wheeler AA. 2001. Physica D 151:305–31
  116. Hariharan SI, Young GW. 2001. SIAM J. Appl. Math. 62:244–63
  117. Karma A, Rappel WJ. 1996. Phys. Rev. E 53:R3107–20
  118. Ode M, Lee JS, Suzuki T, Kim SG, Kim WT. 1999. ISIJ Int. 39:149–53
  119. Karma A. 2001. Phys. Rev. Lett. 87:115701
  120. Rogers TM, Elder KR, Desai RC. 1988. 1988. Phys. Rev. B 37:9638–49
  121. Venugopalan V, Chen LQ. 2000. 3D simulation of coarsening of gamma-prime precipitates in a Ni-Al alloy. In Nucleation and Growth Processes in Materials, ed. A Gonis, PEA Turchi, AJ Ardell 327–32 Boston: Mater. Res. Soc
  122. Vaithyanathan V, Chen LQ. 2000. Scripta Mater. 42:967–73
  123. Wen YH, Wang Y, Bendersky LA, Chen LQ. 2000. Acta Mater. 48:4125–35
  124. Proville L, Finel A. 2001. Phys. Rev. B 64:054104
  125. Wang YZ, Wang HY, Chen LQ, Khachaturyan AG. 1993. J. Am. Ceram. Soc. 76:3029–33
  126. Semenovskaya S, Zhu YM, Suenaga M, Khachaturyan AG. 1993. Phys. Rev. B 47:12182–89
  127. Fan DN, Chen LQ. 1995. J. Am. Ceram. Soc. 78:1680–86
  128. Le Bouar Y, Loiseau A, Khachaturyan AG. 1998. Acta Mater. 46:2777–88
  129. Le Bouar Y, Khachaturyan AG. 2000. Acta Mater. 48:1705–17
  130. Wen YH, Wang Y, Chen LQ. 1999. Acta Mater. 47:4375–86
  131. Cahn JW, Han SC, McFadden GB. 1999. J. Stat. Phys. 95:1337–60
  132. Wen YH, Wang Y, Chen Q. 2000. Philos. Mag. A 80:1967–82
  133. Wen YH, Chen LQ, Hazzledine PM, Wang Y. 2001. Acta Mater. 49:2341–53
  134. Semenovskaya S, Khachaturyan AG. 1998. J. Appl. Phys. 83:5125–36
  135. Wang Y, Khachaturyan AG. 1997. Acta Mater. 45:759–73
  136. Jin YM, Artemev A, Khachaturyan AG. 2001. Acta Mater. 49:2309–20
  137. Artemev A, Jin Y, Khachaturyan AG. 2001. Acta Mater. 49:1165–77
  138. Li DY, Chen LQ. 1998. Acta Mater. 46:639–49
  139. Li DY, Chen LQ. 1998. Acta Mater. 46:2573–85
  140. Artemev A, Wang Y, Khachaturyan AG. 2000. Acta Mater. 48:2503–18
  141. Chen LQ. 1994. Mod. Phys. Lett. B 7:1857–81
  142. Wen YH, Wang Y, Chen LQ. 2001. Acta Mater. 49:13–20
  143. Fan DA, Chen LQ. 1997. Philos. Mag. Lett. 75:187–96
  144. Fan DN, Geng CW, Chen LQ. 1997. Acta Mater. 45:1115–26
  145. Fan D, Chen LQ. 1997. Acta Mater. 45:611–22
  146. Krill CE, Chen LQ. 2002. Acta Mater. In press
  147. Garcke H, Nestler B, Stoth B. 1999. SIAM J. Appl. Math. 60:295–315
  148. Nestler B. 1999. J. Cryst. Growth 204:224–28
  149. Garcke H, Nestler B. 2000. Math. Models Methods Appl. Sci. 10:895–921
  150. Warren JA, Carter WC, Kobayashi R. 1998. Physica A 261:159–66
  151. Kobayashi R, Warren JA, Carter WC. 1998. Physica D 119:415–23
  152. Warren JA, Kobayashi R, Carter WC. 2000. J. Cryst. Growth 211:18–20
  153. Lobkovsky AE, Warren JA. 2001. Phys. Rev. E 63:051605
  154. Lobkovsky AE, Warren JA. 2001. J. Cryst. Growth 225:282–88
