1932

Abstract

Advances in scientific instrumentation have allowed experimentalists to evaluate well-known systems in new ways and to gain insight into previously unexplored or poorly understood phenomena. Within the growing field of multianalyte physiometry (MAP), microphysiometers are being developed that are capable of electrochemically measuring changes in the concentration of various metabolites in real time. By simultaneously quantifying multiple analytes, these devices have begun to unravel the complex pathways that govern biological responses to ischemia and oxidative stress while contributing to basic scientific discoveries in bioenergetics and neurology. Patients and clinicians have also benefited from the highly translational nature of MAP, and the continued expansion of the repertoire of analytes that can be measured with multianalyte microphysiometers will undoubtedly play a role in the automation and personalization of medicine. This is perhaps most evident with the recent advent of fully integrated noninvasive sensor arrays that can continuously monitor changes in analytes linked to specific disease states and deliver a therapeutic agent as required without the need for patient action.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061516-045334
2017-06-12
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/anchem/10/1/annurev-anchem-061516-045334.html?itemId=/content/journals/10.1146/annurev-anchem-061516-045334&mimeType=html&fmt=ahah

Literature Cited

  1. Bankar SB, Bule MV, Singhal RS, Ananthanarayan L. 1.  2009. Glucose oxidase—an overview. Biotechnol. Adv. 27:489–501 [Google Scholar]
  2. Mross S, Pierrat S, Zimmermann T, Kraft M. 2.  2015. Microfluidic enzymatic biosensing systems: a review. Biosens. Bioelectron. 70:376–91 [Google Scholar]
  3. Wang J. 3.  2008. Electrochemical glucose biosensors. Chem. Rev. 108:814–25 [Google Scholar]
  4. Rogers ML, Brennan PA, Leong CL, Gowers SA, Aldridge T. 4.  et al. 2013. Online rapid sampling microdialysis (rsMD) using enzyme-based electroanalysis for dynamic detection of ischaemia during free flap reconstructive surgery. Anal. Bioanal. Chem. 405:3881–88 [Google Scholar]
  5. Eklund SE, Taylor D, Kozlov E, Prokop A, Cliffel DE. 5.  2004. A microphysiometer for simultaneous measurement of changes in extracellular glucose, lactate, oxygen, and acidification rate. Anal. Chem. 76:519–27 [Google Scholar]
  6. Wassum KM, Tolosa VM, Wang J, Walker E, Monbouquette HG, Maidment NT. 6.  2008. Silicon wafer-based platinum microelectrode array biosensor for near real-time measurement of glutamate in vivo. . Sensors 8:5023–36 [Google Scholar]
  7. Hashemi P, Dankoski EC, Lama R, Wood KM, Takmakov P, Wightman RM. 7.  2012. Brain dopamine and serotonin differ in regulation and its consequences. PNAS 109:11510–15 [Google Scholar]
  8. McConnell HM, Owicki JC, Parce JW, Miller DL, Baxter GT, Wada HG. 8.  et al. 1992. The cytosensor microphysiometer: biological applications of silicon technology. Science 257:1906–12 [Google Scholar]
  9. Eklund SE, Cliffel DE, Kozlov E, Prokop A, Wikswo J, Baudenbacher F. 9.  2003. Modification of the cytosensor microphysiometer to simultaneously measure extracellular acidification and oxygen consumption rates. Anal. Chim. Acta 496:93–101 [Google Scholar]
  10. Eklund SE, Snider RM, Wikswo J, Baudenbacher F, Prokop A, Cliffel DE. 10.  2006. Multianalyte microphysiometry as a tool in metabolomics and systems biology. J. Electroanal. Chem. 587:333–39 [Google Scholar]
