1932

Abstract

Capturing the dynamic interplay between proteins and their myriad interaction partners is critically important for advancing our understanding of almost every biochemical process and human disease. The importance of this general area has spawned many measurement methods capable of assaying such protein complexes, and the mass spectrometry–based structural biology methods described in this review form an important part of that analytical arsenal. Here, we survey the basic principles of such measurements, cover recent applications of the technology that have focused on protein–small-molecule complexes, and discuss the bright future awaiting this group of technologies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061516-045414
2017-06-12
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/anchem/10/1/annurev-anchem-061516-045414.html?itemId=/content/journals/10.1146/annurev-anchem-061516-045414&mimeType=html&fmt=ahah

Literature Cited

  1. Karas M, Hillenkamp F. 1.  1988. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal. Chem. 60:2299–301 [Google Scholar]
  2. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. 2.  1989. Electrospray ionization for mass-spectrometry of large biomolecules. Science 246:64–71 [Google Scholar]
  3. Cillero-Pastor B, Heeren RMA. 3.  2014. Matrix-assisted laser desorption ionization mass spectrometry imaging for peptide and protein analyses: a critical review of on-tissue digestion. J. Proteome Res. 13:325–35 [Google Scholar]
  4. Karas M, Krüger R. 4.  2003. Ion formation in MALDI: the cluster ionization mechanism. Chem. Rev. 103:427–39 [Google Scholar]
  5. Chen F, Gülbakan B, Weidmann S, Fagerer SR, Ibáñez AJ, Zenobi R. 5.  2016. Applying mass spectrometry to study non-covalent biomolecule complexes. Mass Spectrom. Rev. 35:48–70 [Google Scholar]
  6. Kebarle P, Verkerk UH. 6.  2009. Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrom. Rev. 28:898–917 [Google Scholar]
  7. Chowdhury SK, Katta V, Chait BT. 7.  1990. Probing conformational-changes in proteins by mass spectrometry. J. Am. Chem. Soc. 112:9012–13 [Google Scholar]
  8. Ganem B, Li YT, Henion JD. 8.  1991. Detection of noncovalent receptor-ligand complexes by mass spectrometry. J. Am. Chem. Soc. 113:6294–96 [Google Scholar]
  9. Ganem B, Li YT, Henion JD. 9.  1991. Observation of noncovalent enzyme substrate and enzyme product complexes by ion-spray mass-spectrometry. J. Am. Chem. Soc. 113:7818–19 [Google Scholar]
  10. Loo RRO, Goodlett DR, Smith RD, Loo JA. 10.  1993. Observation of a noncovalent ribonuclease S-protein/S-peptide complex by electrospray ionization mass-spectrometry. J. Am. Chem. Soc. 115:4391–92 [Google Scholar]
  11. Baca M, Kent SBH. 11.  1992. Direct observation of a ternary complex between the dimeric enzyme HIV-1 protease and a substrate-based inhibitor. J. Am. Chem. Soc. 114:3992–93 [Google Scholar]
  12. Wilm M, Mann M. 12.  1996. Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68:1–8 [Google Scholar]
  13. Felitsyn N, Peschke M, Kebarle P. 13.  2002. Origin and number of charges observed on multiply-protonated native proteins produced by ESI. Int. J. Mass Spectrom. 219:39–62 [Google Scholar]
  14. Hernandez H, Robinson CV. 14.  2007. Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat. Protoc. 2:715–26 [Google Scholar]
  15. Erba EB. 15.  2014. Investigating macromolecular complexes using top-down mass spectrometry. Proteomics 14:1259–70 [Google Scholar]
  16. Rose RJ, Damoc E, Denisov E, Makarov A, Heck AJR. 16.  2012. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods 9:1084 [Google Scholar]
  17. Marty MT, Baldwin AJ, Marklund EG, Hochberg GK, Benesch JL, Robinson CV. 17.  2015. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87:4370–76 [Google Scholar]
  18. Sivalingam GN, Yan J, Sahota H, Thalassinos K. 18.  2013. Amphitrite: a program for processing travelling wave ion mobility mass spectrometry data. Int. J. Mass Spectrom. 345–347:54–62 [Google Scholar]
  19. Mason EA, McDaniel EW. 19.  1988. Transport Properties of Ions in Gases Weinheim, Ger.: Wiley-VCH