  155. Kazaryan A, Wang Y, Dregia SA, Patton BR. 2000. Phys. Rev. B 61:14275–78
  156. Kazaryan A, Wang Y, Dregia SA, Patton BR. 2001. Phys. Rev. B 63:184102
  157. Cahn JW, Fife P, Penrose O. 1997. Acta Mater. 45:4397–413
  158. Fan D, Chen SP, Chen LQ. 1999. J. Mater. Res. 14:1113–23
  159. Fan DN, Chen LQ, Chen SP, Voorhees PW. 1998. Comput. Mater. Sci. 9:329–36
  160. Fan DN, Chen SP, Chen LQ, Voorhees PW. 2001. Acta Mater. In press
  161. Chen LQ, Fan DA. 1996. J. Am. Ceram. Soc. 79:1163–68
  162. Danan F, Chen LQ. 1997. J. Am. Ceram. Soc. 80:1773–80
  163. Fan DN, Chen LQ. 1997. Acta Mater. 45:3297–310
  164. Fan DA, Chen LQ. 1997. Scripta Mater. 37:233–38
  165. Fan D, Chen LQ. 1997. Acta Mater. 45:4145–54
  166. Li YL, Hu SY, Liu ZK, Chen LQ. 2001. Acta Mater. In press
  167. Suo Z, Lu W. 2000. J. Mech. Phys. Solids. 48:211–32
  168. Karma A, Plapp M. 1998. Phys. Rev. Lett. 81:4444–47
  169. Muller J, Grant M. 1999. Phys. Rev. Lett. 82:1736–39
  170. Kassner K, Misbah C. 1999. Europhys. Lett. 46:217–23
  171. Cottrell AH. 1948. Effect of solute atoms on the behaviour of dislocations. In Report of a Conference on Strength of Solids, ed. NF Mott 30–38 London: Phys. Soc
  172. Cahn JW. 1957. Acta Metall. 5:169
  173. Hu SY, Chen LQ. 2001. Comput. Mater. Sci. 49:463–72
  174. Rodney D, Le Bouar Y, Finel A. 2001. Acta Mater. In press
  175. Wang YU, Jin UM, Cuitino AM, Khachaturyan AG. 2001. Acta Mater. 49:1847–57
  176. Wang YU, Jin YM, Cuitino AM, Khachaturyan AG. 2001. Philos. Mag. Lett. 81:385–93
  177. Jin YM, Khachaturyan AG. 2001. Philos. Mag. Lett. 81:607–16
  178. Deleted in proof
  179. Mahadevan M, Bradley RM. 1999. Phys. Rev. B 59:11037–46
  180. Tadmor EB, Phillips R, Ortiz M. 1996. Langmuir 12:4529–34
  181. Abraham FF, Broughton JQ, Bernstein N, Kaxiras E. 1998. Europhys. Lett. 44:783–87
  182. Abraham FF, Broughton JQ, Bernstein N, Kaxiras E. 1998. Comput. Phys. 12:538–46
  183. Phillips R. 1998. Curr. Opin. Solid State Mater. Sci. 3:526–32
  184. Rudd RE, Broughton JQ. 1998. Phys. Rev. B 58:R5893–96
  185. Broughton JQ, Abraham FF, Bernstein N, Kaxiras E. 1999. Phys. Rev. B. 60:2391–403
  186. Rudd RE, Broughton JQ. 2000. Phys. Status Solidi B 217:251–91
  187. Vaithynanathan V, Woverton C, Chen LQ. 2001. Phys. Rev. Lett. In press
  188. Chen LQ, Wolverton C, Vaithyananthan V, Liu ZK. 2001. MRS Bull. 26:197–202
  189. Hoyt JJ, Sadigh B, Asta M, Foiles SM. 1999. Acta Mater. 47:3181–77
  190. Hoyt JJ, Asta M, Karma A. 2001. Phys. Rev. Lett. 86:5530–33
  191. Zhu JZ, Liu ZK, Vaithyanathan V, Chen LQ. 2001. Scripta Mater. In press
/content/journals/10.1146/annurev.matsci.32.112001.132041
Loading
/content/journals/10.1146/annurev.matsci.32.112001.132041
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error