  11. Eklund SE, Thompson RG, Snider RM, Carney CK, Wright DW. 11.  et al. 2009. Metabolic discrimination of select list agents by monitoring cellular responses in a multianalyte microphysiometer. Sensors 9:2117–33 [Google Scholar]
  12. Snider RM, McKenzie JR, Kraft L, Kozlov E, Wikswo JP, Cliffel DE. 12.  2010. The effects of cholera toxin on cellular energy metabolism. Toxins 2:632–48 [Google Scholar]
  13. McKenzie JR, Palubinsky AM, Brown JE, McLaughlin B, Cliffel DE. 13.  2012. Metabolic multianalyte microphysiometry reveals extracellular acidosis is an essential mediator of neuronal preconditioning. ACS Chem. Neurosci. 3:510–18 [Google Scholar]
  14. Shinawi TF, Kimmel DW, Cliffel DE. 14.  2013. Multianalyte microphysiometry reveals changes in cellular bioenergetics upon exposure to fluorescent dyes. Anal. Chem. 85:11677–80 [Google Scholar]
  15. Kimmel DW, Dole WP, Cliffel DE. 15.  2013. Application of multianalyte microphysiometry to characterize macrophage metabolic responses to oxidized LDL and effects of an apoA-1 mimetic. Biochem. Biophys. Res. Commun. 431:181–85 [Google Scholar]
  16. Kimmel DW, Meschievitz ME, Hiatt LA, Cliffel DE. 16.  2013. Multianalyte microphysiometry of macrophage responses to phorbol myristate acetate, lipopolysaccharide, and lipoarabinomannan. Electroanalysis 25:1706–12 [Google Scholar]
  17. Kimmel DW, Rogers LM, Aronoff DM, Cliffel DE. 17.  2016. Prostaglandin E2 regulation of macrophage innate immunity. Chem. Res. Toxicol. 29:19–25 [Google Scholar]
  18. Harry RS, Hiatt LA, Kimmel DW, Carney CK, Halfpenny KC. 18.  et al. 2012. Metabolic impact of 4-hydroxynonenal on macrophage-like RAW 264.7 function and activation. Chem. Res. Toxicol. 25:1643–51 [Google Scholar]
  19. Hiatt LA, McKenzie JR, Deravi LF, Harry RS, Wright DW, Cliffel DE. 19.  2012. A printed superoxide dismutase coated electrode for the study of macrophage oxidative burst. Biosens. Bioelectron. 33:128–33 [Google Scholar]
  20. Snider RM, Ciobanu M, Rue AE, Cliffel DE. 20.  2008. A multiwalled carbon nanotube/dihydropyran composite film electrode for insulin detection in a microphysiometer chamber. Anal. Chim. Acta 609:44–52 [Google Scholar]
  21. Weltin A, Slotwinski K, Kieninger J, Moser I, Jobst G. 21.  et al. 2014. Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem. Lab Chip 14:138–46 [Google Scholar]
  22. Zeiger SL, McKenzie JR, Stankowski JN, Martin JA, Cliffel DE, McLaughlin B. 22.  2010. Neuron specific metabolic adaptations following multi-day exposures to oxygen glucose deprivation. Biochim. Biophys. Acta 1802:1095–104 [Google Scholar]
  23. Lizama-Manibusan BN, Klein S, McKenzie JR, Cliffel DE, McLaughlin B. 23.  2016. Analysis of a nitroreductase-based hypoxia sensor in primary neuronal cultures. ACS Chem. Neurosci. 7:1188–91 [Google Scholar]
  24. McKenzie JR, Cognata AC, Davis AN, Wikswo JP, Cliffel DE. 24.  2015. Real-time monitoring of cellular bioenergetics with a multianalyte screen-printed electrode. Anal. Chem. 87:7857–64 [Google Scholar]
  25. Lima EA, Snider RM, Reiserer RS, McKenzie JR, Kimmel DW. 25.  et al. 2014. Multichamber multipotentiostat system for cellular microphysiometry. Sens. Actuators B Chem. 204:536–43 [Google Scholar]
  26. Marx V. 26.  2015. Tissue engineering: organs from the lab. Nature 522:373–77 [Google Scholar]
  27. Wikswo JP, Block FE 3rd, Cliffel DE, Goodwin CR, Marasco CC. 27.  et al. 2013. Engineering challenges for instrumenting and controlling integrated organ-on-chip systems. IEEE Trans. Biomed. Eng 60:682–90 [Google Scholar]
  28. Witkowska Nery E, Jastrzebska E, Zukowski K, Wroblewski W, Chudy M, Ciosek P. 28.  2014. Flow-through sensor array applied to cytotoxicity assessment in cell cultures for drug-testing purposes. Biosens. Bioelectron. 51:55–61 [Google Scholar]