  20. Kemper PR, Dupuis NF, Bowers MT. 20.  2009. A new, higher resolution, ion mobility mass spectrometer. Int. J. Mass Spectrom. 287:46–57 [Google Scholar]
  21. Gillig KJ, Ruotolo BT, Stone EG, Russell DH. 21.  2004. An electrostatic focusing ion guide for ion mobility-mass spectrometry. Int. J. Mass Spectrom. 239:43–49 [Google Scholar]
  22. Bush MF, Hall Z, Giles K, Hoyes J, Robinson CV, Ruotolo BT. 22.  2010. Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal. Chem. 82:9557–65 [Google Scholar]
  23. Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE. 23.  et al. 2007. An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int. J. Mass Spectrom. 261:1–12 [Google Scholar]
  24. Giles K, Williams JP, Campuzano I. 24.  2011. Enhancements in travelling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 25:1559–66 [Google Scholar]
  25. Zhong Y, Hyung SJ, Ruotolo BT. 25.  2011. Characterizing the resolution and accuracy of a second-generation traveling-wave ion mobility separator for biomolecular ions. Analyst 136:3534–41 [Google Scholar]
  26. Shvartsburg AA, Smith RD. 26.  2008. Fundamentals of traveling wave ion mobility spectrometry. Anal. Chem. 80:9689–99 [Google Scholar]
  27. Ruotolo BT, Benesch JL, Sandercock AM, Hyung S-J, Robinson CV. 27.  2008. Ion mobility–mass spectrometry analysis of large protein complexes. Nat. Protoc. 3:1139–52 [Google Scholar]
  28. Bleiholder C, Contreras S, Bowers MT. 28.  2013. A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (IV). Application to polypeptides. Int. J. Mass Spectrom. 354:275–80 [Google Scholar]
  29. Eschweiler JD, Rabuck-Gibbons JN, Tian Y, Ruotolo BT. 29.  2015. CIUSuite: a quantitative analysis package for collision induced unfolding measurements of gas-phase protein ions. Anal. Chem. 87:11516–22 [Google Scholar]
  30. Allison TM, Reading E, Liko I, Baldwin AJ, Laganowsky A, Robinson CV. 30.  2015. Quantifying the stabilizing effects of protein-ligand interactions in the gas phase. Nat. Commun. 6:8551 [Google Scholar]
  31. Von Helden G, Wyttenbach T, Bowers MT. 31.  1995. Conformation of macromolecules in the gas-phase: use of matrix-assisted laser desorption methods in ion chromatography. Science 267:1483–85 [Google Scholar]
  32. Hoaglund CS, Valentine SJ, Sporleder CR, Reilly JP, Clemmer DE. 32.  1998. Three-dimensional ion mobility TOFMS analysis of electrosprayed biomolecules. Anal. Chem. 70:2236–42 [Google Scholar]
  33. Counterman AE, Valentine SJ, Srebalus CA, Henderson SC, Hoaglund CS, Clemmer DE. 33.  1998. High-order structure and dissociation of gaseous peptide aggregates that are hidden in mass spectra. J. Am. Soc. Mass Spectrom. 9:743–59 [Google Scholar]
  34. Badman ER, Hoaglund-Hyzer CS, Clemmer DE. 34.  2001. Monitoring structural changes of proteins in an ion trap over ∼10–200 ms: unfolding transitions in cytochrome c ions. Anal. Chem. 73:6000–7 [Google Scholar]
  35. Ruotolo BT, Giles K, Campuzano I, Sandercock AM, Bateman RH, Robinson CV. 35.  2005. Evidence for macromolecular protein rings in the absence of bulk water. Science 310:1658–61 [Google Scholar]
  36. Yin S, Loo JA. 36.  2011. Top-down mass spectrometry of supercharged native protein-ligand complexes. Int. J. Mass Spectrom. 300:118–22 [Google Scholar]
  37. Mesleh MF, Hunter JM, Shvartsburg AA, Schatz GC, Jarrold MF. 37.  1996. Structural information from ion mobility measurements: effects of the long-range potential. J. Phys. Chem. 100:16082–86 [Google Scholar]
  38. Marklund EG, Degiacomi MT, Robinson CV, Baldwin AJ, Benesch JL. 38.  2015. Collision cross sections for structural proteomics. Structure 23:791–99 [Google Scholar]
  39. Kitova EN, El-Hawiet A, Schnier PD, Klassen JS. 39.  2012. Reliable determinations of protein–ligand interactions by direct ESI-MS measurements. Are we there yet?. J. Am. Soc. Mass Spectrom. 23:431–41 [Google Scholar]
  40. Daniel JM, Friess SD, Rajagopalan S, Wendt S, Zenobi R. 40.  2002. Quantitative determination of noncovalent binding interactions using soft ionization mass spectrometry. Int. J. Mass Spectrom. 216:1–27 [Google Scholar]
  41. Gulbakan B, Barylyuk K, Zenobi R. 41.  2015. Determination of thermodynamic and kinetic properties of biomolecules by mass spectrometry. Curr. Opin. Biotechnol. 31:65–72 [Google Scholar]
  42. Wang W, Kitova EN, Klassen JS. 42.  2005. Nonspecific protein–carbohydrate complexes produced by nanoelectrospray ionization. Factors influencing their formation and stability. Anal. Chem. 77:3060–71 [Google Scholar]
  43. Robinson CV, Chung EW, Kragelund BB, Knudsen J, Aplin RT. 43.  et al. 1996. Probing the nature of noncovalent interactions by mass spectrometry. A study of protein–CoA ligand binding and assembly. J. Am. Chem. Soc. 118:8646–53 [Google Scholar]
  44. Sun N, Sun J, Kitova EN, Klassen JS. 44.  2009. Identifying nonspecific ligand binding in electrospray ionization mass spectrometry using the reporter molecule method. J. Am. Soc. Mass Spectrom. 20:1242–50 [Google Scholar]
  45. El-Hawiet A, Kitova EN, Liu L, Klassen JS. 45.  2010. Quantifying labile protein–ligand interactions using electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 21:1893–99 [Google Scholar]
  46. Guan S, Trnka MJ, Bushnell DA, Robinson PJJ, Gestwicki JE, Burlingame AL. 46.  2015. Deconvolution method for specific and nonspecific binding of ligand to multiprotein complex by native mass spectrometry. Anal. Chem. 87:8541–46 [Google Scholar]
  47. Kitova EN, Soya N, Klassen JS. 47.  2011. Identifying specific small-molecule interactions using electrospray ionization mass spectrometry. Anal. Chem. 83:5160–67 [Google Scholar]
  48. Pedro L, Quinn R. 48.  2016. Native mass spectrometry in fragment-based drug discovery. Molecules 21:984 [Google Scholar]
  49. Kitova EN, El-Hawiet A, Klassen JS. 49.  2014. Screening carbohydrate libraries for protein interactions using the direct ESI-MS assay. Applications to libraries of unknown concentration. J. Am. Soc. Mass Spectrom. 25:1908–16 [Google Scholar]
  50. Han L, Shams-Ud-Doha K, Kitova EN, Klassen JS. 50.  2016. Screening oligosaccharide libraries against lectins using the proxy protein electrospray ionization mass spectrometry assay. Anal. Chem. 88:8224–31 [Google Scholar]
  51. Chen X, Li L, Chen S, Xu Y, Xia Q. 51.  et al. 2013. Identification of inhibitors of the antibiotic-resistance target New Delhi metallo-β-lactamase 1 by both nanoelectrospray ionization mass spectrometry and ultrafiltration liquid chromatography/mass spectrometry approaches. Anal. Chem. 85:7957–65 [Google Scholar]
  52. Woods LA, Dolezal O, Ren B, Ryan JH, Peat TS, Poulsen S-A. 52.  2016. Native state mass spectrometry, surface plasmon resonance, and X-ray crystallography correlate strongly as a fragment screening combination. J. Med. Chem 592192–204 [Google Scholar]
  53. Riccardi Sirtori F, Caronni D, Colombo M, Dalvit C, Paolucci M. 53.  et al. 2015. Establish an automated flow injection ESI-MS method for the screening of fragment based libraries: application to Hsp90. Eur. J. Pharm. Sci. 76:83–94 [Google Scholar]
  54. Maple HJ, Scheibner O, Baumert M, Allen M, Taylor RJ. 54.  et al. 2014. Application of the Exactive Plus EMR for automated protein–ligand screening by non-covalent mass spectrometry. Rapid Commun. Mass Spectrom. 28:1561–68 [Google Scholar]
  55. Sindelar M, Wanner KT. 55.  2012. Library screening by means of mass spectrometry (MS) binding assays—exemplarily demonstrated for a pseudostatic library addressing γ-aminobutyric acid (GABA) transporter 1 (GAT1). Chem. Med. Chem 71678–90 [Google Scholar]
  56. Davidson W, Hopkins JL, Jeanfavre DD, Barney KL, Kelly TA, Grygon CA. 56.  2003. Characterization of the allosteric inhibition of a protein-protein interaction by mass spectrometry. J. Am. Soc. Mass Spectrom. 14:8–13 [Google Scholar]
  57. Cubrilovic D, Barylyuk K, Hofmann D, Walczak MJ, Graber M. 57.  et al. 2014. Direct monitoring of protein-protein inhibition using nano electrospray ionization mass spectrometry. Chem. Sci. 5:2794–803 [Google Scholar]
  58. Duffell KM, Hudson SA, McLean KJ, Munro AW, Abell C, Matak-Vinković D. 58.  2013. Nanoelectrospray ionization mass spectrometric study of Mycobacterium tuberculosis CYP121–ligand interactions. Anal. Chem. 85:5707–14 [Google Scholar]