  29. Lemaître F, Collignon MG, Amatore C. 29.  2014. Recent advances in electrochemical detection of exocytosis. Electrochim. Acta 140:457–66 [Google Scholar]
  30. Majdi S, Berglund EC, Dunevall J, Oleinick AI, Amatore C. 30.  et al. 2015. Electrochemical measurements of optogenetically stimulated quantal amine release from single nerve cell varicosities in Drosophila larvae. Angew. Chem. Int. Ed. 54:13609–12 [Google Scholar]
  31. Oleinick A, Lemaître F, Collignon MG, Svir I, Amatore C. 31.  2013. Vesicular release of neurotransmitters: converting amperometric measurements into size, dynamics and energetics of initial fusion pores. Faraday Discuss 164:33 [Google Scholar]
  32. Amatore C, Delacotte J, Guille-Collignon M, Lemaître F. 32.  2015. Vesicular exocytosis and microdevices—microelectrode arrays. Analyst 140:3687–95 [Google Scholar]
  33. Li YT, Zhang SH, Wang XY, Zhang XW, Oleinick AI. 33.  et al. 2015. Real-time monitoring of discrete synaptic release events and excitatory potentials within self-reconstructed neuromuscular junctions. Angew. Chem. Int. Ed. 54:9313–18 [Google Scholar]
  34. Bernard A-S, Giroud C, Ching HY, Meunier A, Ambike V. 34.  et al. 2012. Evaluation of the anti-oxidant properties of a SOD-mimic Mn-complex in activated macrophages. Dalton Trans 41:6399–403 [Google Scholar]
  35. Oliveira R, Bento F, Sella C, Thouin L, Amatore C. 35.  2013. Direct electroanalytical method for alternative assessment of global antioxidant capacity using microchannel electrodes. Anal. Chem. 85:9057–63 [Google Scholar]
  36. Wang Y, Noel JM, Velmurugan J, Nogala W, Mirkin MV. 36.  et al. 2012. Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages. PNAS 109:11534–39 [Google Scholar]
  37. Lu C, Heldt J-M, Guille-Collignon M, Lemaître F, Jaouen G. 37.  et al. 2014. Quantitative analyses of ROS and RNS production in breast cancer cell lines incubated with ferrocifens. Chem. Med. Chem 9:1286–93 [Google Scholar]
  38. Li Y, Meunier A, Fulcrand R, Sella C, Amatore C. 38.  et al. 2016. Multi-chambers microsystem for simultaneous and direct electrochemical detection of reactive oxygen and nitrogen species released by cell populations. Electroanalysis 28:1865–72 [Google Scholar]
  39. Gunasekara DB, Hulvey MK, Lunte SM. 39.  2011. In-channel amperometric detection for microchip electrophoresis using a wireless isolated potentiostat. Electrophoresis 32:832–37 [Google Scholar]
  40. Regel A, Lunte S. 40.  2013. Integration of a graphite/poly(methyl-methacrylate) composite electrode into a poly(methylmethacrylate) substrate for electrochemical detection in microchips. Electrophoresis 34:2101–6 [Google Scholar]
  41. Scott DE, Grigsby RJ, Lunte SM. 41.  2013. Microdialysis sampling coupled to microchip electrophoresis with integrated amperometric detection on an all-glass substrate. Chem. Phys. Chem. 14:2288–94 [Google Scholar]
  42. Gunasekara DB, Siegel JM, Caruso G, Hulvey MK, Lunte SM. 42.  2014. Microchip electrophoresis with amperometric detection method for profiling cellular nitrosative stress markers. Analyst 139:3265–73 [Google Scholar]
  43. Lucca BG, Lunte SM, Tomazelli Coltro WK, Ferreira VS. 43.  2014. Separation of natural antioxidants using PDMS electrophoresis microchips coupled with amperometric detection and reverse polarity. Electrophoresis 35:3363–70 [Google Scholar]