  59. Young LM, Saunders JC, Mahood RA, Revill CH, Foster RJ. 59.  et al. 2016. ESI-IMS–MS: a method for rapid analysis of protein aggregation and its inhibition by small molecules. Methods 95:62–69 [Google Scholar]
  60. Young LM, Saunders JC, Mahood RA, Revill CH, Foster RJ. 60.  et al. 2015. Screening and classifying small-molecule inhibitors of amyloid formation using ion mobility spectrometry–mass spectrometry. Nat. Chem. 7:73–81 [Google Scholar]
  61. Erba EB, Zenobi R. 61.  2011. Mass spectrometric studies of dissociation constants of noncovalent complexes. Annu. Rep. Sect. C 107:199–228 [Google Scholar]
  62. Wang W, Kitova EN, Klassen JS. 62.  2003. Influence of solution and gas phase processes on protein−carbohydrate binding affinities determined by nanoelectrospray Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 75:4945–55 [Google Scholar]
  63. Gavriilidou AFM, Gülbakan B, Zenobi R. 63.  2015. Influence of ammonium acetate concentration on receptor–ligand binding affinities measured by native nano ESI-MS: a systematic study. Anal. Chem. 87:10378–84 [Google Scholar]
  64. Yao Y, Richards MR, Kitova EN, Klassen JS. 64.  2016. Influence of sulfolane on ESI-MS measurements of protein–ligand affinities. J. Am. Soc. Mass Spectrom. 27:498–506 [Google Scholar]
  65. Lin H, Kitova EN, Klassen JS. 65.  2013. Quantifying protein–ligand interactions by direct electrospray ionization-MS analysis: evidence of nonuniform response factors induced by high molecular weight molecules and complexes. Anal. Chem. 85:8919–22 [Google Scholar]
  66. Jecklin MC, Touboul D, Jain R, Toole EN, Tallarico J. 66.  et al. 2009. Affinity classification of kinase inhibitors by mass spectrometric methods and validation using standard IC50 measurements. Anal. Chem. 81:408–19 [Google Scholar]
  67. Mathur S, Badertscher M, Scott M, Zenobi R. 67.  2007. Critical evaluation of mass spectrometric measurement of dissociation constants: accuracy and cross-validation against surface plasmon resonance and circular dichroism for the calmodulin-melittin system. Phys. Chem. Chem. Phys. 9:6187–98 [Google Scholar]
  68. Cubrilovic D, Biela A, Sielaff F, Steinmetzer T, Klebe G, Zenobi R. 68.  2012. Quantifying protein-ligand binding constants using electrospray ionization mass spectrometry: a systematic binding affinity study of a series of hydrophobically modified trypsin inhibitors. J. Am. Soc. Mass Spectrom. 23:1768–77 [Google Scholar]
  69. Liu L, Kitova EN, Klassen JS. 69.  2011. Quantifying protein-fatty acid interactions using electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 22:310–18 [Google Scholar]
  70. Rogniaux H, Sanglier S, Strupat K, Azza S, Roitel O. 70.  et al. 2001. Mass spectrometry as a novel approach to probe cooperativity in multimeric enzymatic systems. Anal. Biochem. 291:48–61 [Google Scholar]
  71. Cubrilovic D, Haap W, Barylyuk K, Ruf A, Badertscher M. 71.  et al. 2014. Determination of protein–ligand binding constants of a cooperatively regulated tetrameric enzyme using electrospray mass spectrometry. ACS Chem. Biol. 9:218–26 [Google Scholar]
  72. Dyachenko A, Gruber R, Shimon L, Horovitz A, Sharon M. 72.  2013. Allosteric mechanisms can be distinguished using structural mass spectrometry. PNAS 110:7235–39 [Google Scholar]
  73. Gault J, Donlan JAC, Liko I, Hopper JTS, Gupta K. 73.  et al. 2016. High-resolution mass spectrometry of small molecules bound to membrane proteins. Nat. Meth. 13:333–36 [Google Scholar]
  74. Zhou M, Morgner N, Barrera NP, Politis A, Isaacson SC. 74.  et al. 2011. Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding. Science 334:380–85 [Google Scholar]
  75. Bechara C, Robinson CV. 75.  2015. Different modes of lipid binding to membrane proteins probed by mass spectrometry. J. Am. Chem. Soc. 137:5240–47 [Google Scholar]
  76. Marcoux J, Wang SC, Politis A, Reading E, Ma J. 76.  et al. 2013. Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. PNAS 110:9704–9 [Google Scholar]
  77. Cong X, Liu Y, Liu W, Liang X, Russell DH, Laganowsky A. 77.  2016. Determining membrane protein–lipid binding thermodynamics using native mass spectrometry. J. Am. Chem. Soc. 138:4346–49 [Google Scholar]
  78. Bayburt TH, Sligar SG. 78.  2010. Membrane protein assembly into nanodiscs. FEBS Lett 584:1721–27 [Google Scholar]
  79. Marty MT, Zhang H, Cui W, Blankenship RE, Gross ML, Sligar SG. 79.  2012. Native mass spectrometry characterization of intact nanodisc lipoprotein complexes. Anal. Chem. 84:8957–60 [Google Scholar]
  80. Han L, Kitova EN, Li J, Nikjah S, Lin H. 80.  et al. 2015. Protein–glycolipid interactions studied in vitro using ESI-MS and nanodiscs: insights into the mechanisms and energetics of binding. Anal. Chem. 87:4888–96 [Google Scholar]
  81. Leney AC, Rezaei Darestani R, Li J, Nikjah S, Kitova EN. 81.  et al. 2015. Picodiscs for facile protein-glycolipid interaction analysis. Anal. Chem. 87:4402–8 [Google Scholar]
  82. Brodbelt JS. 82.  2016. Ion activation methods for peptides and proteins. Anal. Chem. 88:30–51 [Google Scholar]
  83. Wells JM, McLuckey SA. 83.  2005. Collision‐induced dissociation (CID) of peptides and proteins. Methods in Enzymology 402 AL Burlingame 148–85 Cambridge, MA: Academic [Google Scholar]
  84. McCammon MG, Hernández H, Sobott F, Robinson CV. 84.  2004. Tandem mass spectrometry defines the stoichiometry and quaternary structural arrangement of tryptophan molecules in the multiprotein complex TRAP. J. Am. Chem. Soc. 126:5950–51 [Google Scholar]
  85. Hunter CL, Mauk AG, Douglas DJ. 85.  1997. Dissociation of heme from myoglobin and cytochrome b5: comparison of behavior in solution and the gas phase. Biochemistry 36:1018–25 [Google Scholar]
  86. Sharon M, Robinson CV. 86.  2011. A quantitative perspective on hydrophobic interactions in the gas-phase. Curr. Proteom. 8:47–58 [Google Scholar]
  87. Rogniaux H, Van Dorsselaer A, Barth P, Biellmann JF, Barbanton J. 87.  et al. 1999. Binding of aldose reductase inhibitors: correlation of crystallographic and mass spectrometric studies. J. Am. Soc. Mass Spectrom. 10:635–47 [Google Scholar]
  88. Hopper JTS, Rawlings A, Afonso JP, Channing D, Layfield R, Oldham NJ. 88.  2012. Evidence for the preservation of native inter- and intra-molecular hydrogen bonds in the desolvated FK-binding protein·FK506 complex produced by electrospray ionization. J. Am. Soc. Mass Spectrom. 23:1757–67 [Google Scholar]
  89. Mayer PM, Martineau E. 89.  2011. Gas-phase binding energies for non-covalent Aβ-40 peptide/small molecule complexes from CID mass spectrometry and RRKM theory. Phys. Chem. Chem. Phys. 13:5178–86 [Google Scholar]
  90. McCammon MG, Scott DJ, Keetch CA, Greene LH, Purkey HE. 90.  et al. 2002. Screening transthyretin amyloid fibril inhibitors: characterization of novel multiprotein, multiligand complexes by mass spectrometry. Structure 10:851–63 [Google Scholar]
  91. Sowole MA, Vuong S, Konermann L. 91.  2015. Interactions of hemoglobin and myoglobin with their ligands CN−, CO, and O2 monitored by electrospray ionization-mass spectrometry. Anal. Chem. 87:9538–45 [Google Scholar]
  92. Kitova EN, Bundle DR, Klassen JS. 92.  2002. Thermal dissociation of protein–oligosaccharide complexes in the gas phase: mapping the intrinsic intermolecular interactions. J. Am. Chem. Soc. 124:5902–13 [Google Scholar]
  93. Kitova EN, Seo M, Roy P-N, Klassen JS. 93.  2008. Elucidating the intermolecular interactions within a desolvated protein–ligand complex. An experimental and computational study. J. Am. Chem. Soc. 130:1214–26 [Google Scholar]
  94. Deng L, Kitova EN, Klassen JS. 94.  2013. Mapping protein–ligand interactions in the gas phase using a functional group replacement strategy. Comparison of CID and BIRD activation methods. J. Am. Soc. Mass Spectrom. 24:988–96 [Google Scholar]
  95. Xie Y, Zhang J, Yin S, Loo JA. 95.  2006. Top-down ESI-ECD-FT-ICR mass spectrometry localizes noncovalent protein-ligand binding sites. J. Am. Chem. Soc. 128:14432–33 [Google Scholar]