  44. Meneses D, Gunasekara DB, Pichetsurnthorn P, da Silva JA, de Abreu FC, Lunte SM. 44.  2015. Evaluation of in-channel amperometric detection using a dual-channel microchip electrophoresis device and a two-electrode potentiostat for reverse polarity separations. Electrophoresis 36:441–48 [Google Scholar]
  45. Scott DE, Willis SD, Gabbert S, Johnson D, Naylor E. 45.  et al. 2015. Development of an on-animal separation-based sensor for monitoring drug metabolism in freely roaming sheep. Analyst 140:3820–29 [Google Scholar]
  46. Saylor RA, Reid EA, Lunte SM. 46.  2015. Microchip electrophoresis with electrochemical detection for the determination of analytes in the dopamine metabolic pathway. Electrophoresis 36:1912–19 [Google Scholar]
  47. Al-Hossaini AM, Suntornsuk L, Lunte SM. 47.  2016. Separation of dynorphin peptides by capillary electrochromatography using a polydiallyldimethylammonium chloride gold nanoparticle-modified capillary. Electrophoresis 37:2297–304 [Google Scholar]
  48. Lauks IR. 48.  1998. Microfabricated biosensors and microanalytical systems for blood analysis. Acc. Chem. Res. 31:317–24 [Google Scholar]
  49. Schleicher E. 49.  2006. The clinical chemistry laboratory: current status, problems and diagnostic prospects. Anal. Bioanal. Chem. 384:124–31 [Google Scholar]
  50. Anderson DJ, Guo B, Xu Y, Ng LM, Kricka LJ. 50.  et al. 1997. Clinical chemistry. Anal. Chem. 69:165–230 [Google Scholar]
  51. Tudos AJ, Besselink GJ, Schasfoort RB. 51.  2001. Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1:83–95 [Google Scholar]
  52. Bingham D, Kendall J, Clancy M. 52.  1999. The portable laboratory: an evaluation of the accuracy and reproducibility of i-STAT. Ann. Clin. Biochem. 36:Pt. 166–71 [Google Scholar]
  53. Hawkes M, Conroy AL, Opoka RO, Namasopo S, Liles WC. 53.  et al. 2014. Performance of point-of-care diagnostics for glucose, lactate, and hemoglobin in the management of severe malaria in a resource-constrained hospital in Uganda. Am. J. Trop. Med. Hyg 90:605–8 [Google Scholar]
  54. Erickson KA, Wilding P. 54.  1993. Evaluation of a novel point-of-care system, the i-STAT portable clinical analyzer. Clin. Chem. 39:283–87 [Google Scholar]
  55. 55. Abbott Point of Care Inc. 2015. i-Stat® system test cartridge menu Princeton, NJ: Abbott https://www.abbottpointofcare.com/products-services/istat-test-cartridges/menu
  56. Mock T, Morrison D, Yatscoff R. 56.  1995. Evaluation of the i-STAT system: a portable chemistry analyzer for the measurement of sodium, potassium, chloride, urea, glucose, and hematocrit. Clin. Biochem. 28:187–92 [Google Scholar]
  57. Rudolf J, Douglass J, Baron J, Lewandrowski K. 57.  2015. Evaluation of the i-STAT point-of-care capillary whole blood hematocrit and hemoglobin: comparison to the Siemens RAPIDLab 1200, Sysmex XE5000, and manual spun hematocrit. Clin. Chim. Acta 446:37–42 [Google Scholar]
  58. MacLeod JA, Nemeth AC, Dicke WC, Wang D, Manalili Wheeler S. 58.  et al. 2016. Fast, sensitive point of care electrochemical molecular system for point mutation and select agent detection. Lab Chip 16:2513–20 [Google Scholar]
  59. Cuartero M, Crespo GA, Bakker E. 59.  2016. Ionophore-based voltammetric ion activity sensing with thin layer membranes. Anal. Chem. 88:1654–60 [Google Scholar]
  60. Crespo GA, Cuartero M, Bakker E. 60.  2015. Thin layer ionophore-based membrane for multianalyte ion activity detection. Anal. Chem. 87:7729–37 [Google Scholar]
  61. Cuartero M, Crespo GA, Bakker E. 61.  2016. Polyurethane ionophore-based thin layer membranes for voltammetric ion activity sensing. Anal. Chem. 88:5649–54 [Google Scholar]