  96. Yin S, Loo JA. 96.  2010. Elucidating the site of protein-ATP binding by top-down mass spectrometry. J. Am. Soc. Mass Spectrom. 21:899–907 [Google Scholar]
  97. Clarke DJ, Murray E, Hupp T, Mackay CL, Langridge-Smith PRR. 97.  2011. Mapping a noncovalent protein–peptide interface by top-down FTICR mass spectrometry using electron capture dissociation. J. Am. Soc. Mass Spectrom. 22:1432–40 [Google Scholar]
  98. Li H, Wongkongkathep P, Van Orden SL, Ogorzalek Loo RR, Loo JA. 98.  2014. Revealing ligand binding sites and quantifying subunit variants of noncovalent protein complexes in a single native top-down FTICR MS experiment. J. Am. Soc. Mass Spectrom. 25:2060–68 [Google Scholar]
  99. Heath BL, Jockusch RA. 99.  2012. Ligand migration in the gaseous insulin-CB7 complex—a cautionary tale about the use of ECD-MS for ligand binding site determination. J. Am. Soc. Mass Spectrom. 23:1911–20 [Google Scholar]
  100. Cammarata MB, Thyer R, Rosenberg J, Ellington A, Brodbelt JS. 100.  2015. Structural characterization of dihydrofolate reductase complexes by top-down ultraviolet photodissociation mass spectrometry. J. Am. Chem. Soc. 137:9128–35 [Google Scholar]
  101. O'Brien JP, Li W, Zhang Y, Brodbelt JS. 101.  2014. Characterization of native protein complexes using ultraviolet photodissociation mass spectrometry. J. Am. Chem. Soc. 136:12920–28 [Google Scholar]
  102. Quintyn Royston S, Yan J, Wysocki Vicki H. 102.  2015. Surface-induced dissociation of homotetramers with D2 symmetry yields their assembly pathways and characterizes the effect of ligand binding. Chem. Biol. 22:583–92 [Google Scholar]
  103. Nyon MP, Segu L, Cabrita LD, Levy GR, Kirkpatrick J. 103.  et al. 2012. Structural dynamics associated with intermediate formation in an archetypal conformational disease. Structure 20:504–12 [Google Scholar]
  104. Leney AC, Pashley CL, Scarff CA, Radford SE, Ashcroft AE. 104.  2014. Insights into the role of the beta-2 microglobulin D-strand in amyloid propensity revealed by mass spectrometry. Mol. Biosyst. 10:412–20 [Google Scholar]
  105. Bernstein SL, Dupuis NF, Lazo ND, Wyttenbach T, Condron MM. 105.  et al. 2009. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nat. Chem. 1:326–31 [Google Scholar]
  106. Kloniecki M, Jablonowska A, Poznanski J, Langridge J, Hughes C. 106.  et al. 2011. Ion mobility separation coupled with MS detects two structural states of Alzheimer's disease Aβ1-40 peptide oligomers. J. Mol. Biol. 407:110–24 [Google Scholar]
  107. Sitkiewicz E, Kloniecki M, Poznanski J, Bal W, Dadlez M. 107.  2014. Factors influencing compact-extended structure equilibrium in oligomers of Aβ1-40 peptide—an ion mobility mass spectrometry study. J. Mol. Biol. 426:2871–85 [Google Scholar]
  108. Wyttenbach T, Grabenauer M, Thalassinos K, Scrivens JH, Bowers MT. 108.  2010. The effect of calcium ions and peptide ligands on the relative stabilities of the calmodulin dumbbell and compact structures. J. Phys. Chem. B 114:437–47 [Google Scholar]
  109. Hyung SJ, DeToma AS, Brender JR, Lee S, Vivekanandan S. 109.  et al. 2013. Insights into antiamyloidogenic properties of the green tea extract (−)-epigallocatechin-3-gallate toward metal-associated amyloid-β species. PNAS 110:3743–48 [Google Scholar]
  110. Lee HJ, Kerr RA, Korshavn KJ, Lee J, Kang J. 110.  et al. 2016. Effects of hydroxyl group variations on a flavonoid backbone toward modulation of metal-free and metal-induced amyloid-β aggregation. Inorg. Chem. Front. 3:381–92 [Google Scholar]
  111. Soper SFC, Dator RP, Limbach PA, Woodson SA. 111.  2013. In vivo X-ray footprinting of pre-30S ribosomes reveals chaperone-dependent remodeling of late assembly intermediates. Mol. Cell 52:506–16 [Google Scholar]
  112. Young LM, Cao P, Raleigh DP, Ashcroft AE, Radford SE. 112.  2014. Ion mobility spectrometry-mass spectrometry defines the oligomeric intermediates in amylin amyloid formation and the mode of action of inhibitors. J. Am. Chem. Soc. 136:660–70 [Google Scholar]
  113. Liu YQ, Ho LH, Carver JA, Pukala TL. 113.  2011. Ion mobility mass spectrometry studies of the inhibition of alpha synuclein amyloid fibril formation by (−)-epigallocatechin-3-gallate. Aust. J. Chem. 64:36–40 [Google Scholar]
  114. Illes-Toth E, Dalton CF, Smith DP. 114.  2013. Binding of dopamine to alpha-synuclein is mediated by specific conformational states. J. Am. Soc. Mass Spectrom. 24:1346–54 [Google Scholar]
  115. Woods LA, Platt GW, Hellewell AL, Hewitt EW, Homans SW. 115.  et al. 2011. Ligand binding to distinct states diverts aggregation of an amyloid-forming protein. Nat. Chem. Biol. 7:730–39 [Google Scholar]
  116. Kudryashova E, Quintyn R, Seveau S, Lu WY, Wysocki VH, Kudryashov DS. 116.  2014. Human defensins facilitate local unfolding of thermodynamically unstable regions of bacterial protein toxins. Immunity 41:709–21 [Google Scholar]
  117. Zhao YJ, Singh A, Li LY, Linhardt RJ, Xu YM. 117.  et al. 2015. Investigating changes in the gas-phase conformation of Antithrombin III upon binding of Arixtra using traveling wave ion mobility spectrometry (TWIMS). Analyst 14:6980–89 [Google Scholar]
  118. Harvey SR, Porrini M, Stachl C, MacMillan D, Zinzalla G, Barran PE. 118.  2012. Small-molecule inhibition of c-MYC:MAX leucine zipper formation is revealed by ion mobility mass spectrometry. J. Am. Chem. Soc. 134:19384–92 [Google Scholar]
  119. Zhong Y, Han L, Ruotolo BT. 119.  2014. Collisional and coulombic unfolding of gas‐phase proteins: high correlation to their domain structures in solution. Angew. Chem. 126:9363–66 [Google Scholar]
  120. Rabuck JN, Hyung S-J, Ko KS, Fox CC, Soellner MB, Ruotolo BT. 120.  2013. Activation state-selective kinase inhibitor assay based on ion mobility-mass spectrometry. Anal. Chem. 85:6995–7002 [Google Scholar]
  121. Shelimov KB, Clemmer DE, Hudgins RR, Jarrold MF. 121.  1997. Protein structure in vacuo: gas-phase conformations of BPTI and cytochrome c. . J. Am. Chem. Soc. 119:2240–48 [Google Scholar]
  122. Shelimov KB, Jarrold MF. 122.  1997. Conformations, unfolding, and refolding of apomyoglobin in vacuum: an activation barrier for gas-phase protein folding. J. Am. Chem. Soc. 119:2987–94 [Google Scholar]
  123. Valentine SJ, Anderson JG, Ellington AD, Clemmer DE. 123.  1997. Disulfide-intact and-reduced lysozyme in the gas phase: conformations and pathways of folding and unfolding. J. Phys. Chem. B 101:3891–900 [Google Scholar]
  124. Hyung S-J, Robinson CV, Ruotolo BT. 124.  2009. Gas-phase unfolding and disassembly reveals stability differences in ligand-bound multiprotein complexes. Chem. Biol. 16:382–90 [Google Scholar]
  125. Hopper JT, Oldham NJ. 125.  2009. Collision induced unfolding of protein ions in the gas phase studied by ion mobility-mass spectrometry: the effect of ligand binding on conformational stability. J. Am. Soc. Mass Spectrom. 20:1851–58 [Google Scholar]
  126. Freeke J, Robinson CV, Ruotolo BT. 126.  2010. Residual counter ions can stabilise a large protein complex in the gas phase. Int. J. Mass Spectrom. 298:91–98 [Google Scholar]
  127. Han L, Hyung S-J, Mayers JJ, Ruotolo BT. 127.  2011. Bound anions differentially stabilize multiprotein complexes in the absence of bulk solvent. J. Am. Chem. Soc. 133:11358–67 [Google Scholar]
  128. Han L, Hyung SJ, Ruotolo BT. 128.  2012. Bound cations significantly stabilize the structure of multiprotein complexes in the gas phase. Angew. Chem. Int. Ed. 51:5692–95 [Google Scholar]
  129. Han L, Hyung S-J, Ruotolo BT. 129.  2013. Dramatically stabilizing multiprotein complex structure in the absence of bulk water using tuned Hofmeister salts. Faraday Discuss 160:371–88 [Google Scholar]
  130. Han L, Ruotolo BT. 130.  2013. Hofmeister salts recover a misfolded multiprotein complex for subsequent structural measurements in the gas phase. Angew. Chem. Int. Ed. 52:8329–32 [Google Scholar]
  131. Han L, Ruotolo BT. 131.  2013. Traveling-wave ion mobility-mass spectrometry reveals additional mechanistic details in the stabilization of protein complex ions through tuned salt additives. Int. J. Ion Mobility Spectrom. 16:41–50 [Google Scholar]
  132. Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT. 132.  et al. 2014. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510:172 [Google Scholar]