  62. Cuartero M, Crespo GA, Afshar MG, Bakker E. 62.  2014. Exhaustive thin-layer cyclic voltammetry for absolute multianalyte halide detection. Anal. Chem. 86:11387–95 [Google Scholar]
  63. Grygolowicz-Pawlak E, Crespo GA, Afshar MG, Mistlberger G, Bakker E. 63.  2013. Potentiometric sensors with ion-exchange Donnan exclusion membranes. Anal. Chem. 85:6208–12 [Google Scholar]
  64. Afshar MG, Crespo GA, Bakker E. 64.  2016. Flow chronopotentiometry with ion-selective membranes for cation, anion, and polyion detection. Anal. Chem. 88:3945–52 [Google Scholar]
  65. Crespo GA, Ghahraman Afshar M, Bakker E. 65.  2014. Chronopotentiometry of pure electrolytes with anion-exchange Donnan exclusion membranes. J. Electroanal. Chem. 731:100–6 [Google Scholar]
  66. Afshar MG, Crespo GA, Bakker E. 66.  2014. Counter electrode based on an ion-exchanger Donnan exclusion membrane for bioelectroanalysis. Biosens. Bioelectron. 61:64–69 [Google Scholar]
  67. Pankratova N, Crespo GA, Afshar MG, Crespi MC, Jeanneret S. 67.  et al. 2015. Potentiometric sensing array for monitoring aquatic systems. Environ. Sci. Process. Impacts 17:906–14 [Google Scholar]
  68. Gauglitz G. 68.  2014. Point-of-care platforms. Annu. Rev. Anal. Chem. 7:297–315 [Google Scholar]
  69. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE. 69.  2012. Point of care diagnostics: status and future. Anal. Chem. 84:487–515 [Google Scholar]
  70. Pappa AM, Curto VF, Braendlein M, Strakosas X, Donahue MJ. 70.  et al. 2016. Organic transistor arrays integrated with finger-powered microfluidics for multianalyte saliva testing. Adv. Healthc. Mater. 5:2295–302 [Google Scholar]
  71. Qi L, Thomas E, White SH, Smith SK, Lee CA. 71.  et al. 2016. Unmasking the effects of L-DOPA on rapid dopamine signaling with an improved approach for nafion coating carbon-fiber microelectrodes. Anal. Chem. 88:8129–36 [Google Scholar]
  72. Cordeiro CA, de Vries MG, Ngabi W, Oomen PE, Cremers TI, Westerink BH. 72.  2015. In vivo continuous and simultaneous monitoring of brain energy substrates with a multiplex amperometric enzyme-based biosensor device. Biosens. Bioelectron. 67:677–86 [Google Scholar]
  73. Gao W, Nyein HYY, Shahpar Z, Fahad HM, Chen K. 73.  et al. 2016. Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sensors 1:866–74 [Google Scholar]
  74. Tolosa VM, Wassum KM, Maidment NT, Monbouquette HG. 74.  2013. Electrochemically deposited iridium oxide reference electrode integrated with an electroenzymatic glutamate sensor on a multi-electrode array microprobe. Biosens. Bioelectron. 42:256–60 [Google Scholar]
  75. Rogers ML, Feuerstein D, Leong CL, Takagaki M, Niu X. 75.  et al. 2013. Continuous online microdialysis using microfluidic sensors: dynamic neurometabolic changes during spreading depolarization. ACS Chem. Neurosci. 4:799–807 [Google Scholar]
  76. Patel BA, Rogers M, Wieder T, O'Hare D, Boutelle MG. 76.  2011. ATP microelectrode biosensor for stable long-term in vitro monitoring from gastrointestinal tissue. Biosens. Bioelectron. 26:2890–96 [Google Scholar]
  77. Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R. 77.  et al. 2016. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11:566–72 [Google Scholar]
  78. Gao W, Emaminejad S, Nyein HY, Challa S, Chen K. 78.  et al. 2016. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:509–14 [Google Scholar]
  79. Lawrance D, Williamson C, Boutelle MG, Cass AEG. 79.  2015. Development of a disposable bile acid biosensor for use in the management of cholestasis. Anal. Methods 7:3714–19 [Google Scholar]