  133. Tian Y, Han L, Buckner AC, Ruotolo BT. 133.  2015. Collision induced unfolding of intact antibodies: rapid characterization of disulfide bonding patterns, glycosylation, and structures. Anal. Chem. 87:11509–15 [Google Scholar]
  134. Ferguson CN, Gucinski-Ruth AC. 134.  2016. Evaluation of ion mobility-mass spectrometry for comparative analysis of monoclonal antibodies. J. Am. Soc. Mass Spectrom. 27:822–33 [Google Scholar]
  135. Niu S, Ruotolo BT. 135.  2015. Collisional unfolding of multiprotein complexes reveals cooperative stabilization upon ligand binding. Protein Sci 24:1272–81 [Google Scholar]
  136. Marciano DP, Dharmarajan V, Griffin PR. 136.  2014. HDX-MS guided drug discovery: small molecules and biopharmaceuticals. Curr. Opin. Struct. Biol. 28:105–11 [Google Scholar]
  137. Pan J, Zhang S, Borchers CH. 137.  2016. Comparative higher-order structure analysis of antibody biosimilars using combined bottom-up and top-down hydrogen-deuterium exchange mass spectrometry. Biochim. Biophys. Acta Proteins Proteom. 1864:1801–8 [Google Scholar]
  138. Bavro VN, Gupta S, Ralston C. 138.  2015. Oxidative footprinting in the study of structure and function of membrane proteins: current state and perspectives. Biochem. Soc. Trans. 43:983–94 [Google Scholar]
  139. Liuni P, Zhu S, Wilson DJ. 139.  2014. Oxidative protein labeling with analysis by mass spectrometry for the study of structure, folding, and dynamics. Antioxid. Redox Signal. 21:497–510 [Google Scholar]
  140. Maleknia SD, Downard KM. 140.  2014. Advances in radical probe mass spectrometry for protein footprinting in chemical biology applications. Chem. Soc. Rev. 43:3244–58 [Google Scholar]
  141. DeArmond PD, West GM, Anbalagan V, Campa MJ, Patz EF, Fitzgerald MC. 141.  2010. Discovery of novel cyclophilin A ligands using an H/D exchange- and mass spectrometry-based strategy. J. Biomol. Screen. 15:1051–62 [Google Scholar]
  142. Panjarian S, Iacob RE, Chen S, Wales TE, Engen JR, Smithgall TE. 142.  2013. Enhanced SH3/linker interaction overcomes Abl kinase activation by gatekeeper and myristic acid binding pocket mutations and increases sensitivity to small molecule inhibitors. J. Biol. Chem. 288:6116–29 [Google Scholar]
  143. Yang L, Broderick D, Jiang Y, Hsu V, Maier CS. 143.  2014. Conformational dynamics of human FXR-LBD ligand interactions studied by hydrogen/deuterium exchange mass spectrometry: insights into the antagonism of the hypolipidemic agent Z-guggulsterone. Biochim. Biophys. Acta Proteins Proteom. 1844:1684–93 [Google Scholar]
  144. Pan LY, Salas-Solano O, Valliere-Douglass JF. 144.  2014. Conformation and dynamics of interchain cysteine-linked antibody-drug conjugates as revealed by hydrogen/deuterium exchange mass spectrometry. Anal. Chem. 86:2657–64 [Google Scholar]
  145. Pirrone GF, Vernon BC, Kent MS, Engen JR. 145.  2015. Hydrogen exchange mass spectrometry of proteins at Langmuir monolayers. Anal. Chem. 87:7022–29 [Google Scholar]
  146. Mondal T, Wang H, DeKoster GT, Baban B, Gross ML, Frieden C. 146.  2016. ApoE: in vitro studies of a small molecule effector. Biochemistry 55:2613–21 [Google Scholar]
  147. Strickland EC, Geer MA, Tran DT, Adhikari J, West GM. 147.  et al. 2013. Thermodynamic analysis of protein-ligand binding interactions in complex biological mixtures using the stability of proteins from rates of oxidation. Nat. Protoc. 8:148–61 [Google Scholar]
  148. Yan Y, Chen G, Wei H, Huang RY-C, Mo J. 148.  et al. 2014. Fast photochemical oxidation of proteins (FPOP) maps the epitope of EGFR binding to adnectin. J. Am. Soc. Mass Spectrom. 25:2084–92 [Google Scholar]
  149. Li Z, Moniz H, Wang S, Ramiah A, Zhang F. 149.  et al. 2015. High structural resolution hydroxyl radical protein footprinting reveals an extended Robo1-heparin binding interface. J. Biol. Chem. 290:10729–40 [Google Scholar]
/content/journals/10.1146/annurev-anchem-061516-045414
Loading
/content/journals/10.1146/annurev-anchem-061516-045414
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error