  80. Córcoles EP, Deeba S, Hanna GB, Paraskeva P, Boutelle MG, Darzi A. 80.  2011. Use of online rapid sampling microdialysis electrochemical biosensor for bowel anastomosis monitoring in swine model. Anal. Methods 3:2010 [Google Scholar]
  81. Feuerstein D, Manning A, Hashemi P, Bhatia R, Fabricius M. 81.  et al. 2010. Dynamic metabolic response to multiple spreading depolarizations in patients with acute brain injury: an online microdialysis study. J. Cereb. Blood Flow Metab. 30:1343–55 [Google Scholar]
  82. Sansuk S, Bitziou E, Joseph MB, Covington JA, Boutelle MG. 82.  et al. 2013. Ultrasensitive detection of dopamine using a carbon nanotube network microfluidic flow electrode. Anal. Chem. 85:163–69 [Google Scholar]
  83. Lin Y, Liu K, Yu P, Xiang L, Li X, Mao L. 83.  2007. A facile electrochemical method for simultaneous and on-line measurements of glucose and lactate in brain microdialysate with prussian blue as the electrocatalyst for reduction of hydrogen peroxide. Anal. Chem. 79:9577–83 [Google Scholar]
  84. Jones DA, Parkin MC, Langemann H, Landolt H, Hopwood SE. 84.  et al. 2002. On-line monitoring in neurointensive care: enzyme-based electrochemical assay for simultaneous, continuous monitoring of glucose and lactate from critical care patients. J. Electroanal. Chem. 538–539:243–52 [Google Scholar]
  85. Parkin M, Hopwood S, Jones D, Hashemi P, Landolt H. 85.  et al. 2005. Dynamic changes in brain glucose and lactate in pericontusional areas of the human cerebral cortex, monitored with rapid sampling on-line microdialysis: relationship with depolarisation-like events. J. Cereb. Blood Flow Metab. 25:402–13 [Google Scholar]
  86. Roberts JG, Toups JV, Eyualem E, McCarty GS, Sombers LA. 86.  2013. In situ electrode calibration strategy for voltammetric measurements in vivo. Anal. Chem. 85:11568–75 [Google Scholar]
  87. Keithley RB, Takmakov P, Bucher ES, Belle AM, Owesson-White CA. 87.  et al. 2011. Higher sensitivity dopamine measurements with faster-scan cyclic voltammetry. Anal. Chem. 83:3563–71 [Google Scholar]
  88. Rodeberg NT, Johnson JA, Cameron CM, Saddoris MP, Carelli RM, Wightman RM. 88.  2015. Construction of training sets for valid calibration of in vivo cyclic voltammetric data by principal component analysis. Anal. Chem. 87:11484–91 [Google Scholar]
  89. Belle AM, Owesson-White C, Herr NR, Carelli RM, Wightman RM. 89.  2013. Controlled iontophoresis coupled with fast-scan cyclic voltammetry/electrophysiology in awake, freely moving animals. ACS Chem. Neurosci. 4:761–71 [Google Scholar]
  90. Kirkpatrick DC, McKinney CJ, Manis PB, Wightman RM. 90.  2016. Expanding neurochemical investigations with multi-modal recording: simultaneous fast-scan cyclic voltammetry, iontophoresis, and patch clamp measurements. Analyst 141:4902–11 [Google Scholar]
  91. Nyein HYY, Gao W, Shahpar Z, Emaminejad S, Challa S. 91.  et al. 2016. A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS Nano 10:7216–24 [Google Scholar]
  92. Ross AE, Venton BJ. 92.  2014. Sawhorse waveform voltammetry for selective detection of adenosine, ATP, and hydrogen peroxide. Anal. Chem. 86:7486–93 [Google Scholar]
  93. Gowers SA, Curto VF, Seneci CA, Wang C, Anastasova S. 93.  et al. 2015. 3D printed microfluidic device with integrated biosensors for online analysis of subcutaneous human microdialysate. Anal. Chem. 87:7763–70 [Google Scholar]
  94. Honore F, Otis B, Nelson A. 94.  2015. Reader communication with contact lens sensors and display device US Patent No. 20150061837
/content/journals/10.1146/annurev-anchem-061516-045334
Loading
/content/journals/10.1146/annurev-anchem-061516-045334
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error